Peptidoglycan Endopeptidase from Novel Adaiavirus Bacteriophage Lyses Pseudomonas aeruginosa Strains as Well as Arthrobacter globiformis and A. pascens Bacteria
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RVO60077344
Czech Academy of Sciences
Strategie AV 21
Czech Academy of Sciences
LM2012062
MEYS CR
CZ.02.1.01/0.0/0.0/16_013/0001775
ERDF
PubMed
37630448
PubMed Central
PMC10458142
DOI
10.3390/microorganisms11081888
PII: microorganisms11081888
Knihovny.cz E-zdroje
- Klíčová slova
- G+ and G− activity, adaiavirus, endolysin, host range,
- Publikační typ
- časopisecké články MeSH
A novel virus lytic for Pseudomonas aeruginosa has been purified. Its viral particles have a siphoviral morphology with a head 60 nm in diameter and a noncontractile tail 184 nm long. The dsDNA genome consists of 16,449 bp, has cohesive 3' termini, and encodes 28 putative proteins in a single strain. The peptidoglycan endopeptidase encoded by ORF 16 was found to be the lytic enzyme of this virus. The recombinant, purified enzyme was active up to 55 °C in the pH range 6-9 against all tested isolates of P. aeruginosa, but, surprisingly, also against the distant Gram-positive micrococci Arthrobacter globiformis and A. pascens. Both this virus and its endolysin are further candidates for possible treatment against P. aeruginosa and probably also other bacteria.
Zobrazit více v PubMed
Hawkins C., Harper D., Burch D., Änggård E., Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial. Vet. Microbiol. 2010;146:309–313. doi: 10.1016/j.vetmic.2010.05.014. PubMed DOI
Lyczak J.B., Cannon C.L., Pier G.B. Establishment of Pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect. 2000;2:1051–1060. doi: 10.1016/S1286-4579(00)01259-4. PubMed DOI
Driscoll J.A., Brody S.L., Kollef M.H. The epidemiology, pathogenesis and treatment of Pseudomonas aeruginosa infections. Drugs. 2007;67:351–368. doi: 10.2165/00003495-200767030-00003. PubMed DOI
Bassetti M., Vena A., Croxatto A., Righi E., Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. doi: 10.7573/dic.212527. PubMed DOI PMC
Pang Z., Raudonis R., Glick B.R., Lin T.J., Cheng Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and alternative therapeutic strategies. Biotechnol. Adv. 2019;37:177–192. doi: 10.1016/j.biotechadv.2018.11.013. PubMed DOI
Chatterjee M., Anju C.P., Biswas L., Anil K.V., Mohan G.C., Biswas R. Antibiotic resistance in Pseudomonas aeruginosa and alternative therapeutic options. Int. J. Med. Microbiol. 2016;306:48–58. doi: 10.1016/j.ijmm.2015.11.004. PubMed DOI
Rose T., Verbeken G., De Vos D., Merabishvili M., Vaneechoute M., Lavigne R., Jennes S., Zizi M., Pirnay J.-P. Experimental phage therapy of burn wound infection: Difficult first steps. Int. J. Burn. Trauma. 2014;4:66–73. PubMed PMC
Wright A., Hawkins C.H., Änggård E.E., Harper D.R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa: A preliminary report of efficacy. Clin. Otolaryngol. 2009;34:349–357. doi: 10.1111/j.1749-4486.2009.01973.x. PubMed DOI
Namonyo S., Carvalho G., Guo J., Weynberg K.D. Novel bacteriophages show activity against selected Australian clinical strains of Pseudomonas aeruginosa. Microorganisms. 2022;10:210. doi: 10.3390/microorganisms10020210. PubMed DOI PMC
Kamyab H., Torkashvand N., Shahverdi A.R., Khoshayand M.R., Sharifzadeh M., Sepehrizadeh Z. Isolation, characterization, and genomic analysis of vB_PaeS_TUMS_P81, a lytic bacteriophage against Pseudomonas aeruginosa. Virus Genes. 2023;59:132–141. doi: 10.1007/s11262-022-01954-0. PubMed DOI
Merabishvili M., Pirnay J.P., Verbeken G., Chanishvili N., Tediashvili M., Lashkhi N., Glonti T., Krylov V., Mast J., Van Parys L., et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE. 2009;4:e4944. doi: 10.1371/journal.pone.0004944. PubMed DOI PMC
Gontijo M.T.P., Jorge G.P., Brocchi M. Current status of endolysin-based treatments against Gram-negative bacteria. Antibiotics. 2021;10:1143. doi: 10.3390/antibiotics10101143. PubMed DOI PMC
Murray E., Draper L.A., Ross R.P., Hill C. The Advantages and challenges of using endolysins in a clinical setting. Viruses. 2021;13:680. doi: 10.3390/v13040680. PubMed DOI PMC
Fauconnier A. Phage therapy regulation. From night to dawn. Viruses. 2019;11:352. doi: 10.3390/v11040352. PubMed DOI PMC
Danis-Wlodarczyk K.M., Wozniak D.J., Abedon S.T. Treating bacterial infections with bacteriophage-based enzybiotics: In Vitro, In Vivo and clinical application. Antibiotics. 2021;10:1497. doi: 10.3390/antibiotics10121497. PubMed DOI PMC
Schmelcher M., Donovan D.M., Loessner M.J. Bacteriophage endolysins as novel antimicrobials. Future Microbiol. 2012;7:1147–1171. doi: 10.2217/fmb.12.97. PubMed DOI PMC
Larpin Y., Oechslin F., Moreillon P., Resch G., Entenza J.M., Mancini S. In vitro characterization of PlyE146, a novel phage lysin that targets Gram-negative bacteria. PLoS ONE. 2018;13:e0192507. doi: 10.1371/journal.pone.0192507. PubMed DOI PMC
Paradis-Bleau C., Cloutier I., Lemieux L., Sanschagrin F., Laroche J., Auger M., Garnier A., Levesque R.C. Peptidoglycan lytic activity of the Pseudomonas aeruginosa phage phiKZ gp144 lytic transglycosylase. FEMS Microbiol. Lett. 2007;266:201–209. doi: 10.1111/j.1574-6968.2006.00523.x. PubMed DOI
Guo M., Feng C., Ren J., Zhuang X., Zhang Y., Zhu Y., Dong K., He P., Guo X., Qin J. A novel antimicrobial endolysin, LysPA26, against Pseudomonas aeruginosa. Front Microbiol. 2017;8:293. doi: 10.3389/fmicb.2017.00293. PubMed DOI PMC
Petrzik K., Brázdová S., Krawczyk K. Novel viruses that lyse plant and human strains of Kosakonia cowanii. Viruses. 2021;13:1418. doi: 10.3390/v13081418. PubMed DOI PMC
Zhu W., Lomsadze A., Borodovsky M. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 2010;38:e132. doi: 10.1093/nar/gkq275. PubMed DOI PMC
Brettin T., Davis J.J., Disz T., Edwards R.A., Gerdes S., Olsen G.J., Olson R., Overbeek R., Parrello B., Pusch G.D., et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. UK. 2015;5:8365. doi: 10.1038/srep08365. PubMed DOI PMC
Zimmermann L., Stephens A., Nam S.Z., Rau D., Kübler J., Lozajic M., Gabler F., Söding J., Lupas A.N., Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. Mol. Biol. Evol. 2018;430:S0022–S2836. doi: 10.1016/j.jmb.2017.12.007. PubMed DOI
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Nishimura Y., Yoshida T., Kuronishi M., Uehara H., Ogata H., Goto S. ViPTree: The viral proteomic tree server. Bioinformatics. 2017;33:2379–2380. doi: 10.1093/bioinformatics/btx157. PubMed DOI
Briers Y., Volckaert G., Cornelissen A., Lagaert S., Michiels C.W., Hertveldt K., Lavigne R. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages fKZ and EL. Mol. Microbiol. 2007;65:1334–1344. doi: 10.1111/j.1365-2958.2007.05870.x. PubMed DOI
Mondal S.I., Akter A., Draper L.A., Ross R.P., Hill C. Characterization of an endolysin targeting Clostridioides difficile that affects spore outgrowth. Int. J. Mol. Sci. 2021;22:5690. doi: 10.3390/ijms22115690. PubMed DOI PMC
Russell D.A., Hatfull G.F. PhagesDB: The actinobacteriophage database. Bioinformatics. 2017;33:784–786. doi: 10.1093/bioinformatics/btw711. PubMed DOI PMC
Martin D.P., Varsani A., Roumagnac P., Botha G., Maslamoney S., Schwab T., Kelz Z., Kumar V., Murrell B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2020;7:veaa087. doi: 10.1093/ve/veaa087. PubMed DOI PMC
Ghose C., Euler C.W. Gram-negative bacterial lysins. Antibiotics. 2020;9:74. doi: 10.3390/antibiotics9020074. PubMed DOI PMC
Klyczek K.K., Bonilla J.A., Jacobs-Sera D., Adair T.L., Afram P., Allen K.G., Archambault M.L., Aziz R.M., Bagnasco F.G., Ball S.L., et al. Tales of diversity: Genomic and morphological characteristics of forty-six Arthrobacter phages. PLoS ONE. 2017;12:e0180517. doi: 10.1371/journal.pone.0180517. PubMed DOI PMC
Abdelkader K., Gerstmans H., Saafan A., Dishisha T., Briers Y. The preclinical and clinical progress of bacteriophages and their lytic enzymes: The parts are easier than the whole. Viruses. 2019;11:96. doi: 10.3390/v11020096. PubMed DOI PMC
Gondil V.S., Harjai K., Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int. J. Antimicrob. Agents. 2020;55:105844. doi: 10.1016/j.ijantimicag.2019.11.001. PubMed DOI