Nanomaterials in Skin Regeneration and Rejuvenation

. 2021 Jun 30 ; 22 (13) : . [epub] 20210630

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34209468

Odkazy
PubMed 34209468
PubMed Central PMC8268279
DOI 10.3390/ijms22137095
PII: ijms22137095
Knihovny.cz E-zdroje

Skin is the external part of the human body; thus, it is exposed to outer stimuli leading to injuries and damage, due to being the tissue mostly affected by wounds and aging that compromise its protective function. The recent extension of the average lifespan raises the interest in products capable of counteracting skin related health conditions. However, the skin barrier is not easy to permeate and could be influenced by different factors. In the last decades an innovative pharmacotherapeutic approach has been possible thanks to the advent of nanomedicine. Nanodevices can represent an appropriate formulation to enhance the passive penetration, modulate drug solubility and increase the thermodynamic activity of drugs. Here, we summarize the recent nanotechnological approaches to maintain and replace skin homeostasis, with particular attention to nanomaterials applications on wound healing, regeneration and rejuvenation of skin tissue. The different nanomaterials as nanofibers, hydrogels, nanosuspensions, and nanoparticles are described and in particular we highlight their main chemical features that are useful in drug delivery and tissue regeneration.

Zobrazit více v PubMed

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

Bolzinger M.-A., Briançon S., Pelletier J., Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012;17:156–165. doi: 10.1016/j.cocis.2012.02.001. DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

Akram M., Hussain R. Nanocellulose and Nanohydrogel Matrices: Biotechnological and Biomedical Applications. Wiley Online Library; Hoboken, NJ, USA: 2017. Nanohydrogels: History, development, and applications in drug delivery; pp. 297–330.

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

Taufikurohmah T., Sanjaya I.G.M., Syahrani A. Nanogold synthesis using matrix mono glyceryl stearate as antiaging compounds in modern cosmetics. J. Mater. Sci. Eng. A. 2011;1:857.

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

Rahman M.A., Islam M.S., Haque P., Khan M.N., Takafuji M., Begum M., Chowdhury G.W., Khan M., Rahman M.M. Calcium ion mediated rapid wound healing by nano-ZnO doped calcium phosphate-chitosan-alginate biocomposites. Materialia. 2020;13:100839. doi: 10.1016/j.mtla.2020.100839. DOI

Zhou L., Chen F., Hou Z., Chen Y., Luo X. Injectable self-healing CuS nanoparticle complex hydrogels with antibacterial, anti-cancer, and wound healing properties. Chem. Eng. J. 2021;409:128224. doi: 10.1016/j.cej.2020.128224. DOI

Ahmed K.B.A., Anbazhagan V. Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv. 2017;7:36644–36652. doi: 10.1039/C7RA05636B. DOI

PubMed DOI PMC

PubMed DOI

Singh S.K., Dhyani A., Juyal D. Hydrogel: Preparation, characterization and applications. Pharma Innov. 2017;6:25.

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed PMC

PubMed DOI PMC

Yu R., Yang Y., He J., Li M., Guo B. Novel supramolecular self-healing silk fibroin-based hydrogel via host–guest interaction as wound dressing to enhance wound healing. Chem. Eng. J. 2021;417:128278. doi: 10.1016/j.cej.2020.128278. DOI

Contardi M., Kossyvaki D., Picone P., Summa M., Guo X., Heredia-Guerrero J.A., Giacomazza D., Carzino R., Goldoni L., Scoponi G. Electrospun Polyvinylpyrrolidone (PVP) hydrogels containing hydroxycinnamic acid derivatives as potential wound dressings. Chem. Eng. J. 2021;409:128144. doi: 10.1016/j.cej.2020.128144. DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

PubMed DOI

Sánchez-Abella L., Ruiz V., Pérez-San Vicente A., Grande H.-J., Loinaz I., Dupin D. Reactive oxygen species (ROS)-responsive biocompatible polyethylene glycol nanocomposite hydrogels with different graphene derivatives. J. Mater. Sci. 2021;56:10041–10052. doi: 10.1007/s10853-021-05919-w. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

Hu C., Long L., Cao J., Zhang S., Wang Y. Dual-crosslinked mussel-inspired smart hydrogels with enhanced antibacterial and angiogenic properties for chronic infected diabetic wound treatment via pH-responsive quick cargo release. Chem. Eng. J. 2021;411:128564. doi: 10.1016/j.cej.2021.128564. DOI

PubMed DOI

PubMed DOI

PubMed DOI

Wang Y., Li M., Rong J., Nie G., Qiao J., Wang H., Wu D., Su Z., Niu Z., Huang Y. Enhanced orientation of PEO polymer chains induced by nanoclays in electrospun PEO/clay composite nanofibers. Colloid. Polym. Sci. 2013;291:1541–1546. doi: 10.1007/s00396-012-2875-8. DOI

Righi T.M., Almeida R.S., d’Ávila M.A. Electrospinning of Gelatin/PEO Blends: Influence of Process Parameters in the Nanofiber Properties. Macromol. Symp. 2012;319:230–234. doi: 10.1002/masy.201100137. DOI

PubMed DOI

PubMed DOI

Sylvester M.A., Amini F., Tan C.K. Electrospun nanofibers in wound healing. Mater. Today Proc. 2020;29:1–6. doi: 10.1016/j.matpr.2020.05.686. DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

Coelho D.S., Veleirinho B., Alberti T., Maestri A., Yunes R., Dias P.F., Maraschin M. Nanomaterials: Toxicity, Human Health and Environment. BoD—Books on Demand; Norderstedt, Germany: 2018. Electrospinning technology: Designing nanofibers toward wound healing application; pp. 1–19.

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

Joshi A., Xu Z., Ikegami Y., Yoshida K., Sakai Y., Joshi A., Kaur T., Nakao Y., Yamashita Y.-I., Baba H. Exploiting synergistic effect of externally loaded bFGF and endogenous growth factors for accelerated wound healing using heparin functionalized PCL/gelatin co-spun nanofibrous patches. Chem. Eng. J. 2021;404:126518. doi: 10.1016/j.cej.2020.126518. DOI

PubMed DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed DOI

PubMed DOI

PubMed

Hadjizadeh A., Ghasemkhah F., Ghasemzaie N. Polymeric scaffold based gene delivery strategies to improve angiogenesis in tissue engineering: A review. Polym. Rev. 2017;57:505–556. doi: 10.1080/15583724.2017.1292402. DOI

PubMed DOI PMC

PubMed DOI

Alipour R., Khorshidi A., Shojaei A.F., Mashayekhi F., Moghaddam M.J.M. Silver Sulfadiazine-loaded PVA/CMC Nanofibers for the Treatment of Wounds Caused by Excision. Fibers Polym. 2019;20:2461–2469. doi: 10.1007/s12221-019-9314-0. DOI

Ahmed M.E., Khalaf Z.Z., Ghafil J.A., Al-Awadi A.Q. Effects of Silver Nanoparticles on Biofilms of Streptococcus Spps. Exec. Ed. 2018;9:1216. doi: 10.5958/0976-5506.2018.02016.8. DOI

PubMed DOI PMC

PubMed DOI PMC

PubMed

PubMed DOI

PubMed DOI

PubMed DOI PMC

Souto E.B., Fernandes A.R., Martins-Gomes C., Coutinho T.E., Durazzo A., Lucarini M., Souto S.B., Silva A.M., Santini A. Nanomaterials for skin delivery of cosmeceuticals and pharmaceuticals. Appl. Sci. 2020;10:1594. doi: 10.3390/app10051594. DOI

PubMed DOI PMC

PubMed DOI

Beamer C.A. Mucosal Delivery of Drugs and Biologics in Nanoparticles. Springer; Berlin/Heidelberg, Germany: 2020. Toxicity of Nanomaterials to the Host and the Environment; pp. 233–245.

PubMed DOI

PubMed DOI PMC

Carnovale C., Bryant G., Shukla R., Bansal V. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona. ACS Omega. 2019;4:242–256. doi: 10.1021/acsomega.8b03227. DOI

PubMed DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...