Kidney Response to Chemotherapy-Induced Heart Failure: mRNA Analysis in Normotensive and Ren-2 Transgenic Hypertensive Rats
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
18-02-00053
Ministerstvo Zdravotnictví Ceské Republiky
68121
Grant Agency of Charles University
PubMed
34445179
PubMed Central
PMC8395170
DOI
10.3390/ijms22168475
PII: ijms22168475
Knihovny.cz E-resources
- Keywords
- chemotherapy-induced heart failure, cytochrome P-450, doxorubicin, endothelin system, hypertension, kidney, renal adrenergic system, renin-angiotensin-aldosterone system,
- MeSH
- Doxorubicin adverse effects MeSH
- Hypertension complications genetics physiopathology MeSH
- Rats MeSH
- Kidney drug effects physiopathology MeSH
- RNA, Messenger genetics MeSH
- Kidney Diseases chemically induced genetics physiopathology MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Transgenic MeSH
- Antibiotics, Antineoplastic adverse effects MeSH
- Gene Expression Regulation drug effects MeSH
- Renin-Angiotensin System drug effects MeSH
- Renin genetics MeSH
- Heart Failure chemically induced genetics physiopathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Doxorubicin MeSH
- RNA, Messenger MeSH
- Antibiotics, Antineoplastic MeSH
- Ren2 protein, rat MeSH Browser
- Renin MeSH
The aim of the present study was to perform kidney messenger ribonucleic acid (mRNA) analysis in normotensive, Hannover Sprague-Dawley (HanSD) rats and hypertensive, Ren-2 renin transgenic rats (TGR) after doxorubicin-induced heart failure (HF) with specific focus on genes that are implicated in the pathophysiology of HF-associated cardiorenal syndrome. We found that in both strains renin and angiotensin-converting enzyme mRNA expressions were upregulated indicating that the vasoconstrictor axis of the renin-angiotensin system was activated. We found that pre-proendothelin-1, endothelin-converting enzyme type 1 and endothelin type A receptor mRNA expressions were upregulated in HanSD rats, but not in TGR, suggesting the activation of endothelin system in HanSD rats, but not in TGR. We found that mRNA expression of cytochrome P-450 subfamily 2C23 was downregulated in TGR and not in HanSD rats, suggesting the deficiency in the intrarenal cytochrome P450-dependent pathway of arachidonic acid metabolism in TGR. These results should be the basis for future studies evaluating the pathophysiology of cardiorenal syndrome secondary to chemotherapy-induced HF in order to potentially develop new therapeutic approaches.
Department of Nephrology 1st Faculty of Medicine Charles University 12108 Prague Czech Republic
Department of Pathophysiology 2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
See more in PubMed
Ponikowski P., Voors A.A., Anker S.D., Bueno H., Cleland J.G.F., Coats A.J.S., Falk V., González-Juanatey J.R., Harjola V.-P., Jankowska E.A., et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016;37:2129–2200. PubMed
Benjamin E.J., Blaha M.J., Chiuve S.E. Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. PubMed DOI PMC
Bulluck H., Yellon D.M., Hausenloy D.J. Reducing myocardial infarct size: Challenges and future opportunities. Heart. 2016;102:341–348. doi: 10.1136/heartjnl-2015-307855. PubMed DOI PMC
Kassi M., Hannawi B., Trachtenberg B. Recent advances in heart failure. Curr. Opin. Cardiol. 2018;33:249–256. doi: 10.1097/HCO.0000000000000497. PubMed DOI
Mullens W., Verbrugge F.H., Nijst P., Tang W.H.W. Renal sodium avidity in heart failure: From pathophysiology to treatment strategies. Eur. Heart J. 2017;38:1872–1882. doi: 10.1093/eurheartj/ehx035. PubMed DOI
Mullens W., Damman K., Testani J.M., Martens P., Mueller C., Lassus J., Tang W.H., Skuri H., Verbrugge F.H., Orso F., et al. Evaluation of kidney function throughout the heart failure trajectory—A position statement from the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2020;22:584–603. doi: 10.1002/ejhf.1697. PubMed DOI
Rangawwami J., Bhalla V., Blair J.E.A., Chang T.I., Costa S., Lentine K.L., Lerma E.V., Mezeu K., Molitch M., Mullens W., et al. American Heart Asssociation Council on the Kidney in Cardiovascular Disease and Council on Clinical Cardiology. Cardiorenal syndrome: Classification, pathophysiology, diagnosis, and treatment strategies. A scientific statement from the American Heart Association. Circulation. 2019;139:e840–e878. PubMed
Khayyat-Kholghi M., Oparil S., Davis B.R., Tereshchenko L.G. Worsening kidney function is the major mechanism of heart failure in hypertension. The ALLHAT study. JACC Heart Fail. 2021;9:100–111. doi: 10.1016/j.jchf.2020.09.006. PubMed DOI PMC
Houser S.R., Margulies K.B., Murphy A.M., Spinale F.G., Francis G.S., Prabhu S.D., Rockman H.A., Kass D.A., Molkentin J.D., Sussman M.A., et al. Animal models of heart failure: A scientific statement from the American Heart Association. Circ. Res. 2012;111:131–150. doi: 10.1161/RES.0b013e3182582523. PubMed DOI
Riehle C., Bauersachs J. Small animal models of heart failure. Cardiovas Res. 2019;115:1838–1849. doi: 10.1093/cvr/cvz161. PubMed DOI PMC
Abassi Z., Goltsmna I., Karram T., Winaver J., Horrman A. Aortocaval fistula in rat: A unique model of volume-overload congestive heart failure and cardiac hypertrophy. J. Biomed. Biotechnol. 2011;2011:729497. doi: 10.1155/2011/729497. PubMed DOI PMC
Honetschlagerová Z., Gawrys O., Jíchová Š., Škaroupková P., Kikerlová S., Vaňourková Z., Husková Z., Melenovský V., Kompanowska-Jezierska E., Sadowski J., et al. Renal sympathetic denervation attenuates congestive heart failure in angiotensin II-dependent hypertension: Studies with Ren-2 transgenic hypertensive rats with aorto-caval fistula. Kidney Blood Press. Res. 2021;46:95–113. doi: 10.1096/fasebj.2020.34.s1.02104. PubMed DOI
Turcani M., Rupp H. Heart failure development in rats with ascending aortic constriction and angiotensin-converting enzyme inhibition. Br. J. Pharmacol. 2000;130:1671–1677. doi: 10.1038/sj.bjp.0703467. PubMed DOI PMC
Pfeffer M.A., Pfeffer J.M., Steinberg C., Finn P. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation. 1985;72:406–412. doi: 10.1161/01.CIR.72.2.406. PubMed DOI
Pfeffer J.M. Progressive ventricular dilatation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am. J. Cardiol. 1991;68:17D–25D. doi: 10.1016/0002-9149(91)90257-L. PubMed DOI
CONSENSUS Trial Study Group Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS) N. Engl. J. Med. 1987;316:1429–1435. doi: 10.1056/NEJM198706043162301. PubMed DOI
SOLVD Investigators. Yusuf S., Pitt B., Davis C.E., Hood W.B., Jr., Cohn J.N. Effects of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fraction. N. Engl. J. Med. 1992;327:658–691. PubMed
Trachtenberg B.H. Future Directions in Cardio-Oncology. Methodist Debakey Cardiovasc. J. 2019;15:300–302. PubMed PMC
Lenneman C.G., Sawyer D.B. Cardio-Oncology. An updated on cardiotoxicity of cancer-related treatment. Circ. Res. 2016;118:1008–1020. doi: 10.1161/CIRCRESAHA.115.303633. PubMed DOI
Bansal N., Blanco J.G., Sharma U.C., Pokharel S., Shisler S., Lipshult S.E. Cardiovascular diseases in survivors of childhood cancer. Cancer Metastasis Rev. 2020;39:55–68. doi: 10.1007/s10555-020-09859-w. PubMed DOI PMC
Moslehi J., Zhang Q., Moore K.J. Crosstalk between the heart and cancer. Beyond drug toxicity. Circulation. 2020;142:684–687. doi: 10.1161/CIRCULATIONAHA.120.048655. PubMed DOI PMC
Zamorano J.L., Lancellotti P., Munoz R.D., Aboyans V., Asteggiano R., Galderisi M., Habib G., Lenihan D.J., Lip G.Y.H., Lyon A.R., et al. 2016 ESC position paper on cancer treatments and cardiovascular toxicity developed under auspices of the ESC Committee for Practice Guildelines. Eur. Heart J. 2016;37:2768–2801. doi: 10.1093/eurheartj/ehw211. PubMed DOI
Hassen L.J., Lenihan D.J., Baliga R.R. Hypertension in the cardio-oncology clinic. Heart Fail. Clin. 2019;15:487–495. doi: 10.1016/j.hfc.2019.06.010. PubMed DOI
Kalyanaraman B. Teaching the basic of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 2020;29:101394. doi: 10.1016/j.redox.2019.101394. PubMed DOI PMC
Wallace K.B., Sardao V.A., Oliverira P.J. Mitochondrial determinants of doxorubicin-induced cardiomyopathy. Circ. Res. 2020;126:926–941. doi: 10.1161/CIRCRESAHA.119.314681. PubMed DOI PMC
Jeyaprakash P., Bmed M.D., Sukhmandeep S., Ellenberger K., Sivapathan S., Pathan F., Negishi K. Cardiotoxic effect of modern anthracyclines dosing on left ventricular ejection fraction: A systematic review and meta-analysis of placebo arms from randomized controlled trials. J. Am. Heart Assoc. 2021;10:e018802. doi: 10.1161/JAHA.120.018802. PubMed DOI PMC
Nakahara T., Tanimoto T., Petrov A.D., Ishikawa K., Strauss H.W., Narula J. Rat model of cardiotoxic drug-induced cardiomyopathy. In: Ishikawa K., editor. Experimental Models of Cardiovascular Diseases: Methods and Protocols. Volume 1816. Springer + Business Media, Part of Springer Nature Humana Press; New York, NY, USA: 2018. pp. 221–232. PubMed
Hahn V.S., Zhang K.W., Sun L., Narayan V., Lenihan D.J., Ky B. Heart failure with target cancer therapies. Mechanisms and Cardioprotection. Circ. Res. 2021;128:1576–1593. doi: 10.1161/CIRCRESAHA.121.318223. PubMed DOI PMC
Medeiros-Lima D.J.M., Carvalho J.J., Tibirica E., Borges J.P., Matsuura C. Time course of cardiomyopathy induced by doxorubicin in rats. Pharmacol. Rep. 2019;71:583–590. doi: 10.1016/j.pharep.2019.02.013. PubMed DOI
Babaei H., Razmaraii N., Assadnassab G.H., Mohajjel Nayebi A., Azarmi Y., Mohammadnejad D., Azami A. Ultrastructural and echocardiographic assessment of chronic doxorubicin-induced cardiotoxicity in rats. Arch. Razi Inst. 2020;75:55–62. PubMed PMC
Ching C., Gustafson D., Thavendiranathan P., Fisch J.E. Cancer therapy-related cardiac dysfunction: Is endothelial dysfunction at the heart of the matter? Clin. Sci. 2021;135:1467–1503. doi: 10.1042/CS20210059. PubMed DOI
Asnani A., Moslehi J.J., Adhikari B.B., Baik A.H., Beyer A.M., de Boer R.A., Ghigo A., Grumbach I.M., Jain S., Zhu H. Preclinical models of cancer therapy-associated cardiovascular toxicity. A scientific statement from the American Heart Association. Circ. Res. 2021;129:e21–e34. doi: 10.1161/RES.0000000000000473. PubMed DOI PMC
Husková Z., Kramer H.J., Vaňourková Z., Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J. Hypertens. 2006;24:517–527. doi: 10.1097/01.hjh.0000209988.51606.c7. PubMed DOI
Weinberg L.E., Singal P.K. Refractory heart failure and age-related differences in adriamycin-induced myocardial changes in rats. Can. J. Physiol. Pharmacol. 1987;65:1957–1965. doi: 10.1139/y87-305. PubMed DOI
Kala P., Bartušková H., Piťha J., Vaňourková Z., Kikerlová S., Jíchová Š., Melenovský V., Hošková L., Veselka J., Kompanowska-Jezierska E., et al. Deleterious effects of hyperactivity of the renin-angiotensin system and hypertension on the course of chemotherapy-induced heart failure after doxorubicin administration: A study in Ren-2 transgenic rats. Int. J. Mol. Sci. 2020;21:9337. doi: 10.3390/ijms21249337. PubMed DOI PMC
Savira F., Magaye R., Liew D., Reid C., Kelly D.J., Kompa A.R., Sangaralingham S.J., Burnet J.C., Jr., Kaye D., Wang B.H. Cardiorenal syndrome: Multi-organ dysfunction involving the heart, kidney and vasculature. Br. J. Pharmacol. 2020;177:2906–2922. doi: 10.1111/bph.15065. PubMed DOI PMC
Schirone L., Forte M., Palmerio S., Yee S., Nocella C., Angelini F., Pagano F., Schiavon S., Bordin A., Carrizzo A., et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017;2017:3920195. doi: 10.1155/2017/3920195. PubMed DOI PMC
Mishra S., Kass D.A. Cellular and molecular pathobiology of heart failure with preserved ejection fraction. Natl. Rev. Cardiol. 2021;18:400–423. doi: 10.1038/s41569-020-00480-6. PubMed DOI PMC
Burkhoff D., Topkara V.K., Sayer G., Uriel N. Reverse remodeling with left ventricular assist devices. Circ. Res. 2021;128:1594–1612. doi: 10.1161/CIRCRESAHA.121.318160. PubMed DOI PMC
Driesen R.B., Verheyen F.K., Debie W., Blaauw E., Babiker F.A., Cornelussen R.N.M., Ausma J., Lenders M.-H., Borges M., Chaponnier C., et al. Re-expression of alpha skeletal actin as a marker for dedifferentiation in cardiac pathologies. J. Cell. Mol. Med. 2009;13:896–908. doi: 10.1111/j.1582-4934.2008.00523.x. PubMed DOI PMC
Kala P., Sedláková L., Škaroupková P., Kopkan L., Vaňourková Z., Táborský M., Nishiyama A., Hwang S.H., Hammock B.D., Sadowski J., et al. Effects of angiotensin-converting enzyme blockade, alone or combined with blockade of soluble epoxide hydrolase, on the course of congestive heart failure and occurrence of renal dysfunction in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Physiol. Res. 2018;67:401–415. doi: 10.33549/physiolres.933757. PubMed DOI PMC
Dube P., Weber K.T. Congestive heart failure: Pathophysiologic consequences of neurohormonal activation and the potential for recovery: Part I. Am. J. Med. Sci. 2011;342:348–351. doi: 10.1097/MAJ.0b013e318232750d. PubMed DOI
Packer M., McMurray J.J.V. Importance of endogenous compensatory vasoactive peptides in broadening the effects of inhibitors of the renin-angiotensin system for the treatment of heart failure. Lancet. 2017;389:1831–1840. doi: 10.1016/S0140-6736(16)30969-2. PubMed DOI
Hartupee J., Mann D.L. Neurohormonal activation in heart failure with reduced ejection fraction. Nat. Rev. Cardiol. 2017;14:30–38. doi: 10.1038/nrcardio.2016.163. PubMed DOI PMC
Castrop H., Hocherl K., Kurtz A., Schweda F., Todorov V., Wagner C. Physiology of kidney renin. Physiol. Rev. 2010;90:607–673. doi: 10.1152/physrev.00011.2009. PubMed DOI
Sparks M.A., Crowley S.D., Gurley S.B., Mirotsou M., Coffman T.M. Clasical renin-angiotensin system in kidney physiology. Compr. Physiol. 2014;4:1201–1228. PubMed PMC
Ocaranza M.P., Riquelme J.A., Garcia L., Jalil J.E., Chiong M., Santos R.A.S., Lavandero S. Counter-regulatory renin-angiotensin system in cardiovascular disease. Nat. Rev. Cardiol. 2020;17:116–129. doi: 10.1038/s41569-019-0244-8. PubMed DOI PMC
Davenport A.P., Hyndman K.A., Dhaun N., Southan C., Kohan D.E., Pollock J.S., Pollock D.M., Webb D.J., Maguire J.J. Endothelin. Pharmacol. Rev. 2016;68:357–418. doi: 10.1124/pr.115.011833. PubMed DOI PMC
Vaneckova I., Kramer H.J., Bäcker A., Schejbalová S., Vernerová Z., Eis V., Opočenský M., Dvořák P., Červenka L. Early-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 rats. Vasc. Pharmacol. 2006;45:163–170. doi: 10.1016/j.vph.2006.05.003. PubMed DOI
Vernerová Z., Kramer H.J., Bäcker A., Červenka L., Opočenský M., Husková Z., Vaňourková Z., Eis V., Čertíková Chábová V., Tesař V., et al. Late-onset endothelin receptor blockade in hypertensive heterozygous Ren-2 transgenic rats. Vasc. Pharmacol. 2008;48:165–173. doi: 10.1016/j.vph.2008.01.009. PubMed DOI
Sedláková L., Čertíková Chábová V., Doleželová Š., Škaroupková P., Kopkan L., Husková Z., Červenková L., Kikerlová S., Vaněčková I., Sadowski J., et al. Renin-angiotensin system blockade alone or combined with ETA receptor blockade: Effects on the course of chronic kidney disease in 5/6 nephrectomized Ren-2 transgenic hypertensive rats. Clin. Exp. Hypertens. 2017;39:183–195. doi: 10.1080/10641963.2016.1235184. PubMed DOI
Miyauchi T., Sakai S. Endothelin and the heart in health and diseases. Peptides. 2019;111:77–88. doi: 10.1016/j.peptides.2018.10.002. PubMed DOI
El-Sherbeni A.A., Aboutabl M.E., Zordoky B.N.M., Anwa-Mohamed A., El-Kadi A.O.S. Determination of the dominant arachidonic acid cytochrome P450 monooxygenase in rat heart, lung, kidney and liver: Protein expression and metabolic kinetics. AAPS J. 2013;15:112–122. doi: 10.1208/s12248-012-9425-7. PubMed DOI PMC
Lai J., Chen C. The role of epoxyeicosatrienoic acids in cardiac remodeling. Front. Physiol. 2021;12:642470. doi: 10.3389/fphys.2021.642470. PubMed DOI PMC
Imig J.D. Epoxyeicosanoids in Hypertension. Physiol. Res. 2019;68:695–704. doi: 10.33549/physiolres.934291. PubMed DOI PMC
Červenka L., Melenovský V., Husková Z., Škaroupková P., Nishiyama A., Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin. Exp. Pharmacol. Physiol. 2015;42:795–807. doi: 10.1111/1440-1681.12419. PubMed DOI
Červenka L., Husková Z., Kopkan L., Kikerlová S., Sedláková L., Vaňourková Z., Alánová P., Kolář F., Hammock B.D., Hwang S.H., et al. Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J. Hypertens. 2018;36:1326–1341. doi: 10.1097/HJH.0000000000001708. PubMed DOI PMC
Alsaad A.M.S., Zordoky B.N.M., Tse M.M.Y., El-Kadi A.O.S. Role of cytochrome 450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab. Rev. 2013;45:173–195. doi: 10.3109/03602532.2012.754460. PubMed DOI
Roman R.J., Fan F. 20-HETE, hypertension and beyond. Hypertension. 2018;72:12–18. doi: 10.1161/HYPERTENSIONAHA.118.10269. PubMed DOI PMC
DiBona G.F., Esler M. Translation medicine: The antihypertensive effect of renal denervation. Am. J. Physiol. 2010;298:R245–R253. PubMed
Schmieder R.E. Renal denervation: Where do we stand and what is the relevance to the nephrologist? Nephrol. Dial. Transplant. 2020 doi: 10.1093/ndt/gfaa237. PubMed DOI
Jang H.-S., Kim J., Padanilam B.J. Renal sympathetic nerve activation via α2-adrenergic receptors in chronic kidney disease progression. Kidney Res. Clin. Pract. 2019;38:6–14. doi: 10.23876/j.krcp.18.0143. PubMed DOI PMC
Insel P.A., Snavely M.D. Catecholamines and the kidney: Receptors and renal function. Annu. Rev. Physiol. 1981;43:625–636. doi: 10.1146/annurev.ph.43.030181.003205. PubMed DOI
Karlstaedt A., Zhang X., Vitrac H., Harmancey R., Vasauez H., Wang J.H., Goodell M.A., Taegtmeyer H. Oncometabolite d-2-hydroyglutarated impairs α-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc. Natl. Acad. Sci. USA. 2016;113:10436–10441. doi: 10.1073/pnas.1601650113. PubMed DOI PMC
Meijers W.C., Maglione M., Bakker S.J.L., Oberhuber R., Kieneker L.M., de Jong S., Haubner B.J., Nagengast W.B., Lyon A.R., van Veldhuisen D.J., et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138:678–691. doi: 10.1161/CIRCULATIONAHA.117.030816. PubMed DOI
Giebisch G.H. A long affair with renal tubules. Annu. Rev. Physiol. 2011;73:1–28. doi: 10.1146/annurev-physiol-012110-142241. PubMed DOI
Ayla S., Seckin I., Tanriverdi G., Cengiz M., Eser M., Soner B.C., Oktem G. Doxorubicin induced nephrotoxicity: Protective effect of nicotinamide. Int. J. Cell Biol. 2011;2011:390238. doi: 10.1155/2011/390238. PubMed DOI PMC
Xiang C., Yan Y., Zhang D. Alleviation of the doxorubicin-induced nephrotoxicity by fasudil in vivo and in vitro. J. Pharmacol. Sci. 2021;145:6–15. doi: 10.1016/j.jphs.2020.10.002. PubMed DOI
Mullins J.J., Peters J., Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature. 1990;344:541–544. doi: 10.1038/344541a0. PubMed DOI
Jíchová Š., Doleželová Š., Kopkan L., Kompanowska-Jezierska E., Sadowski J., Červenka L. Fenofibrate attenuates malignant hypertension by suppression of the renin-angiotensin system: A study in Cyp1a1-Ren-2 transgenic rats. Am. J. Med. Sci. 2016;352:618–630. doi: 10.1016/j.amjms.2016.09.008. PubMed DOI
Sporková A., Čertíková Chábová V., Doleželová Š., Jíchová Š., Vaňourková Z., Kompanowska-Jezierska E., Sadowski J., Maxová H., Červenka L. Fenofibrate attenuates hypertension in Goldblatt hypertensive rats: Role of 20-hydroxyeicosatrienoic acid in the nonclipped kidney. Am. J. Med. Sci. 2017;353:568–579. doi: 10.1016/j.amjms.2017.04.009. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Bas A., Forsberg G., Hammarstrom S., Hammarstrom M.L. Utility of the housekeeping genes 18S rRNA, beta-actin and glyceraldehyde-3-phosphate-dehydrogenase for normalization in real-time quantitative reverse transcriptase-polymerase chain reaction analysis of gene expression in human T lymphocytes. Scand. J. Immunol. 2004;59:566–573. doi: 10.1111/j.0300-9475.2004.01440.x. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Hugget J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE Guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Liu H.-M., Yan D., Liu Z.-F., Hu S.-Z., Yan S.-H., He X.-W. Density distribution of gene expression profiles and evaluation of using maximal information coefficient to identify differentially expressed genes. PLoS ONE. 2019;14:e0219551. doi: 10.1371/journal.pone.0219551. PubMed DOI PMC