Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes

. 2021 Aug 07 ; 10 (8) : . [epub] 20210807

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34439989

Grantová podpora
I 4072 Austrian Science Fund FWF - Austria
19-29667L Grantová Agentura České Republiky

The Fas ligand (FasL) is known from programmed cell death, the immune system, and recently also from bone homeostasis. As such, Fas signalling is a potential target of anti-osteoporotic treatment based on the induction of osteoclastic cell death. Less attention has been paid to osteocytes, although they represent the majority of cells within the mature bone and are the key regulators. To determine the impact of FasL stimulation on osteocytes, differentiated IDG-SW3 cells were challenged by FasL, and their osteogenic expression profiles were evaluated by a pre-designed PCR array. Notably, the most downregulated gene was the one for sclerostin, which is the major marker of osteocytes and a negative regulator of bone formation. FasL stimulation also led to significant changes (over 10-fold) in the expression of other osteogenic markers: Gdf10, Gli1, Ihh, Mmp10, and Phex. To determine whether these alterations involved caspase-dependent or caspase-independent mechanisms, the IDG-SW3 cells were stimulated by FasL with and without a caspase inhibitor: Q-VD-OPh. The alterations were also detected in the samples treated by FasL along with Q-VD-OPh, pointing to the caspase-independent impact of FasL stimulation. These results contribute to an understanding of the recently emerging pleiotropic effects of Fas/FasL signalling and specify its functions in bone cells.

Zobrazit více v PubMed

Strasser A., Jost P.J., Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–192. doi: 10.1016/j.immuni.2009.01.001. PubMed DOI PMC

Yamada A., Arakaki R., Saito M., Kudo Y., Ishimaru N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front. Immunol. 2017;8:403. doi: 10.3389/fimmu.2017.00403. PubMed DOI PMC

Parrish A.B., Freel C.D., Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 2013;5:a008672. doi: 10.1101/cshperspect.a008672. PubMed DOI PMC

Kischkel F.C., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P.H., Peter M.E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–5588. doi: 10.1002/j.1460-2075.1995.tb00245.x. PubMed DOI PMC

Le Gallo M., Poissonnier A., Blanco P., Legembre P. CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases. Front. Immunol. 2017;8:1216. doi: 10.3389/fimmu.2017.01216. PubMed DOI PMC

Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Front. Immunol. 2018;9:2521. doi: 10.3389/fimmu.2018.02521. PubMed DOI PMC

Guégan J.-P., Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 2018;285:809–827. doi: 10.1111/febs.14292. PubMed DOI

Krum S.A., Miranda-Carboni G.A., Hauschka P.V., Carroll J.S., Lane T.F., Freedman L.P., Brown M. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 2008;27:535–545. doi: 10.1038/sj.emboj.7601984. PubMed DOI PMC

Wang L., Liu S., Zhao Y., Liu D., Liu Y., Chen C., Karray S., Shi S., Jin Y. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015;22:1654–1664. doi: 10.1038/cdd.2015.14. PubMed DOI PMC

Kovacic N., Grcevic D., Katavic V., Lukic I.K., Marusic A. Targeting Fas in osteoresorptive disorders. Expert Opin. Ther. Targets. 2010;14:1121–1134. doi: 10.1517/14728222.2010.522347. PubMed DOI PMC

Jones D.R. A potential osteoporosis target in the FAS ligand/FAS pathway of osteoblast to osteoclast signaling. Ann. Transl. Med. 2015;3:3–7. doi: 10.3978/j.issn.2305-5839.2015.07.01. PubMed DOI PMC

Plotkin L.I., Bruzzaniti A. Molecular signaling in bone cells: Regulation of cell differentiation and survival. Adv. Protein Chem. Struct. Biol. 2019;116:237–281. doi: 10.1016/bs.apcsb.2019.01.002. PubMed DOI PMC

Kovacić N., Lukić I.K., Grcević D., Katavić V., Croucher P., Marusić A. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J. Immunol. 2007;178:3379–3389. doi: 10.4049/jimmunol.178.6.3379. PubMed DOI PMC

Goldring S.R. The osteocyte: Key player in regulating bone turnover. RMD Open. 2015;1:e000049. doi: 10.1136/rmdopen-2015-000049. PubMed DOI PMC

Schaffler M.B., Cheung W.-Y., Majeska R., Kennedy O. Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 2014;94:5–24. doi: 10.1007/s00223-013-9790-y. PubMed DOI PMC

Ru J.-Y., Wang Y.-F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020;11:846. doi: 10.1038/s41419-020-03059-8. PubMed DOI PMC

Kogianni G., Mann V., Ebetino F., Nuttall M., Nijweide P., Simpson H., Noble B. Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sci. 2004;75:2879–2895. doi: 10.1016/j.lfs.2004.04.048. PubMed DOI

Divieti Pajevic P. New and Old Osteocytic Cell Lines and 3D Models. Curr. Osteoporos. Rep. 2020;18:551–558. doi: 10.1007/s11914-020-00613-3. PubMed DOI

Woo S.M., Rosser J., Dusevich V., Kalajzic I., Bonewald L.F. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011;26:2634–2646. doi: 10.1002/jbmr.465. PubMed DOI PMC

Kuželová K., Grebeňová D., Brodská B. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J. Cell. Biochem. 2011;112:3334–3342. doi: 10.1002/jcb.23263. PubMed DOI

Taylor S.E.B., Shah M., Orriss I.R. Generation of rodent and human osteoblasts. Bonekey Rep. 2014;3:585. doi: 10.1038/bonekey.2014.80. PubMed DOI PMC

Winkler D.G., Sutherland M.K., Geoghegan J.C., Yu C., Hayes T., Skonier J.E., Shpektor D., Jonas M., Kovacevich B.R., Staehling-Hampton K., et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–6276. doi: 10.1093/emboj/cdg599. PubMed DOI PMC

Kim J., Han W., Park T., Kim E.J., Bang I., Lee H.S., Jeong Y., Roh K., Kim J., Kim J.-S., et al. Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat. Commun. 2020;11:5357. doi: 10.1038/s41467-020-19155-4. PubMed DOI PMC

Sebastian A., Loots G.G. Transcriptional control of Sost in bone. Bone. 2017;96:76–84. doi: 10.1016/j.bone.2016.10.009. PubMed DOI

Svandova E., Vesela B., Lesot H., Sadoine J., Poliard A., Matalova E. FasL Modulates Expression of Mmp2 in Osteoblasts. Front. Physiol. 2018;9:1314. doi: 10.3389/fphys.2018.01314. PubMed DOI PMC

Svandova E., Sadoine J., Vesela B., Djoudi A., Lesot H., Poliard A., Matalova E. Growth-dependent phenotype in FasL-deficient mandibular/alveolar bone. J. Anat. 2019;235:256–261. doi: 10.1111/joa.13015. PubMed DOI PMC

Al K., Alccayhuaman A., Heimel P., Lee J., Tangl S., Gruber R. FasL Is Required for Osseous Healing in Extraction Sockets in Mice. Front. Immunol. 2021;12:1961. doi: 10.3389/fimmu.2021.678873. PubMed DOI PMC

Garcia A.J., Tom C., Guemes M., Polanco G., Mayorga M.E., Wend K., Miranda-Carboni G.A., Krum S.A. ERα signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013;28:283–290. doi: 10.1002/jbmr.1747. PubMed DOI PMC

Gamer L.W., Cox K., Carlo J.M., Rosen V. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev. Dyn. 2009;238:2374–2381. doi: 10.1002/dvdy.22048. PubMed DOI PMC

Matsumoto Y., Otsuka F., Hino J., Miyoshi T., Takano M., Miyazato M., Makino H., Kangawa K. Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling. Mol. Cell. Endocrinol. 2012;350:78–86. doi: 10.1016/j.mce.2011.11.023. PubMed DOI

Mak K.K., Bi Y., Wan C., Chuang P.-T., Clemens T., Young M., Yang Y. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev. Cell. 2008;14:674–688. doi: 10.1016/j.devcel.2008.02.003. PubMed DOI

Komori T. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. Int. J. Mol. Sci. 2016;17:2045. doi: 10.3390/ijms17122045. PubMed DOI PMC

Martín-Guerrero E., Tirado-Cabrera I., Buendía I., Alonso V., Gortázar A.R., Ardura J.A. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation. J. Cell. Physiol. 2020;235:7356–7369. doi: 10.1002/jcp.29636. PubMed DOI

Pan A., Chang L., Nguyen A., James A.W. A review of hedgehog signaling in cranial bone development. Front. Physiol. 2013;4:61. doi: 10.3389/fphys.2013.00061. PubMed DOI PMC

Paiva K.B.S., Granjeiro J.M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog. Mol. Biol. Transl. Sci. 2017;148:203–303. doi: 10.1016/bs.pmbts.2017.05.001. PubMed DOI

Creecy A., Damrath J.G., Wallace J.M. Control of Bone Matrix Properties by Osteocytes. Front. Endocrinol. 2020;11:578477. doi: 10.3389/fendo.2020.578477. PubMed DOI PMC

Meyer E., Vollmer J.-Y., Bovey R., Stamenkovic I. Matrix metalloproteinases 9 and 10 inhibit protein kinase C-potentiated, p53-mediated apoptosis. Cancer Res. 2005;65:4261–4272. doi: 10.1158/0008-5472.CAN-04-2908. PubMed DOI

Zhang G., Miyake M., Lawton A., Goodison S., Rosser C.J. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer. 2014;14:310. doi: 10.1186/1471-2407-14-310. PubMed DOI PMC

Matilla L., Roncal C., Ibarrola J., Arrieta V., García-Peña A., Fernández-Celis A., Navarro A., Álvarez V., Gainza A., Orbe J., et al. A Role for MMP-10 (Matrix Metalloproteinase-10) in Calcific Aortic Valve Stenosis. Arterioscler. Thromb. Vasc. Biol. 2020;40:1370–1382. doi: 10.1161/ATVBAHA.120.314143. PubMed DOI

Ott S.M. Bone cells, sclerostin, and FGF23: What’s bred in the bone will come out in the flesh. Kidney Int. 2015;87:499–501. doi: 10.1038/ki.2014.360. PubMed DOI

Tanaka S., Matsumoto T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021;39:332–340. doi: 10.1007/s00774-020-01176-0. PubMed DOI

Deeks E.D. Denosumab: A Review in Postmenopausal Osteoporosis. Drugs Aging. 2018;35:163–173. doi: 10.1007/s40266-018-0525-7. PubMed DOI

Quarles L.D. Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease. Exp. Cell Res. 2012;318:1040–1048. doi: 10.1016/j.yexcr.2012.02.027. PubMed DOI PMC

Paloian N.J., Leaf E.M., Giachelli C.M. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int. 2016;89:1027–1036. doi: 10.1016/j.kint.2015.12.046. PubMed DOI PMC

Martin A., Liu S., David V., Li H., Karydis A., Feng J.Q., Quarles L.D. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011;25:2551–2562. doi: 10.1096/fj.10-177816. PubMed DOI PMC

Wajant H. Death receptors. Essays Biochem. 2003;39:53–71. doi: 10.1042/bse0390053. PubMed DOI

Siegmund D., Lang I., Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 2017;284:1131–1159. doi: 10.1111/febs.13968. PubMed DOI

Seyrek K., Lavrik I.N. Modulation of CD95-mediated signaling by post-translational modifications: Towards understanding CD95 signaling networks. Apoptosis. 2019;24:385–394. doi: 10.1007/s10495-019-01540-0. PubMed DOI

Levoin N., Jean M., Legembre P. CD95 Structure, Aggregation and Cell Signaling. Front. Cell Dev. Biol. 2020;8:314. doi: 10.3389/fcell.2020.00314. PubMed DOI PMC

Engin A. Protein Kinase-Mediated Decision Between the Life and Death. Adv. Exp. Med. Biol. 2021;1275:1–33. doi: 10.1007/978-3-030-49844-3_1. PubMed DOI

Ivanova S., Polajnar M., Narbona-Perez A.J., Hernandez-Alvarez M.I., Frager P., Slobodnyuk K., Plana N., Nebreda A.R., Palacin M., Gomis R.R., et al. Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J. 2019;38:e99300. doi: 10.15252/embj.201899300. PubMed DOI PMC

Yu S., Ji H., Dong X., Liu A., Yu J. FAS/FAS-L-mediated apoptosis and autophagy of SPC-A-1 cells induced by water-soluble polysaccharide from Polygala tenuifolia. Int. J. Biol. Macromol. 2020;150:449–458. doi: 10.1016/j.ijbiomac.2020.02.010. PubMed DOI

Tan S., Liu X., Chen L., Wu X., Tao L., Pan X., Tan S., Liu H., Jiang J., Wu B. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474. doi: 10.1038/s41419-021-03749-x. PubMed DOI PMC

Tsapras P., Nezis I.P. Caspase involvement in autophagy. Cell Death Differ. 2017;24:1369–1379. doi: 10.1038/cdd.2017.43. PubMed DOI PMC

Li X., Xu J., Dai B., Wang X., Guo Q., Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res. Rev. 2020;62:101098. doi: 10.1016/j.arr.2020.101098. PubMed DOI

Mollazadeh S., Fazly Bazzaz B.S., Kerachian M.A. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J. Orthop. Surg. Res. 2015;10:15. doi: 10.1186/s13018-015-0152-5. PubMed DOI PMC

Youlten S.E., Kemp J.P., Logan J.G., Ghirardello E.J., Sergio C.M., Dack M.R.G., Guilfoyle S.E., Leitch V.D., Butterfield N.C., Komla-Ebri D., et al. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat. Commun. 2021;12:2444. doi: 10.1038/s41467-021-22517-1. PubMed DOI PMC

Aziz A.H., Wilmoth R.L., Ferguson V.L., Bryant S.J. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS Appl. Bio Mater. 2020;3:1666–1680. doi: 10.1021/acsabm.9b01227. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Expression of osteogenic factors in FasL-deficient calvarial cells

. 2023 Mar 08 ; 72 (1) : 117-121. [epub] 20221222

FasL is a catabolic factor in alveolar bone homeostasis

. 2023 Mar ; 50 (3) : 396-405. [epub] 20221125

Making the head: Caspases in life and death

. 2022 ; 10 () : 1075751. [epub] 20230113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...