Novel Viruses That Lyse Plant and Human Strains of Kosakonia cowanii
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34452284
PubMed Central
PMC8402661
DOI
10.3390/v13081418
PII: v13081418
Knihovny.cz E-zdroje
- Klíčová slova
- bonnellvirus, complete genome, cronosvirus, kayfunavirus, myovirus, sortsnevirus, winklervirus,
- MeSH
- bakteriofágy klasifikace genetika izolace a purifikace fyziologie MeSH
- bakteriolýza * MeSH
- Caudovirales klasifikace genetika izolace a purifikace fyziologie MeSH
- Enterobacteriaceae fyziologie virologie MeSH
- fylogeneze MeSH
- genom virový MeSH
- Glycine max mikrobiologie MeSH
- hostitelská specificita MeSH
- lidé MeSH
- listy rostlin mikrobiologie MeSH
- Myoviridae klasifikace genetika izolace a purifikace fyziologie MeSH
- nemoci rostlin mikrobiologie MeSH
- půdní mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Kosakonia cowanii (syn. Enterobacter cowanii) is a highly competitive bacterium that lives with plant, insect, fish, bird, and human organisms. It is pathogenic on some plants and an opportunistic pathogen of human. Nine novel viruses that lyse plant pathogenic strains and/or human strains of K. cowanii were isolated, sequenced, and characterized. Kc166A is a novel kayfunavirus, Kc261 is a novel bonnellvirus, and Kc318 is a new cronosvirus (all Autographiviridae). Kc237 is a new sortsnevirus, but Kc166B and Kc283 are members of new genera within Podoviridae. Kc304 is a new winklervirus, and Kc263 and Kc305 are new myoviruses. The viruses differ in host specificity, plaque phenotype, and lysis kinetics. Some of them should be suitable also as pathogen control agents.
Zobrazit více v PubMed
Brady C., Cleenwerck I., Venter S., Coutinho T., De Vos P. Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst. Appl. Microbiol. 2013;36:309–316. doi: 10.1016/j.syapm.2013.03.005. PubMed DOI
Inoue K., Sugiyama K., Kosako Y., Sakazaki R., Yamai S. Enterobacter cowanii sp. nov., a new species of the family Enterobacteriaceae. Curr. Microbiol. 2000;41:417–420. doi: 10.1007/s002840010160. PubMed DOI
Yang X.J., Wang S., Cao J.M., Hou J.H. Complete genome sequence of human pathogen Kosakonia cowanii type strain 888-76T. Braz. J. Microbiol. 2018;49:16–17. doi: 10.1016/j.bjm.2017.03.010. PubMed DOI PMC
Mulinari J., de Andrade C.J., de Lima Brandao H., da Silva A., de Souza S.A.A.G., de Souza A.U. Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. Biocatal. Agric. Biotechnol. 2020;24:101527. doi: 10.1016/j.bcab.2020.101527. DOI
Noori F., Etesami H., Zarini H.N., Khoshkholgh-Sima N.A., Salekdeh G.H., Alishani F. Mining alfalfa (Medicago sativa L.) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecotox. Environ. Saf. 2018;162:129–138. doi: 10.1016/j.ecoenv.2018.06.092. PubMed DOI
Ashitha A., Midhun S.J., Sunil M.A., Nithin T.U., Radhakrishnan E.K., Mathew J. Bacterial endophytes from Artemisia nilagirica (Clarke) Pamp., with antibacterial efficacy against human pathogens. Microb. Pathog. 2019;135:103624. doi: 10.1016/j.micpath.2019.103624. PubMed DOI
Dennison N.J., Jupatanakul N., Dimopoulos G. The mosquito microbiota influences vector competence for human pathogens. Curr. Opin. Insect Sci. 2014;3:6–13. doi: 10.1016/j.cois.2014.07.004. PubMed DOI PMC
Lyapunov Y.E., Kuzyaev R.Z., Khismatullin R.G., Bezdogova O.A. Intestinal enterobacteria of the hibernating Apis mellifera mellifera L. bees. Microbiology. 2008;77:373–379. doi: 10.1134/S0026261708030181. PubMed DOI
Burtseva O., Kublanovskaya A., Baulina O., Fedorenko T., Lobakova E., Chekanov K. The strains of bioluminiscent bacteria isolated from the White Sea finfishes: Genera Photobacterium, Aliivibrio, Vibrio, Shewanella, and first luminous Kosakonia. J. Photochem. Photobiol. B. 2020;208:111895. doi: 10.1016/j.jphotobiol.2020.111895. PubMed DOI
Berinson B., Bellon E., Christner M., Both A., Aepfelbacher M., Rohde H. Identification of Kosakonia cowanii as a rare cause of acute cholecystitis: Case report and review of the literature. BMC Infect. Dis. 2020;20:366. doi: 10.1186/s12879-020-05084-6. PubMed DOI PMC
Mertschnigg T., Patz S., Becker M., Feierl G., Ruppel S., Bunk B., Spröer C., Overmann J., Zarfel G. First report of Kosakonia radicincitans bacteraemia from Europe (Austria)—Identification and whole-genome sequencing of strain DSM107547. Sci. Rep. UK. 2020;10:1948. doi: 10.1038/s41598-020-58689-x. PubMed DOI PMC
Wetzel K., Lee J., Lee C.S., Binkley M. Comparison of microbial diversity of edible flowers and basil grown with organic versus conventional methods. Can. J. Microbiol. 2010;56:943–951. doi: 10.1139/W10-082. PubMed DOI
Brady C.L., Venter S.N., Cleenwerck I., Engelbeen K., de Vos P., Wingfield M.J., Telechea N., Coutinho T.A. Isolation off Enterobacter cowanii from Eucalyptus showing symptoms of bacterial blight and dieback in Uruguay. Lett. Appl. Microbiol. 2009;49:461–465. doi: 10.1111/j.1472-765X.2009.02692.x. PubMed DOI
Furtado G.Q., Guimarães L.M., Lisboa D.O., Cavalcante G.P., Arriel D.A.A., Alfenas A.C., Oliveira J.R. First report of Enterobacter cowanii causing bacterial spot on Mabea fistulifera, a native forest species in Brazil. Plant Dis. 2012;96:1576. doi: 10.1094/PDIS-02-12-0160-PDN. PubMed DOI
Tho K.E., Brisco-McCann E., Wiriyajitsomboon P., Sundin G., Hausbeck M.K. Bacteria associated with onion foliage in Michigan and their copper sensitivity. Plant Health Prog. 2019;20:170–177. doi: 10.1094/PHP-03-19-0022-RS. DOI
Krawczyk K., Borodynko-Filas N. Kosakonia cowanii as the new bacterial pathogen affecting soybean (Glycine max Willd.) Eur. J. Plant Pathol. 2020;127:173–183. doi: 10.1007/s10658-020-01998-8. DOI
Washio K., Yamamoto G., Ikemachi M., Fujii S., Ohnuma K., Masaki T. Rhabdomyolysis due to bacteremia from Enterobacter cowanii caused by a rose thorn prick. J. Dermatol. 2018;45:e313–e314. doi: 10.1111/1346-8138.14341. PubMed DOI
Petrzik K., Lukavský J., Koloniuk I. Novel virus on filamentous Arthronema africanum cyanobacterium. Microb. Ecol. 2021;81:454–459. doi: 10.1007/s00248-020-01599-2. PubMed DOI
Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. UK. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC
Zimmermann L., Stephens A., Nam S.Z., Rau D., Kübler J., Lozajic M., Gabler F., Söding J., Lupas A.N., Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Mol. Biol. Evol. 2018:S0022–S2836. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Krumsiek J., Arnold R., Rattei T. Gepard: A rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics. 2007;23:1026–1028. doi: 10.1093/bioinformatics/btm039. PubMed DOI
Voronina M.V., Bugaeva E.N., Vasiliev D.M., Kabanova A.P., Barannik A.P., Shneider M.M., Kulikov E.E., Korzhenkov A.A., Toschakov S.V., Ignatov A.N., et al. Characterization of Pectobacterium carotovorum subsp. carotovorum bacteriophage PP16 prospective for biocontrol of potato soft rot. Microbiology. 2019;88:451–460. doi: 10.1134/S0026261719040118. DOI
Shi H., Guo Z., Liu Y., Hao Y., Li J., Sun Y. Complete genome sequence of ZG49, a T7-like bacteriophage lytic to Escherichia coli isolates. Genome Announc. 2017;6:e01304-17. doi: 10.1128/genomeA.01304-17. PubMed DOI PMC
Kajsík M., Bugala J., Kadličeková V., Szemes T., Turňa J., Drahovská H. Characterization of Dev-CD-23823 and Dev-CT57, new Autographivirinae bacteriophages infecting Cronobacter spp. Arch. Virol. 2019;164:1383–1391. doi: 10.1007/s00705-019-04202-3. PubMed DOI
Diaz H., Graham K., Moreland R., Liu M., Ramsey J. Complete genome sequence of Escherichia coli phage pisces. Microbiol. Res. Announc. 2019;8:e01054-19. doi: 10.1128/MRA.01054-19. PubMed DOI PMC
Wang K., Tamayo M.G., Penner T.V., Cook B.W.M., Court D.A., Theriault S.S. Characterization of the Enterobacter phage vB_EcIM_CIP9. Genome Announc. 2020;9:e01600-19. doi: 10.1128/MRA.01600-19. PubMed DOI PMC
Shahid M., Ameen F., Maheshwari H.S., Ahmed B., AlNadhari S., Khan M.S. Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Appl. Soil Ecol. 2021:103809. doi: 10.1016/j.apsoil.2020.103809. DOI
De Souza E.M., Lamb T.I., Lamb T.A., Silva A.S., de Carvalho S.F., Nyland V., Barbosa Lopes M.C., Grohs M., Marconatto L., dos Anjos Borges G., et al. Rhizospheric soil from rice paddy presents isolable bacteria able to induce cold tolerance in rice plants. J. Soil Sci. Plant Nutr. 2021 doi: 10.1007/s42729-021-00496-y. In Press. DOI
Labanca E.R.G., Andrade S.A.L., Kuramae E.E., Silveira A.P.D. The modulation of sugarcane growth amd nutritional profile under aluminium stress is dependent on beneficial endophytic bacteria and plantlet origin. Appl. Soil Ecol. 2020;156:103715. doi: 10.1016/j.apsoil.2020.103715. DOI
Narayanan M., Ranganathan M., Kandasamy G., Kumarasamy S. Evaluation of interaction among indigenous rhizobacteria and Vigna unguiculata on remediation of metal-containing abandoned magnesite mine tailing. Arch. Microbiol. 2021;203:1399–1410. doi: 10.1007/s00203-020-02115-3. PubMed DOI
Munakata Y., Gavira C., Genestier J., Bourgaud F., Hehn A., Slezack-Deschaumes S. Composition and functional comparison of vetiver root endophytic microbiota originating from different geographic locations that show antagonistic activity towards Fusarium graminearum. Microbiol. Res. 2021;243:126650. doi: 10.1016/j.micres.2020.126650. PubMed DOI
Özdemir Z. Identification of Enterobacteriaceae members and fluorescent pseudomonads associated with bacterial rind necrosis and rot of melon in Turkey. Eur. J. Plant Pathol. 2021 doi: 10.1007/s10658-021-02282-z. In Press. DOI
Ramli A.N.M., Johari N.D., Azhar M.A., Man R.C., Hamid H.A. A new L-glutaminase from Kosakonia sp.: Extracellular production, gene identification and structural analysis. J. Food Meas. Charact. 2021;15:862–875. doi: 10.1007/s11694-020-00682-z. DOI
Nagy J.K., Schwarczinger I., Künstler A., Pogány M., Király L. Penetration and translocation of Erwinia amylovora-specific bacteriophages in apple—A possibility of enhanced control of fire blight. Eur. J. Plant Pathol. 2015;142:815–827. doi: 10.1007/s10658-015-0654-3. DOI
McCallin S., Oechslin F. Bacterial resistance to phage and its impact on clinical therapy. In: Górski A., Międzybrodski R., Borysowski J., editors. Phage Therapy: A Practical Approach. Springer; Cham, Switzerland: 2019. pp. 59–88. DOI
Iriarte F.B., Balogh B., Momol M.T., Smith L.M., Wilson M., Jones J.B. Factors affecting survival of bacteriophage on tomato leaf surfaces. Appl. Environ. Microb. 2007;73:1704–1711. doi: 10.1128/AEM.02118-06. PubMed DOI PMC
McKenna F., El-Tarabily K.A., Hardy K.A., Hardy G.E.S.J., Dell B. Novel in vivo use of a polyvalent Streptomyces phage to disinfest Streptomyces scabies-infected seed potatoes. Plant Pathol. 2001;50:666–675. doi: 10.1046/j.1365-3059.2001.00648.x. DOI
Nagy J.K., Király L., Schwarczinger I. Phage therapy for plant diseases control with a focus on fire blight. Cent. Eur. J. Biol. 2012;7:1–12. doi: 10.2478/s11535-011-0093-x. DOI
Fujiwara A., Fujisawa M., Hamasaki R., Kawasaki T., Fujie M., Yamada T. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl. Environ. Microb. 2011;77:4155–4162. doi: 10.1128/AEM.02847-10. PubMed DOI PMC
Duployez C., Edun-Renard M.E., Kipnis E., Dessein R., Guern R.L. Bacteremia due to Kosakonia cowanii in a preterm neonate. J. Pediatr. Infect. Dis. 2021;16:183–186. doi: 10.1055/s-0040-1721448. DOI
Melo L.D.R., Oliveira H., Pires D.P., Dabrowska K., Azeredo J. Phage therapy efficacy: A review of the last 10 years of preclinical studies. Crit. Rev. Microbiol. 2020;46:78–99. doi: 10.1080/1040841X.2020.1729695. PubMed DOI
Fujisawa H., Yonesaki T., Minagawa T. Sequence of the T4 recombination gene, uvsX, and its comparison with that of the recA gene of Escherichia coli. Nucleic Acids Res. 1985;13:7473–7481. doi: 10.1093/nar/13.20.7473. PubMed DOI PMC