The Proton-Boron Reaction Increases the Radiobiological Effectiveness of Clinical Low- and High-Energy Proton Beams: Novel Experimental Evidence and Perspectives
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
34262867
PubMed Central
PMC8274279
DOI
10.3389/fonc.2021.682647
Knihovny.cz E-resources
- Keywords
- BSH, alpha-particle, cancer cell killing, chromosome aberrations, proton-boron (B) fusion-enhanced proton therapy (PBFEPT), protontherapy,
- Publication type
- Journal Article MeSH
Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.
Department of Mathematics and Physics Università L Vanvitelli Caserta Italy
Energy Department Politecnico di Milano and INFN Sezione di Milano Milan Italy
Extreme Light Infrastructure Czech Academy of Sciences Prague Czechia
Istituto di Bioimmagini e Fisiologia Molecolare Consiglio Nazionale delle Ricerche Cefalù Italy
Istituto Nazionale di Fisica Nucleare Sezione di Napoli Naples Italy
Laboratori Nazionali del Sud INFN Catania Italy
Laboratori Nazionali di Legnaro INFN Legnaro Italy
The Sicilian Center of Nuclear Physics and the Structure of Matter Catania Italy
See more in PubMed
Durante M, Loeffler JS. Charged Particles in Radiation Oncology. Nat Rev Clin Oncol (2010) 7:37–43. 10.1038/nrclinonc.2009.183 PubMed DOI
Levin WP, Kooy H, Loeffler JS, DeLaney. Proton Beam Therapy. Br J Cancer (2005) 93:849–54. 10.1038/sj.bjc.6602754 PubMed DOI PMC
Hall EJ. Intensity-Modulated Radiation Therapy, Protons, and the Risk of Second Cancers. Int J Radiat Oncol Biol Phys (2006) 65:1–7. 10.1016/j.ijrobp.2006.01.027 PubMed DOI
Paganetti H, Nimierko A, Ancukiewicz M, Gerweck LE, Goitein M, Loeffler JS, et al. . Relative Biological Effectiveness (RBE) Values for Proton Beam Radiotherapy. Int J Radiat Oncol Biol Phys (2002) 53:407–21. 10.1016/S0360-3016(02)02754-2 PubMed DOI
Barker HE, Paget JTE, Khan AA, Harrington KJ. The Tumor Microenvironment After Radiotherapy: Mechanisms of Resistance and Recurrence. Nat Rev Cancer (2015) 15:409–25. 10.1038/nrc3958 PubMed DOI PMC
Weyrathe WK, Debus J. Particle Beams for Cancer Therapy. J Clin Oncol (2003) 15:S23–8. 10.1053/clon.2002.0185 PubMed DOI
Lorat Y, Brunner CU, Schanz S, Jakob B, Taucher-Scholz G, Rübe CE. Nanoscale Analysis of Clustered DNA Damage After high-LET Irradiation by Quantitative Electron Microscopy–the Heavy Burden to Repair. DNA Repair (Amst) (2015) 28:93–106. 10.1016/j.dnarep.2015.01.007 PubMed DOI
Malouff TD, Mahajan A, Krishnan S, Beltran C, Seneviratne DS, Trifiletti DM. Carbon Ion Therapy: A Modern Review of an Emerging Technology. Front Oncol (2020) 10:82. 10.3389/fonc.2020.00082 PubMed DOI PMC
Do-Kun Y, Joo-Young J, Tae SS. Application of Proton Boron Fusion Reaction to Radiation Therapy: A Monte Carlo Simulation Study. Appl Phys Lett (2014) 105:223507. 10.1063/1.4903345 DOI
Barth RF, Soloway AH, Fairchild RG. Boron Neutron Capture Therapy of Cancer. Cancer Res (1990) 50:1061–70. 10.1016/B978-0-12-168561-4.50442-X PubMed DOI
Sikora MH, Weller HRA. New Evaluation of the 11B(P, α)αα Reaction Rates. J Fusion Energ (2016) 35:538–43. 10.1007/s10894-016-0069-y DOI
Stave SS, Ahmed MW, France RH, II, Henshaw SS, Müller B, Perdueet BA, et al. . Understanding the 11B(P, α)αα Reaction at the 0.675 MeV Resonance. Phys Lett B (2011) 696:26–9. 10.1016/j.physletb.2010.12.015 DOI
Durante M, Grossi G, Pugliese M, Manti L, Nappo M, Gialanella G. Single-Charged Particle Damage to Living Cells: A New Method to Detect Traversals Based on Track-Etch Detectors. Nucl Instr Meth B (1994) 94:251–58. 10.1016/0168-583X(94)95363-5 DOI
Cirrone GAP, Manti L, Margarone D, Petringa G, Giuffrida L, Minopoli A, et al. . First Experimental Proof of Proton Boron Capture Therapy (PBCT) to Enhance Proton Therapy Effectiveness. Sci Rep (2018) 8:1141. 10.1038/s41598-018-19258-5 PubMed DOI PMC
Anderson RM, Marsden SJ, Wright EG, Kadhim MA, Goodhead DT, Griffin CS. Complex Chromosome Aberrations in Peripheral Blood Lymphocytes as a Potential Biomarker of Exposure to high-LET Alpha-Particles. Int J Radiat Biol (2000) 76:31–42. 10.1080/095530000138989 PubMed DOI
Manti L, Durante M, Grossi G, Ortenzia O, Pugliese M, Scampoli P, et al. . Measurements of Metaphase and Interphase Chromosome Aberrations Transmitted Through Early Cell Replication Rounds in Human Lymphocytes Exposed to low-LET Protons and high-LET 12C Ions. Mutat Res (2006) 596:151–65. 10.1016/j.mrfmmm.2005.12.010 PubMed DOI
Griffin CS, Marsden SJ, Stevens DL, Simpson P, Savage JR. Frequencies of Complex Chromosome Exchange Aberrations Induced by 238Pu Alpha-Particles and Detected by Fluorescence in Situ Hybridization Using Single Chromosome-Specific Probes. Int J Radiat Biol (1995) 67:431–9. 10.1080/09553009514550491 PubMed DOI
Anderson RM, Stevens DL, Goodhead DT. M-FISH Analysis Shows That Complex Chromosome Aberrations Induced by Alpha -Particle Tracks are Cumulative Products of Localized Rearrangements. Proc Natl Acad Sci U S A (2002) 99:12167–72. 10.1073/pnas.182426799 PubMed DOI PMC
Buonanno M, Veljko Grilj V, Brenner DJ. Biological Effects in Normal Cells Exposed to FLASH Dose Rate Protons. Radiother Oncol (2019) 139:51–5. 10.1016/j.radonc.2019.02.009 PubMed DOI PMC
Eric S, Diffenderfer ES, Verginadis II, II, MM K, Shoniyozov K, Velalopoulou A, et al. . Design, Implementation, and in Vivo Validation of a Novel Proton FLASH Radiation Therapy System. Int J Radiat Oncol Biol Phys (2019) 2:440–8. 10.1016/j.ijrobp.2019.10.049 PubMed DOI PMC
Debnath J, Muthuswamy SK, Brugge JS. Morphogenesis and Oncogenesis of MCF-10A Mammary Epithelial Acini Grown in Three-Dimensional Basement Membrane Cultures. Methods (2003) 30:256–68. 10.1016/s1046-2023(03)00032-x PubMed DOI
Cirrone GAP, Cuttone G, Lojacono PA, Lo Nigro S, Mongelli V, Patti IV, et al. . A 62 MeV Proton Beam for the Treatment of Ocular Melanoma at Laboratori Nazionali Del Sud-INFN. IEEE Trans Nucl Sci (2004) 51:860–5. 10.1109/TNS.2004.829535 DOI
Cirrone GAP, Cuttone G, Raffaele L, Salamone V, Avitabile T, Privitera G, et al. . Clinical and Research Activities at the CATANA Facility of INFN-LNS: From the Conventional Hadrontherapy to the Laser-Driven Approach. Front Oncol (2017) 7:223. 10.3389/fonc.2017.00223 PubMed DOI PMC
Cirrone GAP, Cuttone G, Mazzaglia SE, Romano F, Sardina D, Agodi C, et al. . Hadrontherapy: A 4-Based Tool for Proton/Ion-Therapy Studies. Prog Nucl Sci Technol (2011) 2:207–12. 10.15669/pnst.2.207 DOI
Petringa G, Romano F, Manti L, Pandola L, Attili A, Cammarata F, et al. . Radiobiological Quantities in Proton-Therapy: Estimation and Validation Using Geant4-based Monte Carlo Simulations. Phys Med (2019) 58:72–80. 10.1016/j.ejmp.2019.01.018 PubMed DOI
Petringa G, Pandola L, Agosteo S, Catalano R, Colautti P, Conte V, et al. . Monte Carlo Implementation of New Algorithms for the Averaged-Dose and -Track Linear Energy Transfer Evaluation in 62 MeV Clinical Proton Beams. Phys Med Biol (2020) 65:235043. 10.1088/1361-6560/abaeb9 PubMed DOI
Conte V, Bianchi A, Selva A, Petringa G, Cirrone GAP, Parisi A, et al. . Microdosimetry at the CATANA 62 Mev Proton Beam With a Sealed Miniaturized TEPC. Phys Med (2019) 64:114–22. 10.1016/j.ejmp.2019.06.011 PubMed DOI
Agosteo S, Cirrone GAP, Colautti P, Cuttone G, D’Angelo G, Fazzi A, et al. . Study of a Silicon Telescope for Solid State Microdosimetry: Preliminary Measurements at the Therapeutic Proton Beam Line of CATANA. Radiat Meas (2010) 45:1284–9. 10.1016/j.radmeas.2010.06.051 DOI
Rosenfeld AB. Novel Detectors for Silicon Based Microdosimetry, Their Concepts and Applications. NIM A (2016) 809:156–70. 10.1016/j.nima.2015.08.059 DOI
Bianchi A, Selva A, Colautti P, Bortot D, Mazzucconi D, Pola A, et al. . Microdosimetry With a Sealed mini-TEPC and a Silicon Telescope at a Clinical Proton SOBP of CATANA. Radiat Phys Chem (2020) 171:108730. 10.1016/j.radphyschem.2020.108730 DOI
Conte V, Agosteo S, Bianchi A, Bolst D, Bortot D, Catalano R, et al. . Microdosimetry of a Therapeutic Proton Beam With a mini-TEPC and a MicroPlus-Bridge Detector for RBE Assessment. Phys Med Biol (2020) 65:245018. 10.1088/1361-6560/abc368 PubMed DOI
Mirandola A, Molinelli S, Vilches Freixas G, Mairani A, Gallio E, Panizza D, et al. . Dosimetric Commissioning and Quality Assurance of Scanned Ion Beams at the Italian National Center for Oncological Hadrontherapy. Med Phys (2015) 42:5287–300. 10.1118/1.4928397 PubMed DOI
Rossi S. The National Centre for Oncological Hadrontherapy (Cnao): Status and Perspectives. Phys Med (2015) 31:333–51. 10.1016/j.ejmp.2015.03.001 PubMed DOI
International Atomic Energy Agency (IAEA) . “Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water”. In: Technical Reports Series No. 398. Vienna: IAEA; (2000).
Durante M, Furusawa Y, Gotoh E. A Simple Method for Simultaneous Interphase-Metaphase Chromosome Analysis in Biodosimetry. Int J Radiat Biol (1998) 74:457–62. 10.1080/095530098141320 PubMed DOI
Manti L, Durante M, Grossi G, Pugliese G, Scampoli P, Gialanella G. Chromosome Aberrations in Human Lymphocytes From the Plateau Region of the Bragg Curve for a Carbon-Ion Beam. Nucl Instr Meth B (2007) 259:884–88. 10.1016/j.nimb.2007.03.074 DOI
Manti L, Braselmann H, Calabrese ML, Massa R, Pugliese M, Scampoli P, et al. . Effects of Modulated Microwave Radiation at Cellular Telephone Frequency (1.95 GHz) on X-ray-induced Chromosome Aberrations in Human Lymphocytes In Vitro . Radiat Res (2008) 169:575–83. 10.1667/RR1044.1 PubMed DOI
Savage JRK, Simpson PJ. Fish ‘Painting’ Patterns Resulting From Complex Exchanges. Mutat Res (1994) 312:51–60. 10.1016/0165-1161(94)90008-6 PubMed DOI
Lee R, Sommer S, Hartel C, Nasonova E, Durante M, Ritter S. Complex Exchanges are Responsible for the Increased Effectiveness of C-ions Compared to X-rays at the First Post-Irradiation Mitosis. Mutat Res (2010) 701:52–9. 10.1016/j.mrgentox.2010.03.004 PubMed DOI
Lee Y, Wang Q, Shuryak I, Brenner DJ, Turner HC. Development of a High-Throughput γ-H2AX Assay Based on Imaging Flow Cytometry. Radiat Oncol (2019) 14:150. 10.1186/s13014-019-1344-7 PubMed DOI PMC
Zou L. Single- and Double-Stranded DNA: Building a Trigger of ATR-mediated DNA Damage Response. Genes Dev (2007) 21:879–85. 10.1101/gad.1550307 PubMed DOI
Fell VL, Schild-Poulter C. The Ku Heterodimer: Function in DNA Repair and Beyond. Mutat Res Rev Mutat Res (2015) 763:15–29. 10.1016/j.mrrev.2014.06.002 PubMed DOI
Prasad R, Çağlayan M, Dai DP, Nadalutti CA, Zhao ML, Gassman NR, et al. . DNA Polymerase β: A Missing Link of the Base Excision Repair Machinery in Mammalian Mitochondria. DNA Repair (Amst) (2017) 60:77–88. 10.1016/j.dnarep.2017.10.011 PubMed DOI PMC
Sugitani N, Sivley RM, Perry KE, Capra JA, Chazin WJ. Xpa: A Key Scaffold for Human Nucleotide Excision Repair. DNA Repair (Amst) (2016) 44:123–35. 10.1016/j.dnarep.2016.05.018 PubMed DOI PMC
Newhauser WD, Zhang R. The Physics of Proton Therapy. Phys Med Biol (2015) 60:R155. 10.1088/0031-9155/60/8/R155 PubMed DOI PMC
Francis Z, Seif E, Incerti S, Champion C, Karamitros M, Bernal MA, et al. . Carbon Ion Fragmentation Effects on the Nanometric Level Behind the Bragg Peak Depth. Phys Med Biol (2014) 59:7691. 10.1088/0031-9155/59/24/7691 PubMed DOI
Xiang M, Chang DT, Pollom EL. Second Cancer Risk After Primary Cancer Treatment With Three-Dimensional Conformal, Intensity-Modulated, or Proton Beam Radiation Therapy. Cancer (2020) 126:3560–68. 10.1002/cncr.32938 PubMed DOI
Durante M. Proton Beam Therapy in Europe: More Centres Need More Research. Br J Cancer (2019) 120:777–78. 10.1038/s41416-018-0329-x PubMed DOI PMC
Tommasino F, Durante M. Proton Radiobiology. Cancers (Basel) (2015) 7:353–81. 10.3390/cancers7010353 PubMed DOI PMC
Alan Mitteer R, Wang Y, Shah J, Gordon S, Fager M, Butter PP, et al. . Proton Beam Radiation Induces DNA Damage and Cell Apoptosis in Glioma Stem Cells Through Reactive Oxygen Species. Sci Rep (2015) 5:13961. 10.1038/srep13961 PubMed DOI PMC
Chaudhary P, Marshall TI, Perozziello FM, Manti L, Frederick J Currell FJ. Et Al, Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment. Int J Radiat Oncol Biol Phys (2014) 90:27–35. 10.1016/j.ijrobp.2014.05.010 PubMed DOI
McNamara AL, Willers H, Paganetti H. Modelling Variable Proton Relative Biological Effectiveness for Treatment Planning. Br J Radiol (2020) 93:20190334. 10.1259/bjr.20190334 PubMed DOI PMC
Konings K, Vandevoorde C, Baselet B, Baatout S and Moreels M. Combination Therapy With Charged Particles and Molecular Targeting: A Promising Avenue to Overcome Radioresistance. Front Oncol (2020) 10:128. 10.3389/fonc.2020.00128 PubMed DOI PMC
Cornforth MN. Analyzing Radiation-Induced Complex Chromosome Rearrangements by Combinatorial Painting. Radiat Res (2001) 155:643–59. 10.1667/0033-7587(2001)155[0643:ARICCR]2.0.CO;2 PubMed DOI
Wu H, Durante M, Furusawa Y, George K, Kawata T, Cucinotta FA. M-FISH Analysis of Chromosome Aberrations in Human Fibroblasts Exposed to Energetic Iron Ions In Vitro . Adv Space Res (2003) 31:1537–42. 10.1016/S0273-1177(03)00092-9 PubMed DOI
Anderson RM, Stevens DL, Sumption ND, Townsend KMS, Goodhead DT. Mark A Hill MA.Effect of Linear Energy Transfer (LET) on the Complexity of Alpha-Particle-Induced Chromosome Aberrations in Human CD34+ Cells. Radiat Res (2007) 167:541–50. 10.1667/RR0813.1 PubMed DOI
Podhorecka M, Skladanowski A, Bozko P. H2ax Phosphorylation: its Role in DNA Damage Response and Cancer Therapy. J Nucleic Acids (2010) 2010:920161. 10.4061/2010/920161 PubMed DOI PMC
Minafra L, Bravatà V, Russo G, Forte GI, Cammarata FP, Ripamonti M, et al. . Gene Expression Profiling of MCF10A Breast Epithelial Cells Exposed to IOERT. Anticancer Res (2015) 35:3223–34. PubMed
Bravatà V, Minafra L, Cammarata FP, Pisciotta P, Lamia D, Marchese V, et al. . Gene Expression Profiling of Breast Cancer Cell Lines Treated With Proton and Electron Radiations. Br J Radiol (2018) 91:20170934. 10.1259/bjr.20170934 PubMed DOI PMC
Maréchal A, Zou L. DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harb Perspect Biol (2013) 5:a012716. 10.1101/cshperspect.a012716 PubMed DOI PMC
Awasthi P, Foiani M, Kumar A. ATM and ATR Signaling at a Glance. J Cell Sci (2016) 128:4255–62. 10.1242/jcs.169730 PubMed DOI
Mariotti LG, Pirovano G, Savage KI, Ghita M, Ottolenghi A, Prise KM, et al. . Use of the γ-H2AX Assay to Investigate DNA Repair Dynamics Following Multiple Radiation Exposures. PloS One (2013) 8:e79541. 10.1371/journal.pone.0079541 PubMed DOI PMC
Tomimatsu N, Tahimic CG, Otsuki A, Burma S, Fukuhara A, Sato K, et al. . Ku70/80 Modulates ATM and ATR Signaling Pathways in Response to DNA Double Strand Breaks. J Biol Chem (2007) 282:10138–45. 10.1074/jbc.M611880200 PubMed DOI
Lomax ME, Folkes LK, O’Neill P. Biological Consequences of radiation-inducedDNA Damage: Relevance to Radiotherapy. Clin Oncol (R Coll Radiol) (2013) 25:578–85. 10.1016/j.clon.2013.06.007 PubMed DOI
Zhao S, Klattenhoff AW, Thakur M, Sebastian M, Kidane D. Mutation in DNA Polymerase Beta Causes Spontaneous Chromosomal Instability and Inflammation-Associated Carcinogenesis in Mice. Cancers (Basel) (2019) 11:1160. 10.3390/cancers11081160 PubMed DOI PMC
Jung JY, Yoon DK, Barraclough B, Lee HC, Suh TS, Lu B. Comparison Between Proton Boron Fusion Therapy (PBFT) and Boron Neutron Capture Therapy (BNCT): A Monte Carlo Study. Oncotarget (2017) 8:39774–81. 10.18632/oncotarget.15700 PubMed DOI PMC
Hideghéty K, Brunner S, Cheesman A, Szabó ER, Polanek R, Margarone D, et al. . 11boron Delivery Agents for Boron Proton-Capture Enhanced Proton Therapy. Anticancer Res (2019) 39:2265–76. 10.21873/anticanres.13343 PubMed DOI
Tabbakh F, Hosmane NS. Enhancement of Radiation Effectiveness in Proton Therapy: Comparison Between Fusion and Fission Methods and Further Approaches. Sci Rep (2020) 10:5466. 10.1038/s41598-020-62268-5 PubMed DOI PMC
Khaledi N, Wang X, Hosseinabadi RB, Samiei F. Is the Proton–Boron Fusion Therapy Effective? J Radiother Pract (2020) 20:1–5. 10.1017/S1460396920000151 DOI
Ganjeh ZA, Eslami-Kalantari M. Investigation of Proton–Boron Capture Therapy vs. Proton Therapy. NIM A (2020) 977:164340. 10.1016/j.nima.2020.164340 DOI
Goodhead DT. Mechanisms for the Biological Effectiveness of high-LET Radiations. J Radiat Res (1999) 40:S1–13. 10.1269/jrr.40.s1 PubMed DOI
Tracy BL, Stevens DL, Goodhead DT, Hill MA. Variation in RBE for Survival of V79-4 Cells as a Function of Alpha-Particle (Helium Ion) Energy. Radiat Res (2015) 184:33–45. 10.1667/RR13835.1 PubMed DOI
Kadhim M, Hill MA. Non-Targeted Effects of Radiation Exposure: Recent Advances and Implications. Radiat Prot Dosimetry (2015) 166:118–24. 10.1093/rpd/ncv167 PubMed DOI
Schmid TE, Multhoff G. Non-Targeted Effects of Photon and Particle Irradiation and the Interaction With the Immune System. Front Oncol (2012) 2:80. 10.3389/fonc.2012.00080 PubMed DOI PMC
Yin X, Tian W, Wang L, Wang J, Zhang S, Cao J, et al. . Radiation Quality-Dependence of Bystander Effect in Unirradiated Fibroblasts is Associated With TGF-β1-Smad2 Pathway and miR-21 in Irradiated Keratinocytes. Sci Rep (2015) 5:11373. 10.1038/srep11373 PubMed DOI PMC
Anzenberg V, Chandiramani S, Coderre JA. LET-Dependent Bystander Effects Caused by Irradiation of Human Prostate Carcinoma Cells With X Rays or Alpha Particles. Radiat Res (2008) 170:467–76. 10.1667/rr1312.1 PubMed DOI PMC
Li J, He M, Shen B, Yuan D, Shao C. Alpha Particle-Induced Bystander Effect is Mediated by ROS Via a P53-Dependent SCO2 Pathway in Hepatoma Cells. Int J Radiat Biol (2013) 89:1028–34. 10.3109/09553002.2013.817706 PubMed DOI
Hu B, Wu L, Han W, Zhang L, Chen S, Xu A, et al. . The Time and Spatial Effects of Bystander Response in Mammalian Cells Induced by Low Dose Radiation. Carcinogenesis (2006) 27:245–51. 10.1093/carcin/bgi224 PubMed DOI
Gaillard S, Pusset D, de Toledo SM, Fromm M, Azzam EI. Propagation Distance of the Alpha-Particle-Induced Bystander Effect: The Role of Nuclear Traversal and Gap Junction Communication. Radiat Res (2009) 171:513–20. 10.1667/RR1658.1 PubMed DOI PMC
Kadhim M, Salomaa S, Wright E, Hildebrandt G, Belyakov OV, Prise KM, et al. . Non-Targeted Effects of Ionising Radiation–Implications for Low Dose Risk. Mutat Res (2013) 752:84–98. 10.1016/j.mrrev.2012.12.001 PubMed DOI PMC
Capala J, Makar MS Coderre JA. Accumulation of Boron in Malignant and Normal Cells Incubated in Vitro With Boronophenylalanine, Mercaptoborane or Boric Acid. Radiat Res (1996) 146:554–60. 10.2307/3579556 PubMed DOI
Panov V, Salomon Y, Kabalka GW, Bendel P. Uptake and Washout of Borocaptate Sodium and Borono-Phenylalanine in Cultured Melanoma Cells: A Multi-Nuclear NMR Study. Radiat Res (2000) 154:104–12. 10.1667/0033-7587(2000)154[0104:uawobs]2.0.co;2 PubMed DOI
Ferrari C, Zonta C, Cansolino L, Clerici AM, Gaspari A, S.Altieri S, et al. . Selective Uptake of P-Boronophenylalanine by Osteosarcoma Cells for Boron Neutron Capture Therapy. Appl Radiat Isot (2009) 67:S341–4. 10.1016/j.apradiso.2009.03.059 PubMed DOI
Chou FI, Chung HP, Liu HM, Chi CW, Lui WY. Suitability of Boron Carriers for BNCT: Accumulation of Boron in Malignant and Normal Liver Cells After Treatment With BPA, BSH and BA. Appl Radiat Isot (2009) 67:S105–8. 10.1016/j.apradiso.2009.03.025 PubMed DOI
Fujimoto T, Andoh T, Sudo T, Fujita I, Imabori M, Moritake H, et al. . Evaluation of BPA Uptake in Clear Cell Sarcoma (CCS) In Vitro and Development of an In Vivo Model of CCS for BNCT Studies. Appl Radiat Isot (2011) 69:1713–6. 10.1016/j.apradiso.2011.02.006 PubMed DOI
Wilson JD, Hammond EM, Higgins GS, Petersson K. Ultra-High Dose Rate (Flash) Radiotherapy: Silver Bullet or Fool’s Gold? Front Oncol (2020) 9:1563. 10.3389/fonc.2019.01563 PubMed DOI PMC
Patriarca A, Fouillade C, Auger M, Martin F, Pouzoulet F, Nauraye C, et al. . Experimental Set-up for FLASH Proton Irradiation of Small Animals Using a Clinical System. Int J Radiat Oncol Biol Phys (2018) 102:619–26. 10.1016/j.ijrobp.2018.06.403 PubMed DOI
Hughes JR, Parsons JL. Flash Radiotherapy: Current Knowledge and Future Insights Using Proton-Beam Therapy. Int J Mol Sci (2020) 21:6492. 10.3390/ijms21186492 PubMed DOI PMC
Jolly S, Owen H, Schippers M, Welsch C. Technical Challenges for FLASH Proton Therapy. Phys Med (2020) 78:71–82. 10.1016/j.ejmp.2020.08.005 PubMed DOI
Schillaci F, Anzalone A, Cirrone GAP, Carpinelli M, Cuttone G, Cutroneo M, et al. . Elimed, MEDical and Multidisciplinary Applications at ELI-Beamlines. J Phys Conf Ser (2014) 508:12010. 10.1088/1742-6596/508/1/012010 DOI
Margarone D, Cirrone GAP, Cuttone G, Amico A, Andò L, Borghesi M, et al. . Elimaia: A Laser-Driven Ion Accelerator for Multidisciplinary Applications. Quantum Beam Sci (2018) 2:8. 10.3390/qubs2020008 DOI
Patera V, Prezado Y, Azaiez F, Battistoni G, Bettoni D, Brandenburg S, et al. . Biomedical Research Programs at Present and Future High-Energy Particle Accelerators. Front Phys (2020) 8:380. 10.3389/fphy.2020.00380 PubMed DOI PMC