Strong Antimicrobial and Healing Effects of Beta-Acids from Hops in Methicillin-Resistant Staphylococcus aureus-Infected External Wounds In Vivo
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV- 17-31765A
Czech Health Research Council of Czech Republic
PubMed
34204644
PubMed Central
PMC8231114
DOI
10.3390/antibiotics10060708
PII: antibiotics10060708
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, hops, infection, methicillin-resistant, porcine model,
- Publikační typ
- časopisecké články MeSH
Staphylococcus (S.) aureus is an important causative agent of wound infections with increasing incidence in the past decades. Specifically, the emergence of methicillin-resistant S. aureus (MRSA) causes serious problems, especially in nosocomial infections. Therefore, there is an urgent need to develop of alternative or supportive antimicrobial therapeutic modalities to meet these challenges. Purified compounds from hops have previously shown promising antimicrobial effects against MRSA isolates in vitro. In this study, purified beta-acids from hops were tested for their potential antimicrobial and healing properties using a porcine model of wounds infected by MRSA. The results show highly significant antimicrobial effects of the active substance in both the powder and Ambiderman-based application forms compared to both no-treatment control and treatment with Framycoin. Moreover, the macroscopic evaluation of the wounds during the treatment using the standardized Wound Healing Continuum indicated positive effects of the beta-acids on the overall wound healing. This is further supported by the microscopic data, which showed a clear improvement of the inflammatory parameters in the wounds treated by beta-acids. Thus, using the porcine model, we demonstrate significant therapeutic effects of hops compounds in the management of wounds infected by MRSA. Beta-acids from hops, therefore, represent a suitable candidate for the treatment of non-responsive nosocomial tissue infections by MRSA.
Food Research Institute 110 00 Prague Czech Republic
Hop Research Institute 438 01 Zatec Czech Republic
Research Institute of Brewing and Malting 110 00 Prague Czech Republic
Zobrazit více v PubMed
Sakr A., Bregeon F., Mege J.L., Rolain J.M., Blin O. Staphylococcus aureus Nasal Colonization: An Update on Mechanisms, Epidemiology, Risk Factors, and Subsequent Infections. Front. Microbiol. 2018;9:2419. doi: 10.3389/fmicb.2018.02419. PubMed DOI PMC
Lone A.G., Atci E., Renslow R., Beyenal H., Noh S., Fransson B., Abu-Lail N., Park J.J., Gang D.R., Call D.R. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infect. Immun. 2015;83:2531–2541. doi: 10.1128/IAI.03075-14. PubMed DOI PMC
McCaig L.F., McDonald L.C., Mandal S., Jernigan D.B. Staphylococcus aureus-associated skin and soft tissue infections in ambulatory care. Emerg. Infect. Dis. 2006;12:1715–1723. doi: 10.3201/eid1211.060190. PubMed DOI PMC
Turner N.A., Sharma-Kuinkel B.K., Maskarinec S.A., Eichenberger E.M., Shah P.P., Carugati M., Holland T.L., Fowler V.G., Jr. Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nat. Rev. Microbiol. 2019;17:203–218. doi: 10.1038/s41579-018-0147-4. PubMed DOI PMC
Bogdanova K., Roderova M., Kolar M., Langova K., Dusek M., Jost P., Kubelkova K., Bostik P., Olsovska J. Antibiofilm activity of bioactive hop compounds humulone, lupulone and xanthohumol toward susceptible and resistant staphylococci. Res. Microbiol. 2018;169:127–134. doi: 10.1016/j.resmic.2017.12.005. PubMed DOI
Cermak P., Olsovska J., Mikyska A., Dusek M., Kadleckova Z., Vanicek J., Nyc O., Sigler K., Bostikova V., Bostik P. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. APMIS. 2017;125:1033–1038. doi: 10.1111/apm.12747. PubMed DOI
Roehrer S., Behr J., Stork V., Ramires M., Medard G., Frank O., Kleigrewe K., Hofmann T., Minceva M. Xanthohumol C. A minor bioactive hop compound: Production, purification strategies and antimicrobial test. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018;1095:39–49. doi: 10.1016/j.jchromb.2018.07.018. PubMed DOI
Barington K., Dich-Jorgensen K., Jensen H.E. A porcine model for pathomorphological age assessment of surgically excised skin wounds. Acta Vet. Scand. 2018;60:33. doi: 10.1186/s13028-018-0387-3. PubMed DOI PMC
Dai T., Kharkwal G.B., Tanaka M., Huang Y.Y., Bil de Arce V.J., Hamblin M.R. Animal models of external traumatic wound infections. Virulence. 2011;2:296–315. doi: 10.4161/viru.2.4.16840. PubMed DOI PMC
Jensen L.K., Johansen A.S.B., Jensen H.E. Porcine Models of Biofilm Infections with Focus on Pathomorphology. Front. Microbiol. 2017;8:1961. doi: 10.3389/fmicb.2017.01961. PubMed DOI PMC
Meyer W., Schwarz R., Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr. Probl. Dermatol. 1978;7:39–52. doi: 10.1159/000401274. PubMed DOI
Zurawski D.V., Black C.C., Alamneh Y.A., Biggemann L., Banerjee J., Thompson M.G., Wise M.C., Honnold C.L., Kim R.K., Paranavitana C., et al. A Porcine Wound Model of Acinetobacter baumannii Infection. Adv. Wound Care (New Rochelle) 2019;8:14–27. doi: 10.1089/wound.2018.0786. PubMed DOI PMC
Bogdanova K., Kolar M., Langova K., Dusek M., Mikyska A., Bostikova V., Bostik P., Olsovska J. Inhibitory effect of hop fractions against Gram-positive multi-resistant bacteria. A pilot study. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc Czech Repub. 2018 doi: 10.5507/bp.2018.026. PubMed DOI
Bacitracin—Natural Peptide with Minimal Resistance Issues. [(accessed on 15 May 2018)]; Available online: https://www.thepigsite.com/articles/bacitracin-natural-peptide-with-minimal-resistance-issues.
Gray D., White R., Cooper P., Kingsley A. Applied Wound Management and Using the Wound Healing Continuum in Practice. Wound Essent. 2010;5:131–139.
Kolar M., Cermak P., Hobzova L., Bogdanova K., Neradova K., Mlynarcik P., Bostik P. Antibiotic Resistance in Nosocomial Bacteria Isolated from Infected Wounds of Hospitalized Patients in Czech Republic. Antibiotics (Basel) 2020;9:342. doi: 10.3390/antibiotics9060342. PubMed DOI PMC
Dou J.L., Jiang Y.W., Xie J.Q., Zhang X.G. New is old, and old is new: Recent advances in antibiotic-based, antibiotic-free and ethnomedical treatments against methicillin-resistant Staphylococcus aureus wound infections. Int. J. Mol. Sci. 2016;17:617. doi: 10.3390/ijms17050617. PubMed DOI PMC
Nusbaum A.G., Gil J., Rippy M.K., Warne B., Valdes J., Claro A., Davis S.C. Effective method to remove wound bacteria: Comparison of various debridement modalities in an in vivo porcine model. J. Surg. Res. 2012;176:701–707. doi: 10.1016/j.jss.2011.11.1040. PubMed DOI
Lio P.A., Kaye E.T. Topical antibacterial agents. Infect. Dis. Clin. N. Am. 2009;23:945–963. doi: 10.1016/j.idc.2009.06.006. PubMed DOI
Arias C.A., Murray B.E. Antibiotic-resistant bugs in the 21st century—A clinical super-challenge. N. Engl. J. Med. 2009;360:439–443. doi: 10.1056/NEJMp0804651. PubMed DOI
Boucher H.W., Talbot G.H., Bradley J.S., Edwards J.E., Gilbert D., Rice L.B., Scheld M., Spellberg B., Bartlett J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009;48:1–12. doi: 10.1086/595011. PubMed DOI
Spellberg B., Powers J.H., Brass E.P., Miller L.G., Edwards J.E., Jr. Trends in antimicrobial drug development: Implications for the future. Clin. Infect. Dis. 2004;38:1279–1286. doi: 10.1086/420937. PubMed DOI
Edmondson M., Newall N., Carville K., Smith J., Riley T.V., Carson C.F. Uncontrolled, open-label, pilot study of tea tree (Melaleuca alternifolia) oil solution in the decolonisation of methicillin-resistant Staphylococcus aureus positive wounds and its influence on wound healing. Int. Wound J. 2011;8:375–384. doi: 10.1111/j.1742-481X.2011.00801.x. PubMed DOI PMC
Jenkins R., Cooper R. Improving antibiotic activity against wound pathogens with manuka honey in vitro. PLoS ONE. 2012;7:e45600. doi: 10.1371/journal.pone.0045600. PubMed DOI PMC
Davis S.C., Li J., Gil J., Head C., Valdes J., Glinos G.D., Solis M., Higa A., Pastar I. Preclinical evaluation of a novel silver gelling fiber dressing on Pseudomonas aeruginosa in a porcine wound infection model. Wound Repair Regen. 2019;27:360–365. doi: 10.1111/wrr.12718. PubMed DOI
Hadad I., Johnstone B.H., Brabham J.G., Blanton M.W., Rogers P.I., Fellers C., Solomon J.L., Merfeld-Clauss S., DesRosiers C.M., Dynlacht J.R., et al. Development of a porcine delayed wound-healing model and its use in testing a novel cell-based therapy. Int J. Radiat. Oncol. Biol. Phys. 2010;78:888–896. doi: 10.1016/j.ijrobp.2010.05.002. PubMed DOI
Malmsjo M., Ingemansson R., Martin R., Huddleston E. Negative-pressure wound therapy using gauze or open-cell polyurethane foam: Similar early effects on pressure transduction and tissue contraction in an experimental porcine wound model. Wound Repair Regen. 2009;17:200–205. doi: 10.1111/j.1524-475X.2009.00461.x. PubMed DOI
Mokhtari A., Gustafsson R., Sjogren J., Nilsson J., Lindstedt S., Malmsjo M., Ingemansson R. Haemodynamic effects of -75 mmHg negative pressure therapy in a porcine sternotomy wound model. Int. Wound J. 2009;6:48–54. doi: 10.1111/j.1742-481X.2008.00566.x. PubMed DOI PMC
Dos Santos M.R., Alcaraz-Espinoza J.J., da Costa M.M., de Oliveira H.P. Usnic acid-loaded polyaniline/polyurethane foam wound dressing: Preparation and bactericidal activity. Mater. Sci. Eng. C Mater. Biol. Appl. 2018;89:33–40. doi: 10.1016/j.msec.2018.03.019. PubMed DOI
Lee J.W., Song K.Y. Evaluation of a polyurethane foam dressing impregnated with 3% povidone-iodine (Betafoam) in a rat wound model. Ann. Surg. Treat. Res. 2018;94:1–7. doi: 10.4174/astr.2018.94.1.1. PubMed DOI PMC
Lipsky B.A., Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin. Infect. Dis. 2009;49:1541–1549. doi: 10.1086/644732. PubMed DOI
Krofta K., Liskova H., Vrabcova S. Process for Preparing Pure Beta Acids of Hop. CZ303017B6. 2012 Feb 29;
Elmarsafi T., Garwood C.S., Steinberg J.S., Evans K.K., Attinger C.E., Kim P.J. Effect of semiquantitative culture results from complex host surgical wounds on dehiscence rates. Wound Repair Regen. 2017;25:210–216. doi: 10.1111/wrr.12509. PubMed DOI
Hashimoto S., Shime N. Evaluation of semi-quantitative scoring of Gram staining or semi-quantitative culture for the diagnosis of ventilator-associated pneumonia: A retrospective comparison with quantitative culture. J. Intensive Care. 2013;1:2. doi: 10.1186/2052-0492-1-2. PubMed DOI PMC
Jault P., Leclerc T., Jennes S., Pirnay J.P., Que Y.A., Resch G., Rousseau A.F., Ravat F., Carsin H., Le Floch R., et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): A randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 2019;19:35–45. doi: 10.1016/S1473-3099(18)30482-1. PubMed DOI
Kallstrom G. Are quantitative bacterial wound cultures useful? J. Clin. Microbiol. 2014;52:2753–2756. doi: 10.1128/JCM.00522-14. PubMed DOI PMC
Kilkenny C., Browne W.J., Cuthi I., Emerson M., Altman D.G. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. Vet. Clin. Pathol. 2012;41:27–31. doi: 10.1016/j.joca.2012.02.010. PubMed DOI
Pejchal J., Novotny J., Marak V., Osterreicher J., Tichy A., Vavrova J., Sinkorova Z., Zarybnicka L., Novotna E., Chladek J., et al. Activation of p38 MAPK and expression of TGF-beta1 in rat colon enterocytes after whole body gamma-irradiation. Int. J. Radiat. Biol. 2012;88:348–358. doi: 10.3109/09553002.2012.654044. PubMed DOI
Pavlik V., Sobotka L., Pejchal J., Cepa M., Nesporova K., Arenbergerova M., Mrozkova A., Velebny V. Silver distribution in chronic wounds and the healing dynamics of chronic wounds treated with dressings containing silver and octenidine. FASEB J. 2021;35:e21580. doi: 10.1096/fj.202100065R. PubMed DOI