Combined Use of Modal Analysis and Machine Learning for Materials Classification
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_025/0007293
European Union (European Structural and Investment Funds - Operational Programme Research, Development and Education)
PubMed
34361464
PubMed Central
PMC8348414
DOI
10.3390/ma14154270
PII: ma14154270
Knihovny.cz E-resources
- Keywords
- anisotropic, isotropic, modal analysis, mode shapes, orthotropic, resonance frequency,
- Publication type
- Journal Article MeSH
The present study deals with modal work that is a type of framework for structural dynamic testing of linear structures. Modal analysis is a powerful tool that works on the modal parameters to ensure the safety of materials and eliminate the failure possibilities. The concept of classification through this study is validated for isotropic and orthotropic materials, reaching up to a 100% accuracy when deploying the machine learning approach between the mode number and the associated frequency of the interrelated variables that were extracted from modal analysis performed by ANSYS. This study shows a new classification method dependent only on the knowledge of resonance frequency of a specific material and opens new directions for future developments to create a single device that can identify and classify different engineering materials.
See more in PubMed
Noman M.T., Amor N., Petru M. Synthesis and applications of ZnO nanostructures (ZONSs): A review. Crit. Rev. Solid State Mater. Sci. 2021:1–43. doi: 10.1080/10408436.2021.1886041. DOI
Schmitz T.L., Smith K.S. Machining Dynamics. Springer; Berlin/Heidelberg, Germany: 2014.
Van Woensel G., Verdonck E., De Baerdemaeker J. Measuring the mechanical properties of apple tissue using modal analysis. J. Food Process Eng. 1988;10:151–163. doi: 10.1111/j.1745-4530.1988.tb00010.x. DOI
Amor N., Rasool G., Bouaynaya N.C., Shterenberg R. Constrained particle filtering for movement identification in forearm prosthesis. Signal Process. 2019;161:25–35. doi: 10.1016/j.sigpro.2019.03.012. DOI
Meddeb A., Amor N., Abbes M., Chebbi S. A novel approach based on crow search algorithm for solving reactive power dispatch problem. Energies. 2018;11:3321. doi: 10.3390/en11123321. DOI
Noman M.T., Petrů M. Functional properties of sonochemically synthesized zinc oxide nanoparticles and cotton composites. Nanomaterials. 2020;10:1661. doi: 10.3390/nano10091661. PubMed DOI PMC
Noman M.T., Petru M., Amor N., Louda P. Thermophysiological comfort of zinc oxide nanoparticles coated woven fabrics. Sci. Rep. 2020;10:21080. PubMed PMC
Noman M.T., Petru M., Militký J., Azeem M., Ashraf M.A. One-Pot Sonochemical Synthesis of ZnO Nanoparticles for Photocatalytic Applications, Modelling and Optimization. Materials. 2020;13:14. doi: 10.3390/ma13010014. PubMed DOI PMC
Islam K.T., Wijewickrema S., O’Leary S. A deep learning based framework for the registration of three dimensional multi-modal medical images of the head. Sci. Rep. 2021;11:1860. doi: 10.1038/s41598-021-81044-7. PubMed DOI PMC
Zhao Y., Chang C., Hannum M., Lee J., Shen R. Bayesian network-driven clustering analysis with feature selection for high-dimensional multi-modal molecular data. Sci. Rep. 2021;11:5146. PubMed PMC
Noman M.T., Militky J., Wiener J., Saskova J., Ashraf M.A., Jamshaid H., Azeem M. Sonochemical synthesis of highly crystalline photocatalyst for industrial applications. Ultrasonics. 2018;83:203–213. doi: 10.1016/j.ultras.2017.06.012. PubMed DOI
Noman M.T., Petru M. Effect of Sonication and Nano TiO2 on Thermophysiological Comfort Properties of Woven Fabrics. ACS Omega. 2020;5:11481–11490. doi: 10.1021/acsomega.0c00572. PubMed DOI PMC
Noman M.T., Petru M., Amor N., Yang T., Mansoor T. Thermophysiological comfort of sonochemically synthesized nano TiO2 coated woven fabrics. Sci. Rep. 2020;10:17204. doi: 10.1038/s41598-020-74357-6. PubMed DOI PMC
Noman M.T., Wiener J., Saskova J., Ashraf M.A., Vikova M., Jamshaid H., Kejzlar P. In-situ development of highly photocatalytic multifunctional nanocomposites by ultrasonic acoustic method. Ultrason. Sonochem. 2018;40:41–56. doi: 10.1016/j.ultsonch.2017.06.026. PubMed DOI
Mahmood A., Noman M.T., Pechočiaková M., Amor N., Petrů M., Abdelkader M., Militký J., Sozcu S., Hassan S.Z.U. Geopolymers and Fiber-Reinforced Concrete Composites in Civil Engineering. Polymers. 2021;13:2099. doi: 10.3390/polym13132099. PubMed DOI PMC
Anastasopoulos D., De Roeck G., Reynders E.P. One-year operational modal analysis of a steel bridge from high-resolution macrostrain monitoring: Influence of temperature vs. retrofitting. Mech. Syst. Signal Process. 2021;161:107951. doi: 10.1016/j.ymssp.2021.107951. DOI
Carpine R., Ientile S., Vacca N., Boscato G., Rospars C., Cecchi A., Argoul P. Modal identification in the case of complex modes–Use of the wavelet analysis applied to the after-shock responses of a masonry wall during shear compression tests. Mech. Syst. Signal Process. 2021;160:107753. doi: 10.1016/j.ymssp.2021.107753. DOI
Fang C., Zhang Y. An improved hybrid FE-SEA model using modal analysis for the mid-frequency vibro-acoustic problems. Mech. Syst. Signal Process. 2021;161:107957. doi: 10.1016/j.ymssp.2021.107957. DOI
Abo-Elkhier M., Hamada A., El-Deen A.B. Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing. Int. J. Fatigue. 2014;69:28–35. doi: 10.1016/j.ijfatigue.2012.10.002. DOI
El-Labban H.F., AbdelAziz M., Yakout M., Elkhatib A. Prediction of mechanical properties of nano-composites using vibration modal analysis: Application to aluminum piston alloys. Mater. Perform. Charact. 2013;2:454–467. doi: 10.1520/MPC20130006. DOI
Yakout M., Elkhatib A., Nassef M. Rolling element bearings absolute life prediction using modal analysis. J. Mech. Sci. Technol. 2018;32:91–99. doi: 10.1007/s12206-017-1210-1. DOI
Chang K.-C., Kim C.-W. Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge. Eng. Struct. 2016;122:156–173. doi: 10.1016/j.engstruct.2016.04.057. DOI
Guan C., Zhang H., Wang X., Miao H., Zhou L., Liu F. Experimental and theoretical modal analysis of full-sized wood composite panels supported on four nodes. Materials. 2017;10:683. doi: 10.3390/ma10060683. PubMed DOI PMC
Noman M.T., Amor N., Petru M., Mahmood A., Kejzlar P. Photocatalytic Behaviour of Zinc Oxide Nanostructures on Surface Activation of Polymeric Fibres. Polymers. 2021;13:1227. doi: 10.3390/polym13081227. PubMed DOI PMC
LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444. doi: 10.1038/nature14539. PubMed DOI
Noman M.T., Petru M., Louda P. Woven textiles coated with zinc oxide nanoparticles and their thermophysiological comfort properties. J. Nat. Fibers. 2021:1–13. doi: 10.1080/15440478.2020.1870621. DOI
Sathya R., Abraham A. Comparison of supervised and unsupervised learning algorithms for pattern classification. Int. J. Adv. Res. Artif. Intell. 2013;2:34–38. doi: 10.14569/IJARAI.2013.020206. DOI
Li Y., Anderson-Sprecher R. Facies identification from well logs: A comparison of discriminant analysis and naïve Bayes classifier. J. Pet. Sci. Eng. 2006;53:149–157. doi: 10.1016/j.petrol.2006.06.001. DOI
Noman M.T., Ashraf M.A., Ali A. Synthesis and applications of nano-TiO2: A review. Environ. Sci. Pollut. Res. 2019;26:3262–3291. doi: 10.1007/s11356-018-3884-z. PubMed DOI
Noman M.T., Ashraf M.A., Jamshaid H., Ali A. A novel green stabilization of TiO2 nanoparticles onto cotton. Fibers Polym. 2018;19:2268–2277. doi: 10.1007/s12221-018-8693-y. DOI
Isobe T., Feigelson E.D., Akritas M.G., Babu G.J. Linear regression in astronomy. Astrophys. J. 1990;364:104–113. doi: 10.1086/169390. DOI
Amor N., Noman M.T., Petru M. Prediction of functional properties of nano TiO2 coated cotton composites by artificial neural network. Sci. Rep. 2021;11:12235. doi: 10.1038/s41598-021-91733-y. PubMed DOI PMC
Amor N., Noman M.T., Petru M., Mahmood A., Ismail A. Neural network-crow search model for the prediction of functional properties of nano TiO2 coated cotton composites. Sci. Rep. 2021;11:13649. PubMed PMC