• This record comes from PubMed

Real-Time Excitation of Slow Oscillations during Deep Sleep Using Acoustic Stimulation

. 2021 Jul 30 ; 21 (15) : . [epub] 20210730

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
NV18-07-00272 Ministerstvo Zdravotnictví Ceské Republiky
SGS21/140/OHK4/2T/17 České Vysoké Učení Technické v Praze
LO1611 NIMH NIH HHS - United States

Slow-wave synchronous acoustic stimulation is a promising research and therapeutic tool. It is essential to clearly understand the principles of the synchronization methods, to know their performances and limitations, and, most importantly, to have a clear picture of the effect of stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing parts of knowledge that are essential for the appropriate development of the method itself and future applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our own implementation. The fixed-step stimulation method was concluded to be more reliable and practically applicable compared to the PLL method. The sleep experiment with chronic insomnia patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound stimulation during deep sleep. We found that there is a significant phase synchronization of delta waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation compared to commonly used averaged signal and power analyses. This finding may change the understanding of the effect and function of the SWA stimulation described in the literature.

See more in PubMed

Diykh M., Li Y., Abdulla S. EEG sleep stages identification based on weighted undirected complex networks. Comput. Methods Programs Biomed. 2020;184:105116. doi: 10.1016/j.cmpb.2019.105116. PubMed DOI

Ko L.W., Su C.H., Yang M.H., Liu S.Y., Su T.P. A pilot study on essential oil aroma stimulation for enhancing slow-wave EEG in sleeping brain. Sci. Rep. 2021;11:1–11. doi: 10.1038/s41598-020-80171-x. PubMed DOI PMC

Cox R., Fell J. Analyzing human sleep EEG. Sleep Med. Rev. 2020;54:101353. doi: 10.1016/j.smrv.2020.101353. PubMed DOI

Iber C. The AASM Manual for Scoring of Sleep and Associated Events: Rules, Terminology and Technical Specifications. AASM; Westchester, IL, USA: 2017.

Jirakittayakorn N., Wongsawat Y. A Novel Insight of Effects of a 3-Hz Binaural Beat on Sleep Stages During Sleep. Front. Hum. Neurosci. 2018;12:387. doi: 10.3389/fnhum.2018.00387. PubMed DOI PMC

Danilenko K.V., Kobelev E., Yarosh S.V., Khazankin G.R., Brack I.V., Miroshnikova P.V., Aftanas L.I. Effectiveness of Visual vs. Acoustic Closed-Loop Stimulation on EEG Power Density during NREM Sleep in Humans. Clocks Sleep. 2020;2:172–181. doi: 10.3390/clockssleep2020014. PubMed DOI PMC

Mander B.A., Marks S.M., Vogel J.W., Rao V., Lu B., Saletin J.M., Ancoli-Israel S., Jagust W.J., Walker M.P. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat. Neurosci. 2015;18:1051–1057. doi: 10.1038/nn.4035. PubMed DOI PMC

Koo P.C., Mölle M., Marshall L. Efficacy of slow oscillatory-transcranial direct current stimulation on EEG and memory—Contribution of an inter-individual factor. Eur. J. Neurosci. 2018;47:812–823. doi: 10.1111/ejn.13877. PubMed DOI

Leger D., Debellemaniere E., Rabat A., Bayon V., Benchenane K., Chennaoui M. Slow-wave sleep. Sleep Med. Rev. 2018;41:113–132. doi: 10.1016/j.smrv.2018.01.008. PubMed DOI

Harrington M.O., Ashton J.E., Ngo H.V.V., Cairney S.A. Phase-locked auditory stimulation of theta oscillations during rapid eye movement sleep. Sleep. 2021;44:zsaa227. doi: 10.1093/sleep/zsaa227. PubMed DOI

Born J. Slow-wave sleep and the consolidation of long-term memory. World J. Biol. Psychiatry. 2010;11:16–21. doi: 10.3109/15622971003637637. PubMed DOI

Mölle M., Born J. Slow oscillations orchestrating fast oscillations and memory consolidation. Prog. Brain Res. 2011;193:93–110. PubMed

Diekelmann S., Born J. The memory function of sleep. Nat. Rev. Neurosci. 2010;11:114–126. doi: 10.1038/nrn2762. PubMed DOI

Rasch B., Born J. About sleep’s role in memory. Physiol. Rev. 2013 doi: 10.1152/physrev.00032.2012. PubMed DOI PMC

Kurth S., Riedner B.A., Dean D.C., O’Muircheartaigh J., Huber R., Jenni O.G., Deoni S.C.L., LeBourgeois M.K. Traveling Slow Oscillations During Sleep. Sleep. 2017;40 doi: 10.1093/sleep/zsx121. PubMed DOI PMC

Onojima T., Kitajo K., Mizuhara H., Alain C. Ongoing slow oscillatory phase modulates speech intelligibility in cooperation with motor cortical activity. PLoS ONE. 2017;12:e0183146. doi: 10.1371/journal.pone.0183146. PubMed DOI PMC

Salfi F., D’Atri A., Tempesta D., De Gennaro L., Ferrara M. Boosting Slow Oscillations during Sleep to Improve Memory Function in Elderly People: A Review of the Literature. Brain Sci. 2020;10:300. doi: 10.3390/brainsci10050300. PubMed DOI PMC

Grimaldi D., Papalambros N.A., Zee P.C., Malkani R.G. Neurostimulation techniques to enhance sleep and improve cognition in aging. Neurobiol. Dis. 2020;141:104865. doi: 10.1016/j.nbd.2020.104865. PubMed DOI

Garcia-Molina G., Tsoneva T., Jasko J., Steele B., Aquino A., Baher K., Pastoor S., Pfundtner S., Ostrowski L., Miller B., et al. Closed-loop system to enhance slow-wave activity. J. Neural Eng. 2018;15:066018. doi: 10.1088/1741-2552/aae18f. PubMed DOI

Ngo H.V.V., Claussen J.C., Born J., Molle M. Induction of slow oscillations by rhythmic acoustic stimulation. J. Sleep Res. 2013;22:22–31. doi: 10.1111/j.1365-2869.2012.01039.x. PubMed DOI

Cox R., Korjoukov I., de Boer M., Talamini L.M. Sound Asleep. PLoS ONE. 2014;9:e101567. doi: 10.1371/journal.pone.0101567. PubMed DOI PMC

Ngo H.V.V., Martinetz T., Born J., Mölle M. Auditory Closed-Loop Stimulation of the Sleep Slow Oscillation Enhances Memory. Neuron. 2013;78:545–553. doi: 10.1016/j.neuron.2013.03.006. PubMed DOI

Ngo H.V.V., Miedema A., Faude I., Martinetz T., Mölle M., Born J. Driving Sleep Slow Oscillations by Auditory Closed-Loop Stimulation—A Self-Limiting Process. J. Neurosci. 2015;35:6630–6638. doi: 10.1523/JNEUROSCI.3133-14.2015. PubMed DOI PMC

Besedovsky L., Ngo H.V.V., Dimitrov S., Gassenmaier C., Lehmann R., Born J. Auditory closed-loop stimulation of EEG slow oscillations strengthens sleep and signs of its immune-supportive function. Nat. Commun. 2017;8:1–8. doi: 10.1038/s41467-017-02170-3. PubMed DOI PMC

Costa M.S., Weigenand A., Ngo H.V.V., Marshall L., Born J., Martinetz T., Claussen J.C., Daunizeau J. A Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation. PLoS Comput. Biol. 2016;12:e1005022. doi: 10.1371/journal.pcbi.1005022. PubMed DOI PMC

Santostasi G., Malkani R., Riedner B., Bellesi M., Tononi G., Paller K.A., Zee P.C. Phase-locked loop for precisely timed acoustic stimulation during sleep. J. Neurosci. Methods. 2016;259:101–114. doi: 10.1016/j.jneumeth.2015.11.007. PubMed DOI PMC

Papalambros N.A., Santostasi G., Malkani R.G., Braun R., Weintraub S., Paller K.A., Zee P.C. Acoustic Enhancement of Sleep Slow Oscillations and Concomitant Memory Improvement in Older Adults. Front. Hum. Neurosci. 2017;11 doi: 10.3389/fnhum.2017.00109. PubMed DOI PMC

Ong J.L., Lo J.C., Chee N.I., Santostasi G., Paller K.A., Zee P.C., Chee M.W. Effects of phase-locked acoustic stimulation during a nap on EEG spectra and declarative memory consolidation. Sleep Med. 2016;20:88–97. doi: 10.1016/j.sleep.2015.10.016. PubMed DOI

Navarrete M., Schneider J., Ngo H.V.V., Valderrama M., Casson A.J., Lewis P.A. Examining the optimal timing for closed-loop auditory stimulation of slow-wave sleep in young and older adults. Sleep. 2020;43:zsz315. doi: 10.1093/sleep/zsz315. PubMed DOI PMC

Weigenand A., Mölle M., Werner F., Martinetz T., Marshall L. Timing matters: Open-loop stimulation does not improve overnight consolidation of word pairs in humans. Eur. J. Neurosci. 2016;44:2357–2368. doi: 10.1111/ejn.13334. PubMed DOI PMC

Leminen M., Virkkala J., Saure E., Paajanen T., Zee P., Santostasi G., Hublin C., Müller K., Porkka-Heiskanen T., Huotilainen M., et al. Enhanced memory consolidation via automatic sound stimulation during non-REM sleep. Sleep. 2017;40 doi: 10.1093/sleep/zsx003. PubMed DOI PMC

Debellemaniere E., Chambon S., Pinaud C., Thorey V., Dehaene D., Léger D., Chennaoui M., Arnal P.J., Galtier M.N. Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment. Front. Hum. Neurosci. 2018;12:88. doi: 10.3389/fnhum.2018.00088. PubMed DOI PMC

Grimaldi D., Papalambros N., Reid K., Abbott S., Malkani R., Gendy M., Iwanaszko M., Braun R., Sanchez D., Paller K., et al. Strengthening sleep-autonomic interaction via acoustic enhancement of slow oscillations. Sleep. 2019;42 doi: 10.1093/sleep/zsz036. PubMed DOI PMC

Simor P., Steinbach E., Nagy T., Gilson M., Farthouat J., Schmitz R., Gombos F., Ujma P.P., Pamula M., Bódizs R., et al. Lateralized rhythmic acoustic stimulation during daytime NREM sleep enhances slow waves. Sleep. 2018;41 doi: 10.1093/sleep/zsy176. PubMed DOI

Fattinger S., Heinzle B.B., Ramantani G., Abela L., Schmitt B., Huber R. Closed-Loop Acoustic Stimulation During Sleep in Children With Epilepsy: A Hypothesis-Driven Novel Approach to Interact With Spike-Wave Activity and Pilot Data Assessing Feasibility. Front. Hum. Neurosci. 2019;13:166. doi: 10.3389/fnhum.2019.00166. PubMed DOI PMC

Bin Heyat M.B., Akhtar F., Ansari M., Khan A., Alkahtani F., Khan H., Lai D. Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review. Curr. Drug Targets. 2021;22:672–684. doi: 10.2174/1389450121666201027125828. PubMed DOI

Hamdy R.C., Kinser A., Dickerson K., Kendall-Wilson T., Depelteau A., Copeland R., Whalen K. Insomnia and mild cognitive impairment. Gerontol. Geriatr. Med. 2018;4:2333721418778421. doi: 10.1177/2333721418778421. PubMed DOI PMC

Melo D.L.M., Carvalho L.B.C., Prado L.B.F., Prado G.F. Biofeedback therapies for chronic insomnia: A systematic review. Appl. Psychophysiol. Biofeedback. 2019;44:259–269. doi: 10.1007/s10484-019-09442-2. PubMed DOI

Merica H., Blois R., Gaillard J.M. Spectral characteristics of sleep EEG in chronic insomnia. Eur. J. Neurosci. 1998;10:1826–1834. doi: 10.1046/j.1460-9568.1998.00189.x. PubMed DOI

Carrier J., Land S., Buysse D.J., Kupfer D.J., Monk T.H. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old) Psychophysiology. 2001;38:232–242. doi: 10.1111/1469-8986.3820232. PubMed DOI

Schneider J., Lewis P.A., Koester D., Born J., Ngo H.V.V. Susceptibility to auditory closed-loop stimulation of sleep slow oscillations changes with age. Sleep. 2020;43 doi: 10.1093/sleep/zsaa111. PubMed DOI PMC

Papalambros N.A., Weintraub S., Chen T., Grimaldi D., Santostasi G., Paller K.A., Zee P.C., Malkani R.G. Acoustic enhancement of sleep slow oscillations in mild cognitive impairment. Ann. Clin. Transl. Neurol. 2019;6:1191–1201. doi: 10.1002/acn3.796. PubMed DOI PMC

Diep C., Ftouni S., Manousakis J., Nicholas C., Drummond S., Anderson C. Acoustic slow wave sleep enhancement via a novel, automated device improves executive function in middle-aged men. Sleep. 2020;43 doi: 10.1093/sleep/zsz197. PubMed DOI

Wunderlin M., Züst M.A., Hertenstein E., Fehér K.D., Schneider C.L., Klöppel S., Nissen C. Modulating overnight memory consolidation by acoustic stimulation during slow-wave sleep: A systematic review and meta-analysis. Sleep. 2021:zsaa296. doi: 10.1093/sleep/zsaa296. PubMed DOI

Klinzing J.G., Niethard N., Born J. Mechanisms of systems memory consolidation during sleep. Nat. Neurosci. 2019;22:1598–1610. doi: 10.1038/s41593-019-0467-3. PubMed DOI

Fehér K.D., Wunderlin M., Maier J.G., Hertenstein E., Schneider C., Mikutta C., Züst M.A., Klöppel S., Nissen C. Shaping the slow waves of sleep: A systematic and integrative review of sleep slow wave modulation in humans using non-invasive brain stimulation. Sleep Med. Rev. 2021;58:101438. doi: 10.1016/j.smrv.2021.101438. PubMed DOI

Piorecka V. Easys2matlab, Version 1.0.0. [(accessed on 25 May 2021)]; Available online: https://github.com/vaclavapiorecka/easys2matlab.

Kurth S., Jenni O.G., Riedner B.A., Tononi G., Carskadon M.A., Huber R. Characteristics of Sleep Slow Waves in Children and Adolescents. Sleep. 2010;33:475–480. doi: 10.1093/sleep/33.4.475. PubMed DOI PMC

Crecraft D., Gergely S. 11—Signal generation. In: Crecraft D., Gergely S., editors. Analog Electronics. Butterworth-Heinemann; Oxford, UK: 2002. pp. 263–281. DOI

Best R. Phase Locked Loops, Pennsylvania Plaza New York. 6th ed. McGraw-Hill Professional; New York, NY, USA: 2007.

Razavi B. Monolithic Phase-Locked Loops and Clock Recovery Circuits: Theory and Design. Wiley-IEEE Press; Hoboken, NJ, USA: 1996. Design of Monolithic PhaseLocked Loops and Clock Recovery Circuits A Tutorial; pp. 1–39. DOI

Abramovitch D. Lyapunov redesign of classical digital phase-lock loops; Proceedings of the 2003 American Control Conference; Denver, CO, USA. 4–6 June 2003; pp. 2401–2406. DOI

Harikrushna D., Tiwari M., Singh J.K., Khare A. Design, Implementation and Characterization of Xor Phase Detector for Dpll in 45 Nm Cmos Technology. Adv. Comput. Int. J. 2011;2 doi: 10.5121/acij.2011.2605. DOI

Scher A. Simulating Phase Locked Loops (PLLs) with MATLAB. [(accessed on 25 May 2021)]; Available online: http://aaronscher.com/phase_locked_loop/matlab_pll.html.

Oostenveld R., Fries P., Maris E., Schoffelen J.M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput. Intell. Neurosci. 2011;2011:156869. doi: 10.1155/2011/156869. PubMed DOI PMC

Cohen M.X. Analyzing Neural Time Series Data. The MIT Press; Cambridge, MA, USA: 2014.

Smith J.O. Mathematics of the Discrete Fourier Transform (DFT) [(accessed on 25 May 2021)]; Available online: https://ccrma.stanford.edu/~jos/st/mdft-citation.html.

Berens P. CircStat: A MATLAB Toolbox for Circular Statistics. J. Stat. Softw. Artic. 2009;31:1–21. doi: 10.18637/jss.v031.i10. DOI

Maris E., Oostenveld R. Nonparametric statistical testing of EEG- and MEG-data. J. Neurosci. Methods. 2007;164:177–190. doi: 10.1016/j.jneumeth.2007.03.024. PubMed DOI

Suh S., Nowakowski S., Bernert R.A., Ong J.C., Siebern A.T., Dowdle C.L., Manber R. Clinical significance of night-to-night sleep variability in insomnia. Sleep Med. 2012;13:469–475. doi: 10.1016/j.sleep.2011.10.034. PubMed DOI PMC

Stone K.L., Ensrud K.E., Ancoli-Israel S. Sleep, insomnia and falls in elderly patients. Sleep Med. 2008;9:S18–S22. doi: 10.1016/S1389-9457(08)70012-1. PubMed DOI

Kumar N., Kumar M. Design of low power and high speed phase detector; Proceedings of the 2016 2nd International Conference on Contemporary Computing and Informatics (IC3I); Greater Noida, India. 14–17 December 2016; pp. 676–680. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...