• This record comes from PubMed

Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats

. 2021 Aug 06 ; 22 (16) : . [epub] 20210806

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
18-02-00053 Ministerstvo Zdravotnictví Ceské Republiky
68121 Grant Agency of Charles University

The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague-Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin-angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches.

See more in PubMed

Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. PubMed

Benjamin E.J., Blaha M.J., Chiuve S.E. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. PubMed DOI PMC

Bulluck H., Yellon D.M., Hausenloy D.J. Reducing myocardial infarct size: Challenges and future opportunities. Heart. 2016;102:341–348. doi: 10.1136/heartjnl-2015-307855. PubMed DOI PMC

Kassi M., Hannawi B., Trachtenberg B. Recent advances in heart failure. Curr. Opin. Cardiol. 2018;33:249–256. doi: 10.1097/HCO.0000000000000497. PubMed DOI

Mullens W., Verbrugge F.H., Nijst P., Tang W.H.W. Renal sodium avidity in heart failure: From pathophysiology to treatment strategies. Eur. Heart J. 2017;38:1872–1882. doi: 10.1093/eurheartj/ehx035. PubMed DOI

Mullens W., Damman K., Testani J.M., Martens P., Mueller C., Lassus J., Tang W.H., Skuri H., Verbrugge F.H., Orso F., et al. Evaluation of kidney function throughout the heart failure trajectory—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020;22:584–603. doi: 10.1002/ejhf.1697. PubMed DOI

Rangawwami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezeu K., Molitch M., Mullens W., et al. American Heart Asssociation Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies. A scientific statement from the American Heart Association. Circulation. 2019;139:e840–e878. PubMed

Khayyat-Kholghi M., Oparil S., Davis B.R., Tereshchenko L.G. Worsening kidney function is the major mechanism of heart failure in hypertension. The ALLHAT study. JACC Heart Fail. 2021;9:100–111. doi: 10.1016/j.jchf.2020.09.006. PubMed DOI PMC

Houser S.R., Margulies K.B., Murphy A.M., Spinale F.G., Francis G.S., Prabhu S.D., Rockman H.A., Kass D.A., Molkentin J.D., Sussman M.A., et al. Animal models of heart failure: A scientific statement from the American Heart Association. Circ. Res. 2012;111:131–150. doi: 10.1161/RES.0b013e3182582523. PubMed DOI

Riehle C., Bauersachs J. Small animal models of heart failure. Cardiovas Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC

Abassi Z., Goltsmna I., Karram T., Winaver J., Horrman A. Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC

Honetschlagerová Z., Gawrys O., Jíchová Š., Škaroupková P., Kikerlová S., Vaňourková Z., Husková Z., Melenovský V., Kompanowska-Jezierska E., Sadowski J., et al. Renal sympathetic denervation attenuates congestive heart failure in angiotensin II-dependent hypertension: Studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press. Res. 2021;46:95–113. doi: 10.1096/fasebj.2020.34.s1.02104. PubMed DOI

Turcani M., Rupp H. Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition. Br. J. Pharmacol. 2000;130:1671–1677. doi: 10.1038/sj.bjp.0703467. PubMed DOI PMC

Pfeffer M.A., Pfeffer J.M., Steinberg C., Finn P. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation. 1985;72:406–412. doi: 10.1161/01.CIR.72.2.406. PubMed DOI

Pfeffer J.M. Progressive ventricular dilatation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am. J. Cardiol. 1991;68:17D–25D. doi: 10.1016/0002-9149(91)90257-L. PubMed DOI

CONSENSUS Trial Study Group Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) N. Engl. J. Med. 1987;316:1429–1435. doi: 10.1056/NEJM198706043162301. PubMed DOI

SOLVD Investigators. Yusuf S., Pitt B., Davis C.E., Hood W.B., Jr., Cohn J.N. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N. Engl. J. Med. 1992;327:658–691. PubMed

Trachtenberg B.H. Future Directions in Cardio-Oncology. Methodist Debakey Cardiovasc. J. 2019;15:300–302. PubMed PMC

Lenneman C.G., Sawyer D.B. Cardio-Oncology. An updated on cardiotoxicity of cancer-related treatment. Circ. Res. 2016;118:1008–1020. doi: 10.1161/CIRCRESAHA.115.303633. PubMed DOI

Bansal N., Blanco J.G., Sharma U.C., Pokharel S., Shisler S., Lipshult S.E. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020;39:55–68. doi: 10.1007/s10555-020-09859-w. PubMed DOI PMC

Moslehi J., Zhang Q., Moore K.J. Crosstalk between the heart and cancer. Beyond drug toxicity. Circulation. 2020;142:684–687. doi: 10.1161/CIRCULATIONAHA.120.048655. PubMed DOI PMC

Zamorano J.L., Lancellotti P., Munoz R.D., Aboyans V., Asteggiano R., Galderisi M., Habib G., Lenihan D.J., Lip G.Y.H., Lyon A.R., et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under auspices of the ESC Committee for Practice Guildelines. Eur. Heart J. 2016;37:2768–2801. doi: 10.1093/eurheartj/ehw211. PubMed DOI

Hassen L.J., Lenihan D.J., Baliga R.R. Hypertension in the cardio-oncology clinic. Heart Fail. Clin. 2019;15:487–495. doi: 10.1016/j.hfc.2019.06.010. PubMed DOI

Kalyanaraman B. Teaching the basic of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 2020;29:101394. doi: 10.1016/j.redox.2019.101394. PubMed DOI PMC

Wallace K.B., Sardao V.A., Oliverira P.J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 2020;126:926–941. doi: 10.1161/CIRCRESAHA.119.314681. PubMed DOI PMC

Jeyaprakash P., Bmed M.D., Sukhmandeep S., Ellenberger K., Sivapathan S., Pathan F., Negishi K. Cardiotoxic effect of modern anthracyclines dosing on left ventricular ejection fraction: A systematic review and meta-analysis of placebo arms from randomized controlled trials. J. Am. Heart Assoc. 2021;10:e018802. doi: 10.1161/JAHA.120.018802. PubMed DOI PMC

Nakahara T., Tanimoto T., Petrov A.D., Ishikawa K., Strauss H.W., Narula J. Rat model of cardiotoxic drug-induced cardiomyopathy. In: Ishikawa K., editor. Experimental Models of Cardiovascular Diseases: Methods and Protocols. Volume 1816. Springer + Business Media, Part of Springer Nature Humana Press; New York, NY, USA: 2018. pp. 221–232. PubMed

Hahn V.S., Zhang K.W., Sun L., Narayan V., Lenihan D.J., Ky B. Heart failure with target cancer therapies. Mechanisms and Cardioprotection. Circ. Res. 2021;128:1576–1593. doi: 10.1161/CIRCRESAHA.121.318223. PubMed DOI PMC

Medeiros-Lima D.J.M., Carvalho J.J., Tibirica E., Borges J.P., Matsuura C. Time course of cardiomyopathy induced by doxorubicin in rats. Pharmacol. Rep. 2019;71:583–590. doi: 10.1016/j.pharep.2019.02.013. PubMed DOI

Babaei H., Razmaraii N., Assadnassab G.H., Mohajjel Nayebi A., Azarmi Y., Mohammadnejad D., Azami A. Ultrastructural and echocardiographic assessment of chronic doxorubicin-induced cardiotoxicity in rats. Arch. Razi Inst. 2020;75:55–62. PubMed PMC

Ching C., Gustafson D., Thavendiranathan P., Fisch J.E. Cancer therapy-related cardiac dysfunction: Is endothelial dysfunction at the heart of the matter? Clin. Sci. 2021;135:1467–1503. doi: 10.1042/CS20210059. PubMed DOI

Asnani A., Moslehi J.J., Adhikari B.B., Baik A.H., Beyer A.M., de Boer R.A., Ghigo A., Grumbach I.M., Jain S., Zhu H. Preclinical models of cancer therapy-associated cardiovascular toxicity. A scientific statement from the American Heart Association. Circ. Res. 2021;129:e21–e34. doi: 10.1161/RES.0000000000000473. PubMed DOI PMC

Husková Z., Kramer H.J., Vaňourková Z., Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI

Weinberg L.E., Singal P.K. Refractory heart failure and age-related differences in adriamycin-induced myocardial changes in rats. Can. J. Physiol. Pharmacol. 1987;65:1957–1965. doi: 10.1139/y87-305. PubMed DOI

Kala P., Bartušková H., Piťha J., Vaňourková Z., Kikerlová S., Jíchová Š., Melenovský V., Hošková L., Veselka J., Kompanowska-Jezierska E., et al. Deleterious effects of hyperactivity of the renin-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administration: A study in Ren-2 transgenic rats. Int. J. Mol. Sci. 2020;21:9337. doi: 10.3390/ijms21249337. PubMed DOI PMC

Savira F., Magaye R., Liew D., Reid C., Kelly D.J., Kompa A.R., Sangaralingham S.J., Burnet J.C., Jr., Kaye D., Wang B.H. Cardiorenal syndrome: Multi-organ dysfunction involving the heart, kidney and vasculature. Br. J. Pharmacol. 2020;177:2906–2922. doi: 10.1111/bph.15065. PubMed DOI PMC

Schirone L., Forte M., Palmerio S., Yee S., Nocella C., Angelini F., Pagano F., Schiavon S., Bordin A., Carrizzo A., et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195. PubMed DOI PMC

Mishra S., Kass D.A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Natl. Rev. Cardiol. 2021;18:400–423. doi: 10.1038/s41569-020-00480-6. PubMed DOI PMC

Burkhoff D., Topkara V.K., Sayer G., Uriel N. Reverse remodeling with left ventricular assist devices. Circ. Res. 2021;128:1594–1612. doi: 10.1161/CIRCRESAHA.121.318160. PubMed DOI PMC

Driesen R.B., Verheyen F.K., Debie W., Blaauw E., Babiker F.A., Cornelussen R.N.M., Ausma J., Lenders M.-H., Borges M., Chaponnier C., et al. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. J. Cell. Mol. Med. 2009;13:896–908. doi: 10.1111/j.1582-4934.2008.00523.x. PubMed DOI PMC

Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., et al. Effects of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC

Dube P., Weber K.T. Congestive heart failure: Pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI

Packer M., McMurray J.J.V. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389:1831–1840. doi: 10.1016/S0140-6736(16)30969-2. PubMed DOI

Hartupee J., Mann D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC

Castrop H., Hocherl K., Kurtz A., Schweda F., Todorov V., Wagner C. Physiology of kidney renin. Physiol. Rev. 2010;90:607–673. doi: 10.1152/physrev.00011.2009. PubMed DOI

Sparks M.A., Crowley S.D., Gurley S.B., Mirotsou M., Coffman T.M. Clasical renin-angiotensin system in kidney physiology. Compr. Physiol. 2014;4:1201–1228. PubMed PMC

Ocaranza M.P., Riquelme J.A., Garcia L., Jalil J.E., Chiong M., Santos R.A.S., Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020;17:116–129. doi: 10.1038/s41569-019-0244-8. PubMed DOI PMC

Davenport A.P., Hyndman K.A., Dhaun N., Southan C., Kohan D.E., Pollock J.S., Pollock D.M., Webb D.J., Maguire J.J. Endothelin. Pharmacol. Rev. 2016;68:357–418. doi: 10.1124/pr.115.011833. PubMed DOI PMC

Vaneckova I., Kramer H.J., Bäcker A., Schejbalová S., Vernerová Z., Eis V., Opočenský M., Dvořák P., Červenka L. Early-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 rats. Vasc. Pharmacol. 2006;45:163–170. doi: 10.1016/j.vph.2006.05.003. PubMed DOI

Vernerová Z., Kramer H.J., Bäcker A., Červenka L., Opočenský M., Husková Z., Vaňourková Z., Eis V., Čertíková Chábová V., Tesař V., et al. Late-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 transgenic rats. Vasc. Pharmacol. 2008;48:165–173. doi: 10.1016/j.vph.2008.01.009. PubMed DOI

Sedláková L., Čertíková Chábová V., Doleželová Š., Škaroupková P., Kopkan L., Husková Z., Červenková L., Kikerlová S., Vaněčková I., Sadowski J., et al. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: Effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Hypertens. 2017;39:183–195. doi: 10.1080/10641963.2016.1235184. PubMed DOI

Miyauchi T., Sakai S. Endothelin and the heart in health and diseases. Peptides. 2019;111:77–88. doi: 10.1016/j.peptides.2018.10.002. PubMed DOI

El-Sherbeni A.A., Aboutabl M.E., Zordoky B.N.M., Anwa-Mohamed A., El-Kadi A.O.S. Determination of the dominant arachidonic acid cytochrome P450 monooxygenase in rat heart, lung, kidney and liver: Protein expression and metabolic kinetics. AAPS J. 2013;15:112–122. doi: 10.1208/s12248-012-9425-7. PubMed DOI PMC

Lai J., Chen C. The role of epoxyeicosatrienoic acids in cardiac remodeling. Front. Physiol. 2021;12:642470. doi: 10.3389/fphys.2021.642470. PubMed DOI PMC

Imig J.D. Epoxyeicosanoids in Hypertension. Physiol. Res. 2019;68:695–704. doi: 10.33549/physiolres.934291. PubMed DOI PMC

Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI

Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., Alánová P., Kolář F., Hammock B.D., Hwang S.H., et al. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 2018;36:1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC

Alsaad A.M.S., Zordoky B.N.M., Tse M.M.Y., El-Kadi A.O.S. Role of cytochrome 450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab. Rev. 2013;45:173–195. doi: 10.3109/03602532.2012.754460. PubMed DOI

Roman R.J., Fan F. 20-HETE, hypertension and beyond. Hypertension. 2018;72:12–18. doi: 10.1161/HYPERTENSIONAHA.118.10269. PubMed DOI PMC

DiBona G.F., Esler M. Translation medicine: The antihypertensive effect of renal denervation. Am. J. Physiol. 2010;298:R245–R253. PubMed

Schmieder R.E. Renal denervation: Where do we stand and what is the relevance to the nephrologist? Nephrol. Dial. Transplant. 2020 doi: 10.1093/ndt/gfaa237. PubMed DOI

Jang H.-S., Kim J., Padanilam B.J. Renal sympathetic nerve activation via α2-adrenergic receptors in chronic kidney disease progression. Kidney Res. Clin. Pract. 2019;38:6–14. doi: 10.23876/j.krcp.18.0143. PubMed DOI PMC

Insel P.A., Snavely M.D. Catecholamines and the kidney: Receptors and renal function. Annu. Rev. Physiol. 1981;43:625–636. doi: 10.1146/annurev.ph.43.030181.003205. PubMed DOI

Karlstaedt A., Zhang X., Vitrac H., Harmancey R., Vasauez H., Wang J.H., Goodell M.A., Taegtmeyer H. Oncometabolite d-2-hydroyglutarated impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl. Acad. Sci. USA. 2016;113:10436–10441. doi: 10.1073/pnas.1601650113. PubMed DOI PMC

Meijers W.C., Maglione M., Bakker S.J.L., Oberhuber R., Kieneker L.M., de Jong S., Haubner B.J., Nagengast W.B., Lyon A.R., van Veldhuisen D.J., et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138:678–691. doi: 10.1161/CIRCULATIONAHA.117.030816. PubMed DOI

Giebisch G.H. A long affair with renal tubules. Annu. Rev. Physiol. 2011;73:1–28. doi: 10.1146/annurev-physiol-012110-142241. PubMed DOI

Ayla S., Seckin I., Tanriverdi G., Cengiz M., Eser M., Soner B.C., Oktem G. Doxorubicin induced nephrotoxicity: Protective effect of nicotinamide. Int. J. Cell Biol. 2011;2011:390238. doi: 10.1155/2011/390238. PubMed DOI PMC

Xiang C., Yan Y., Zhang D. Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J. Pharmacol. Sci. 2021;145:6–15. doi: 10.1016/j.jphs.2020.10.002. PubMed DOI

Mullins J.J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI

Jíchová Š., Doleželová Š., Kopkan L., Kompanowska-Jezierska E., Sadowski J., Červenka L. Fenofibrate attenuates malignant hypertension by suppression of the renin-angiotensin system: A study in Cyp1a1-Ren-2 transgenic rats. Am. J. Med. Sci. 2016;352:618–630. doi: 10.1016/j.amjms.2016.09.008. PubMed DOI

Sporková A., Čertíková Chábová V., Doleželová Š., Jíchová Š., Vaňourková Z., Kompanowska-Jezierska E., Sadowski J., Maxová H., Červenka L. Fenofibrate attenuates hypertension in Goldblatt hypertensive rats: Role of 20-hydroxyeicosatrienoic acid in the nonclipped kidney. Am. J. Med. Sci. 2017;353:568–579. doi: 10.1016/j.amjms.2017.04.009. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Bas A., Forsberg G., Hammarstrom S., Hammarstrom M.L. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 2004;59:566–573. doi: 10.1111/j.0300-9475.2004.01440.x. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Hugget J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Liu H.-M., Yan D., Liu Z.-F., Hu S.-Z., Yan S.-H., He X.-W. Density distribution of gene expression profiles and evaluation of using maximal information coefficient to identify differentially expressed genes. PLoS ONE. 2019;14:e0219551. doi: 10.1371/journal.pone.0219551. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...