Impact of FasL Stimulation on Sclerostin Expression and Osteogenic Profile in IDG-SW3 Osteocytes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
I 4072
Austrian Science Fund FWF - Austria
19-29667L
Grantová Agentura České Republiky
PubMed
34439989
PubMed Central
PMC8389703
DOI
10.3390/biology10080757
PII: biology10080757
Knihovny.cz E-zdroje
- Klíčová slova
- Fas/FasL signalling, bone, caspases, non-apoptotic, osteocyte differentiation,
- Publikační typ
- časopisecké články MeSH
The Fas ligand (FasL) is known from programmed cell death, the immune system, and recently also from bone homeostasis. As such, Fas signalling is a potential target of anti-osteoporotic treatment based on the induction of osteoclastic cell death. Less attention has been paid to osteocytes, although they represent the majority of cells within the mature bone and are the key regulators. To determine the impact of FasL stimulation on osteocytes, differentiated IDG-SW3 cells were challenged by FasL, and their osteogenic expression profiles were evaluated by a pre-designed PCR array. Notably, the most downregulated gene was the one for sclerostin, which is the major marker of osteocytes and a negative regulator of bone formation. FasL stimulation also led to significant changes (over 10-fold) in the expression of other osteogenic markers: Gdf10, Gli1, Ihh, Mmp10, and Phex. To determine whether these alterations involved caspase-dependent or caspase-independent mechanisms, the IDG-SW3 cells were stimulated by FasL with and without a caspase inhibitor: Q-VD-OPh. The alterations were also detected in the samples treated by FasL along with Q-VD-OPh, pointing to the caspase-independent impact of FasL stimulation. These results contribute to an understanding of the recently emerging pleiotropic effects of Fas/FasL signalling and specify its functions in bone cells.
Zobrazit více v PubMed
Strasser A., Jost P.J., Nagata S. The many roles of FAS receptor signaling in the immune system. Immunity. 2009;30:180–192. doi: 10.1016/j.immuni.2009.01.001. PubMed DOI PMC
Yamada A., Arakaki R., Saito M., Kudo Y., Ishimaru N. Dual Role of Fas/FasL-Mediated Signal in Peripheral Immune Tolerance. Front. Immunol. 2017;8:403. doi: 10.3389/fimmu.2017.00403. PubMed DOI PMC
Parrish A.B., Freel C.D., Kornbluth S. Cellular mechanisms controlling caspase activation and function. Cold Spring Harb. Perspect. Biol. 2013;5:a008672. doi: 10.1101/cshperspect.a008672. PubMed DOI PMC
Kischkel F.C., Hellbardt S., Behrmann I., Germer M., Pawlita M., Krammer P.H., Peter M.E. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 1995;14:5579–5588. doi: 10.1002/j.1460-2075.1995.tb00245.x. PubMed DOI PMC
Le Gallo M., Poissonnier A., Blanco P., Legembre P. CD95/Fas, Non-Apoptotic Signaling Pathways, and Kinases. Front. Immunol. 2017;8:1216. doi: 10.3389/fimmu.2017.01216. PubMed DOI PMC
Williams J.W., Ferreira C.M., Blaine K.M., Rayon C., Velázquez F., Tong J., Peter M.E., Sperling A.I. Non-apoptotic Fas (CD95) Signaling on T Cells Regulates the Resolution of Th2-Mediated Inflammation. Front. Immunol. 2018;9:2521. doi: 10.3389/fimmu.2018.02521. PubMed DOI PMC
Guégan J.-P., Legembre P. Nonapoptotic functions of Fas/CD95 in the immune response. FEBS J. 2018;285:809–827. doi: 10.1111/febs.14292. PubMed DOI
Krum S.A., Miranda-Carboni G.A., Hauschka P.V., Carroll J.S., Lane T.F., Freedman L.P., Brown M. Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J. 2008;27:535–545. doi: 10.1038/sj.emboj.7601984. PubMed DOI PMC
Wang L., Liu S., Zhao Y., Liu D., Liu Y., Chen C., Karray S., Shi S., Jin Y. Osteoblast-induced osteoclast apoptosis by fas ligand/FAS pathway is required for maintenance of bone mass. Cell Death Differ. 2015;22:1654–1664. doi: 10.1038/cdd.2015.14. PubMed DOI PMC
Kovacic N., Grcevic D., Katavic V., Lukic I.K., Marusic A. Targeting Fas in osteoresorptive disorders. Expert Opin. Ther. Targets. 2010;14:1121–1134. doi: 10.1517/14728222.2010.522347. PubMed DOI PMC
Jones D.R. A potential osteoporosis target in the FAS ligand/FAS pathway of osteoblast to osteoclast signaling. Ann. Transl. Med. 2015;3:3–7. doi: 10.3978/j.issn.2305-5839.2015.07.01. PubMed DOI PMC
Plotkin L.I., Bruzzaniti A. Molecular signaling in bone cells: Regulation of cell differentiation and survival. Adv. Protein Chem. Struct. Biol. 2019;116:237–281. doi: 10.1016/bs.apcsb.2019.01.002. PubMed DOI PMC
Kovacić N., Lukić I.K., Grcević D., Katavić V., Croucher P., Marusić A. The Fas/Fas ligand system inhibits differentiation of murine osteoblasts but has a limited role in osteoblast and osteoclast apoptosis. J. Immunol. 2007;178:3379–3389. doi: 10.4049/jimmunol.178.6.3379. PubMed DOI PMC
Goldring S.R. The osteocyte: Key player in regulating bone turnover. RMD Open. 2015;1:e000049. doi: 10.1136/rmdopen-2015-000049. PubMed DOI PMC
Schaffler M.B., Cheung W.-Y., Majeska R., Kennedy O. Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 2014;94:5–24. doi: 10.1007/s00223-013-9790-y. PubMed DOI PMC
Ru J.-Y., Wang Y.-F. Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis. 2020;11:846. doi: 10.1038/s41419-020-03059-8. PubMed DOI PMC
Kogianni G., Mann V., Ebetino F., Nuttall M., Nijweide P., Simpson H., Noble B. Fas/CD95 is associated with glucocorticoid-induced osteocyte apoptosis. Life Sci. 2004;75:2879–2895. doi: 10.1016/j.lfs.2004.04.048. PubMed DOI
Divieti Pajevic P. New and Old Osteocytic Cell Lines and 3D Models. Curr. Osteoporos. Rep. 2020;18:551–558. doi: 10.1007/s11914-020-00613-3. PubMed DOI
Woo S.M., Rosser J., Dusevich V., Kalajzic I., Bonewald L.F. Cell line IDG-SW3 replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone formation in vivo. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011;26:2634–2646. doi: 10.1002/jbmr.465. PubMed DOI PMC
Kuželová K., Grebeňová D., Brodská B. Dose-dependent effects of the caspase inhibitor Q-VD-OPh on different apoptosis-related processes. J. Cell. Biochem. 2011;112:3334–3342. doi: 10.1002/jcb.23263. PubMed DOI
Taylor S.E.B., Shah M., Orriss I.R. Generation of rodent and human osteoblasts. Bonekey Rep. 2014;3:585. doi: 10.1038/bonekey.2014.80. PubMed DOI PMC
Winkler D.G., Sutherland M.K., Geoghegan J.C., Yu C., Hayes T., Skonier J.E., Shpektor D., Jonas M., Kovacevich B.R., Staehling-Hampton K., et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J. 2003;22:6267–6276. doi: 10.1093/emboj/cdg599. PubMed DOI PMC
Kim J., Han W., Park T., Kim E.J., Bang I., Lee H.S., Jeong Y., Roh K., Kim J., Kim J.-S., et al. Sclerostin inhibits Wnt signaling through tandem interaction with two LRP6 ectodomains. Nat. Commun. 2020;11:5357. doi: 10.1038/s41467-020-19155-4. PubMed DOI PMC
Sebastian A., Loots G.G. Transcriptional control of Sost in bone. Bone. 2017;96:76–84. doi: 10.1016/j.bone.2016.10.009. PubMed DOI
Svandova E., Vesela B., Lesot H., Sadoine J., Poliard A., Matalova E. FasL Modulates Expression of Mmp2 in Osteoblasts. Front. Physiol. 2018;9:1314. doi: 10.3389/fphys.2018.01314. PubMed DOI PMC
Svandova E., Sadoine J., Vesela B., Djoudi A., Lesot H., Poliard A., Matalova E. Growth-dependent phenotype in FasL-deficient mandibular/alveolar bone. J. Anat. 2019;235:256–261. doi: 10.1111/joa.13015. PubMed DOI PMC
Al K., Alccayhuaman A., Heimel P., Lee J., Tangl S., Gruber R. FasL Is Required for Osseous Healing in Extraction Sockets in Mice. Front. Immunol. 2021;12:1961. doi: 10.3389/fimmu.2021.678873. PubMed DOI PMC
Garcia A.J., Tom C., Guemes M., Polanco G., Mayorga M.E., Wend K., Miranda-Carboni G.A., Krum S.A. ERα signaling regulates MMP3 expression to induce FasL cleavage and osteoclast apoptosis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2013;28:283–290. doi: 10.1002/jbmr.1747. PubMed DOI PMC
Gamer L.W., Cox K., Carlo J.M., Rosen V. Overexpression of BMP3 in the developing skeleton alters endochondral bone formation resulting in spontaneous rib fractures. Dev. Dyn. 2009;238:2374–2381. doi: 10.1002/dvdy.22048. PubMed DOI PMC
Matsumoto Y., Otsuka F., Hino J., Miyoshi T., Takano M., Miyazato M., Makino H., Kangawa K. Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling. Mol. Cell. Endocrinol. 2012;350:78–86. doi: 10.1016/j.mce.2011.11.023. PubMed DOI
Mak K.K., Bi Y., Wan C., Chuang P.-T., Clemens T., Young M., Yang Y. Hedgehog signaling in mature osteoblasts regulates bone formation and resorption by controlling PTHrP and RANKL expression. Dev. Cell. 2008;14:674–688. doi: 10.1016/j.devcel.2008.02.003. PubMed DOI
Komori T. Cell Death in Chondrocytes, Osteoblasts, and Osteocytes. Int. J. Mol. Sci. 2016;17:2045. doi: 10.3390/ijms17122045. PubMed DOI PMC
Martín-Guerrero E., Tirado-Cabrera I., Buendía I., Alonso V., Gortázar A.R., Ardura J.A. Primary cilia mediate parathyroid hormone receptor type 1 osteogenic actions in osteocytes and osteoblasts via Gli activation. J. Cell. Physiol. 2020;235:7356–7369. doi: 10.1002/jcp.29636. PubMed DOI
Pan A., Chang L., Nguyen A., James A.W. A review of hedgehog signaling in cranial bone development. Front. Physiol. 2013;4:61. doi: 10.3389/fphys.2013.00061. PubMed DOI PMC
Paiva K.B.S., Granjeiro J.M. Matrix Metalloproteinases in Bone Resorption, Remodeling, and Repair. Prog. Mol. Biol. Transl. Sci. 2017;148:203–303. doi: 10.1016/bs.pmbts.2017.05.001. PubMed DOI
Creecy A., Damrath J.G., Wallace J.M. Control of Bone Matrix Properties by Osteocytes. Front. Endocrinol. 2020;11:578477. doi: 10.3389/fendo.2020.578477. PubMed DOI PMC
Meyer E., Vollmer J.-Y., Bovey R., Stamenkovic I. Matrix metalloproteinases 9 and 10 inhibit protein kinase C-potentiated, p53-mediated apoptosis. Cancer Res. 2005;65:4261–4272. doi: 10.1158/0008-5472.CAN-04-2908. PubMed DOI
Zhang G., Miyake M., Lawton A., Goodison S., Rosser C.J. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer. 2014;14:310. doi: 10.1186/1471-2407-14-310. PubMed DOI PMC
Matilla L., Roncal C., Ibarrola J., Arrieta V., García-Peña A., Fernández-Celis A., Navarro A., Álvarez V., Gainza A., Orbe J., et al. A Role for MMP-10 (Matrix Metalloproteinase-10) in Calcific Aortic Valve Stenosis. Arterioscler. Thromb. Vasc. Biol. 2020;40:1370–1382. doi: 10.1161/ATVBAHA.120.314143. PubMed DOI
Ott S.M. Bone cells, sclerostin, and FGF23: What’s bred in the bone will come out in the flesh. Kidney Int. 2015;87:499–501. doi: 10.1038/ki.2014.360. PubMed DOI
Tanaka S., Matsumoto T. Sclerostin: From bench to bedside. J. Bone Miner. Metab. 2021;39:332–340. doi: 10.1007/s00774-020-01176-0. PubMed DOI
Deeks E.D. Denosumab: A Review in Postmenopausal Osteoporosis. Drugs Aging. 2018;35:163–173. doi: 10.1007/s40266-018-0525-7. PubMed DOI
Quarles L.D. Role of FGF23 in vitamin D and phosphate metabolism: Implications in chronic kidney disease. Exp. Cell Res. 2012;318:1040–1048. doi: 10.1016/j.yexcr.2012.02.027. PubMed DOI PMC
Paloian N.J., Leaf E.M., Giachelli C.M. Osteopontin protects against high phosphate-induced nephrocalcinosis and vascular calcification. Kidney Int. 2016;89:1027–1036. doi: 10.1016/j.kint.2015.12.046. PubMed DOI PMC
Martin A., Liu S., David V., Li H., Karydis A., Feng J.Q., Quarles L.D. Bone proteins PHEX and DMP1 regulate fibroblastic growth factor Fgf23 expression in osteocytes through a common pathway involving FGF receptor (FGFR) signaling. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2011;25:2551–2562. doi: 10.1096/fj.10-177816. PubMed DOI PMC
Wajant H. Death receptors. Essays Biochem. 2003;39:53–71. doi: 10.1042/bse0390053. PubMed DOI
Siegmund D., Lang I., Wajant H. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J. 2017;284:1131–1159. doi: 10.1111/febs.13968. PubMed DOI
Seyrek K., Lavrik I.N. Modulation of CD95-mediated signaling by post-translational modifications: Towards understanding CD95 signaling networks. Apoptosis. 2019;24:385–394. doi: 10.1007/s10495-019-01540-0. PubMed DOI
Levoin N., Jean M., Legembre P. CD95 Structure, Aggregation and Cell Signaling. Front. Cell Dev. Biol. 2020;8:314. doi: 10.3389/fcell.2020.00314. PubMed DOI PMC
Engin A. Protein Kinase-Mediated Decision Between the Life and Death. Adv. Exp. Med. Biol. 2021;1275:1–33. doi: 10.1007/978-3-030-49844-3_1. PubMed DOI
Ivanova S., Polajnar M., Narbona-Perez A.J., Hernandez-Alvarez M.I., Frager P., Slobodnyuk K., Plana N., Nebreda A.R., Palacin M., Gomis R.R., et al. Regulation of death receptor signaling by the autophagy protein TP53INP2. EMBO J. 2019;38:e99300. doi: 10.15252/embj.201899300. PubMed DOI PMC
Yu S., Ji H., Dong X., Liu A., Yu J. FAS/FAS-L-mediated apoptosis and autophagy of SPC-A-1 cells induced by water-soluble polysaccharide from Polygala tenuifolia. Int. J. Biol. Macromol. 2020;150:449–458. doi: 10.1016/j.ijbiomac.2020.02.010. PubMed DOI
Tan S., Liu X., Chen L., Wu X., Tao L., Pan X., Tan S., Liu H., Jiang J., Wu B. Fas/FasL mediates NF-κBp65/PUMA-modulated hepatocytes apoptosis via autophagy to drive liver fibrosis. Cell Death Dis. 2021;12:474. doi: 10.1038/s41419-021-03749-x. PubMed DOI PMC
Tsapras P., Nezis I.P. Caspase involvement in autophagy. Cell Death Differ. 2017;24:1369–1379. doi: 10.1038/cdd.2017.43. PubMed DOI PMC
Li X., Xu J., Dai B., Wang X., Guo Q., Qin L. Targeting autophagy in osteoporosis: From pathophysiology to potential therapy. Ageing Res. Rev. 2020;62:101098. doi: 10.1016/j.arr.2020.101098. PubMed DOI
Mollazadeh S., Fazly Bazzaz B.S., Kerachian M.A. Role of apoptosis in pathogenesis and treatment of bone-related diseases. J. Orthop. Surg. Res. 2015;10:15. doi: 10.1186/s13018-015-0152-5. PubMed DOI PMC
Youlten S.E., Kemp J.P., Logan J.G., Ghirardello E.J., Sergio C.M., Dack M.R.G., Guilfoyle S.E., Leitch V.D., Butterfield N.C., Komla-Ebri D., et al. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat. Commun. 2021;12:2444. doi: 10.1038/s41467-021-22517-1. PubMed DOI PMC
Aziz A.H., Wilmoth R.L., Ferguson V.L., Bryant S.J. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS Appl. Bio Mater. 2020;3:1666–1680. doi: 10.1021/acsabm.9b01227. PubMed DOI PMC
Expression of osteogenic factors in FasL-deficient calvarial cells
FasL is a catabolic factor in alveolar bone homeostasis
Making the head: Caspases in life and death