Iron-dependent apoptosis causes embryotoxicity in inflamed and obese pregnancy

. 2021 Jun 29 ; 12 (1) : 4026. [epub] 20210629

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34188052

Grantová podpora
R01 HD096863 NICHD NIH HHS - United States
K01 DK127004 NIDDK NIH HHS - United States
T32 GM065823 NIGMS NIH HHS - United States
UL1 TR000124 NCATS NIH HHS - United States
F31 HD097931 NICHD NIH HHS - United States
UL1 TR001881 NCATS NIH HHS - United States

Odkazy

PubMed 34188052
PubMed Central PMC8242011
DOI 10.1038/s41467-021-24333-z
PII: 10.1038/s41467-021-24333-z
Knihovny.cz E-zdroje

Iron is essential for a healthy pregnancy, and iron supplementation is nearly universally recommended, regardless of maternal iron status. A signal of potential harm is the U-shaped association between maternal ferritin, a marker of iron stores, and risk of adverse pregnancy outcomes. However, ferritin is also induced by inflammation and may overestimate iron stores during inflammation or infection. In this study, we use mouse models to determine whether maternal iron loading, inflammation, or their interaction cause poor pregnancy outcomes. Only maternal exposure to both iron excess and inflammation, but not either condition alone, causes embryo malformations and demise. Maternal iron excess potentiates embryo injury during both LPS-induced acute inflammation and obesity-induced chronic mild inflammation. The adverse interaction depends on TNFα signaling, causes apoptosis of placental and embryo endothelium, and is prevented by anti-TNFα or antioxidant treatment. Our findings raise important questions about the safety of indiscriminate iron supplementation during pregnancy.

Zobrazit více v PubMed

Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017;106:1567S–1574S. doi: 10.3945/ajcn.117.155812. PubMed DOI PMC

Sangkhae V, et al. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Invest. 2020;130:625–640. doi: 10.1172/JCI127341. PubMed DOI PMC

Breymann C. Iron deficiency anemia in pregnancy. Semin. Hematol. 2015;52:339–347. doi: 10.1053/j.seminhematol.2015.07.003. PubMed DOI

Le CHH. The prevalence of anemia and moderate-severe anemia in the US population (NHANES 2003-2012) PLoS ONE. 2016;11:e0166635. doi: 10.1371/journal.pone.0166635. PubMed DOI PMC

WHO. Iron Deficiency Anaemia: Assesment, Prevention and Control: a Guide for Programme Managers. (World Health Organization, 2001).

Breuer W, et al. The assessment of serum nontransferrin-bound iron in chelation therapy and iron supplementation. Blood. 2000;95:2975–2982. doi: 10.1182/blood.V95.9.2975.009k03_2975_2982. PubMed DOI

Emerit J, Beaumont C, Trivin F. Iron metabolism, free radicals, and oxidative injury. Biomed. Pharmacother. 2001;55:333–339. doi: 10.1016/S0753-3322(01)00068-3. PubMed DOI

Tuck SM, Jensen CE, Wonke B, Yardumian A. Pregnancy management and outcomes in women with thalassaemia major. J. Pediatr. Endocrinol. Metab. 1998;11:923–928. PubMed

Fozza C, et al. Pregnancy outcome among women with beta-thalassemia major in North Sardinia. Acta Haematol. 2017;138:166–167. doi: 10.1159/000480450. PubMed DOI

Baron J, Ben-David G, Hallak M. Changes in non-transferrin-bound iron (NTBI) in pregnant women on iron supplements. Eur. J. Obstet. Gynecol. Reprod. Biol. 2008;140:281–282. doi: 10.1016/j.ejogrb.2008.01.002. PubMed DOI

Rawal S, et al. A longitudinal study of iron status during pregnancy and the risk of gestational diabetes: findings from a prospective, multiracial cohort. Diabetologia. 2017;60:249–257. doi: 10.1007/s00125-016-4149-3. PubMed DOI PMC

Scholl TO. Iron status during pregnancy: setting the stage for mother and infant. Am. J. Clin. Nutr. 2005;81:1218S–1222S. doi: 10.1093/ajcn/81.5.1218. PubMed DOI

Scholl TO, Reilly T. Anemia, iron and pregnancy outcome. J. Nutr. 2000;130:443S–447S. doi: 10.1093/jn/130.2.443S. PubMed DOI

Khambalia AZ, et al. High maternal iron status, dietary iron intake and iron supplement use in pregnancy and risk of gestational diabetes mellitus: a prospective study and systematic review. Diabet. Med. 2016;33:1211–1221. doi: 10.1111/dme.13056. PubMed DOI

Guo W, et al. Analysis of the correlation of gestational diabetes mellitus and peripheral ferritin with iron levels in early pregnancy. Minerva Endocrinol. 2019;44:91–96. PubMed

Lao TT, Chan PL, Tam KF. Gestational diabetes mellitus in the last trimester—a feature of maternal iron excess? Diabet. Med. 2001;18:218–223. doi: 10.1046/j.1464-5491.2001.00453.x. PubMed DOI

Hou J, Cliver SP, Tamura T, Johnston KE, Goldenberg R. Maternal serum ferritin and fetal growth. Obstet. Gynecol. 2000;95:447–452. PubMed

Gonzales GF, Steenland K, Tapia V. Maternal hemoglobin level and fetal outcome at low and high altitudes. Am. J. Physiol. Regulatory, Integr. Comp. Physiol. 2009;297:R1477–R1485. doi: 10.1152/ajpregu.00275.2009. PubMed DOI PMC

Knottnerus JA, Delgado LR, Knipschild PG, Essed GG, Smits F. Haematologic parameters and pregnancy outcome. A prospective cohort study in the third trimester. J. Clin. Epidemiol. 1990;43:461–466. doi: 10.1016/0895-4356(90)90134-B. PubMed DOI

Mamun AA, Padmadas SS, Khatun M. Maternal health during pregnancy and perinatal mortality in Bangladesh: evidence from a large-scale community-based clinical trial. Paediatr. Perinat. Epidemiol. 2006;20:482–490. doi: 10.1111/j.1365-3016.2006.00752.x. PubMed DOI

Scanlon KS, Yip R, Schieve LA, Cogswell ME. High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age. Obstet. Gynecol. 2000;96:741–748. PubMed

Stephansson O, Dickman PW, Johansson A, Cnattingius S. Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA. 2000;284:2611–2617. doi: 10.1001/jama.284.20.2611. PubMed DOI

Khambalia AZ, et al. High maternal serum ferritin in early pregnancy and risk of spontaneous preterm birth. Br. J. Nutr. 2015;114:455–461. doi: 10.1017/S0007114515001932. PubMed DOI

Xiao R, et al. Maternal second-trimester serum ferritin concentrations and subsequent risk of preterm delivery. Paediatr. Perinat. Epidemiol. 2002;16:297–304. doi: 10.1046/j.1365-3016.2002.00448.x. PubMed DOI

Lao TT, Tam K-F, Chan LY. Third trimester iron status and pregnancy outcome in non-anaemic women; pregnancy unfavourably affected by maternal iron excess. Hum. Reprod. 2000;15:1843–1848. doi: 10.1093/humrep/15.8.1843. PubMed DOI

Jones KL, et al. Autism with intellectual disability is associated with increased levels of maternal cytokines and chemokines during gestation. Mol. Psychiatry. 2017;22:273–279. doi: 10.1038/mp.2016.77. PubMed DOI PMC

Allswede, D. M., Yolken, R. H., Buka, S. L. & Cannon, T. D. Cytokine concentrations throughout pregnancy and risk for psychosis in adult offspring: a longitudinal case-control study. Lancet Psychiatry, 10.1016/S2215-0366(20)30006-7 (2020). PubMed PMC

Ginsberg Y, et al. Maternal infection requiring hospitalization during pregnancy and attention-deficit hyperactivity disorder in offspring: a quasi-experimental family-based study. J. Child Psychol. Psychiatry. 2019;60:160–168. doi: 10.1111/jcpp.12959. PubMed DOI

Atladottir HO, et al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders. J. Autism Dev. Disord. 2010;40:1423–1430. doi: 10.1007/s10803-010-1006-y. PubMed DOI

Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356:j1. doi: 10.1136/bmj.j1. PubMed DOI PMC

Sanchez CE, et al. Maternal pre-pregnancy obesity and child neurodevelopmental outcomes: a meta-analysis. Obes. Rev. 2018;19:464–484. doi: 10.1111/obr.12643. PubMed DOI PMC

Choi GB, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933–939. doi: 10.1126/science.aad0314. PubMed DOI PMC

Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav. Immun. 2011;25:604–615. doi: 10.1016/j.bbi.2010.12.017. PubMed DOI PMC

Wu W-L, Hsiao EY, Yan Z, Mazmanian SK, Patterson PH. The placental interleukin-6 signaling controls fetal brain development and behavior. Brain, Behav., Immun. 2017;62:11–23. doi: 10.1016/j.bbi.2016.11.007. PubMed DOI PMC

Garay PA, Hsiao EY, Patterson PH, McAllister AK. Maternal immune activation causes age- and region-specific changes in brain cytokines in offspring throughout development. Brain Behav. Immun. 2013;31:54–68. doi: 10.1016/j.bbi.2012.07.008. PubMed DOI PMC

Gücer F, et al. Maternal serum levels of tumor necrosis factor-α and interleukin-2 receptor in threatened abortion: a comparison with normal and pathologic pregnancies. Fertil. Steril. 2001;76:707–711. doi: 10.1016/S0015-0282(01)02002-7. PubMed DOI

Kaislasuo, J. et al. IL-10 to TNFalpha ratios throughout early first trimester can discriminate healthy pregnancies from pregnancy losses. Am. J. Reprod. Immunol. 83, e13195 (2019). PubMed PMC

Brown AS, et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am. J. Psychiatry. 2004;161:889–895. doi: 10.1176/appi.ajp.161.5.889. PubMed DOI

Buka SL, et al. Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav. Immun. 2001;15:411–420. doi: 10.1006/brbi.2001.0644. PubMed DOI

Canetta S, et al. Elevated maternal C-reactive protein and increased risk of schizophrenia in a national birth cohort. Am. J. Psychiatry. 2014;171:960–968. doi: 10.1176/appi.ajp.2014.13121579. PubMed DOI PMC

Racicot K, Mor G. Risks associated with viral infections during pregnancy. J. Clin. Investig. 2017;127:1591–1599. doi: 10.1172/JCI87490. PubMed DOI PMC

Adams Waldorf KM, McAdams RM. Influence of infection during pregnancy on fetal development. Reproduction. 2013;146:R151–R162. doi: 10.1530/REP-13-0232. PubMed DOI PMC

Ilievski V, Lu S-J, Hirsch E. Activation of toll-like receptors 2 or 3 and preterm delivery in the mouse. Reprod. Sci. 2007;14:315–320. doi: 10.1177/1933719107302959. PubMed DOI

Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol. Reprod. 1996;55:992–995. doi: 10.1095/biolreprod55.5.992. PubMed DOI

Elmore S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC

Aronson D, et al. Obesity is the major determinant of elevated C-reactive protein in subjects with the metabolic syndrome. Int J. Obes. Relat. Metab. Disord. 2004;28:674–679. doi: 10.1038/sj.ijo.0802609. PubMed DOI

Katsuki A, et al. Serum levels of tumor necrosis factor-α are increased in obese patients with noninsulin-dependent diabetes mellitus1. J. Clin. Endocrinol. Metab. 1998;83:859–862. PubMed

Roytblat L, et al. Raised interleukin-6 levels in obese patients. Obes. Res. 2000;8:673–675. doi: 10.1038/oby.2000.86. PubMed DOI

WHO. WHO Recommendations on Antenatal Care for a Positive Pregnancy Experience. (World Health Organization, 2016). PubMed

Siu AL, U.S. Preventive Services Task Force Screening for iron deficiency anemia and iron supplementation in pregnant women to improve maternal health and birth outcomes: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2015;163:529–536. doi: 10.7326/M15-1707. PubMed DOI

Stoffel NU, von Siebenthal HK, Moretti D, Zimmermann MB. Oral iron supplementation in iron-deficient women: How much and how often? Mol. Asp. Med. 2020;75:100865. doi: 10.1016/j.mam.2020.100865. PubMed DOI

WHO. Daily iron and folic acid supplementation during pregnancy, http://www.who.int/elena/titles/daily_iron_pregnancy/en/ (2016).

USDA Agricultural Research Group Food Surveys Research Group. What We Eat in America, NHANES 2011-2012, Day 1 Food and Supplement Intake Data, https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/food-surveys-research-group/ (2014).

Wang X, Garrick MD, Collins JF. Animal models of normal and disturbed iron and copper metabolism. J. Nutr. 2019;149:2085–2100. doi: 10.1093/jn/nxz172. PubMed DOI PMC

Domellof M. Benefits and harms of iron supplementation in iron-deficient and iron-sufficient children. Nestle Nutr. Workshop Ser. Pediatr. Program. 2010;65:153–162. discussion 162-155. doi: 10.1159/000281159. PubMed DOI

Uemura M, et al. Alpha-tocopherol prevents apoptosis of vascular endothelial cells via a mechanism exceeding that of mere antioxidation. Eur. J. Pharm. 2002;456:29–37. doi: 10.1016/S0014-2999(02)02639-0. PubMed DOI

Wu D, et al. Vitamin E reversed apoptosis of cardiomyocytes induced by exposure to high dose formaldehyde during mice pregnancy. Int Heart J. 2017;58:769–777. doi: 10.1536/ihj.16-279. PubMed DOI

Wu D, et al. Effects of vitamin E on reproductive protection in pregnant mice infected with pseudorabies virus (PRV) via regulating expression of Toll-like receptors (TLRs) and cytokine balance. J. Nutr. Sci. Vitaminol. (Tokyo) 2010;56:353–363. doi: 10.3177/jnsv.56.353. PubMed DOI

Li C-J, Li RW, Kahl S, Elsasser TH. Alpha-tocopherol alters transcription activities that modulates tumor necrosis factor alpha (TNF-α) Induced inflammatory response in bovine cells. Gene Regul. Syst. Bio. 2012;6:1–14. PubMed PMC

Devaraj S, Jialal I. Alpha-tocopherol decreases tumor necrosis factor-alpha mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic. Biol. Med. 2005;38:1212–1220. doi: 10.1016/j.freeradbiomed.2005.01.009. PubMed DOI

Huey KA, Fiscus G, Richwine AF, Johnson RW, Meador BM. In vivo vitamin E administration attenuates interleukin-6 and interleukin-1beta responses to an acute inflammatory insult in mouse skeletal and cardiac muscle. Exp. Physiol. 2008;93:1263–1272. doi: 10.1113/expphysiol.2008.043190. PubMed DOI PMC

Rumbold, A., Ota, E., Hori, H., Miyazaki, C. & Crowther, C. A. Vitamin E supplementation in pregnancy. Cochrane. Database. Syst. Rev.10.1002/14651858.CD004069.pub3 (2015). PubMed PMC

Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–665. doi: 10.1182/blood-2011-04-325225. PubMed DOI PMC

Tzanavari T, Giannogonas P, Karalis KP. TNF-alpha and obesity. Curr. Dir. Autoimmun. 2010;11:145–156. doi: 10.1159/000289203. PubMed DOI

Berns M, Hommes DW. Anti-TNF-alpha therapies for the treatment of Crohn’s disease: the past, present and future. Expert Opin. Investig. Drugs. 2016;25:129–143. doi: 10.1517/13543784.2016.1126247. PubMed DOI

Dretzke J, et al. A systematic review and economic evaluation of the use of tumour necrosis factor-alpha (TNF-alpha) inhibitors, adalimumab and infliximab, for Crohn’s disease. Health Technol. Assess. 2011;15:1–244. doi: 10.3310/hta15060. PubMed DOI PMC

Mahadevan U, et al. Placental transfer of anti-tumor necrosis factor agents in pregnant patients with inflammatory bowel disease. Clin. Gastroenterol. Hepatol. 2013;11:286–292. doi: 10.1016/j.cgh.2012.11.011. PubMed DOI PMC

Kane SV, Acquah LA. Placental transport of immunoglobulins: a clinical review for gastroenterologists who prescribe therapeutic monoclonal antibodies to women during conception and pregnancy. Am. J. Gastroenterol. 2009;104:228–233. doi: 10.1038/ajg.2008.71. PubMed DOI

Julsgaard M, et al. Concentrations of adalimumab and infliximab in mothers and newborns, and effects on infection. Gastroenterology. 2016;151:110–119. doi: 10.1053/j.gastro.2016.04.002. PubMed DOI

Esteve-Solé, A. et al. Immunological changes in blood of newborns exposed to anti-TNF-α during Pregnancy. Front. Immunol.10.3389/fimmu.2017.01123 (2017). PubMed PMC

Mahadevan, U. et al. 1 Achievement of developmental milestones among offspring of women with inflammatory bowel disease: The PIANO Registry. Gastroenterology146, S–1 (2014).

Lesbordes-Brion JC, et al. Targeted disruption of the hepcidin 1 gene results in severe hemochromatosis. Blood. 2006;108:1402–1405. doi: 10.1182/blood-2006-02-003376. PubMed DOI

Fisher, A. L. et al. Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy. JCI Insight10.1172/jci.insight.135321 (2020). PubMed PMC

Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210. doi: 10.1093/nar/30.1.207. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace