Lipid Polymorphism of the Subchloroplast-Granum and Stroma Thylakoid Membrane-Particles. I. 31P-NMR Spectroscopy
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
19-13637S
Grantová Agentura České Republiky
K 128679
Hungarian Scientific Research Fund
CZ.02.1.01/0.0/0.0/16_019/0000797
SustES - Adaptation strategies for sustainable ecosystem services and food security under adverse environmental conditions
SGS02/PřF/2021
Ostravská Univerzita v Ostravě
07359/2019/RRC
Silesian Region
PubMed
34572003
PubMed Central
PMC8470346
DOI
10.3390/cells10092354
PII: cells10092354
Knihovny.cz E-resources
- Keywords
- 31P-NMR, DEM—dynamic exchange model, HII phase, bilayer membrane, grana, isotropic phase, non-bilayer lipids, non-lamellar lipid phases, structural flexibility, thylakoid membranes,
- MeSH
- Chloroplasts chemistry MeSH
- Galactolipids chemistry MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Membrane Lipids chemistry MeSH
- Temperature MeSH
- Thylakoids chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Galactolipids MeSH
- Membrane Lipids MeSH
- monogalactosyldiacylglycerol MeSH Browser
Build-up of the energized state of thylakoid membranes and the synthesis of ATP are warranted by organizing their bulk lipids into a bilayer. However, the major lipid species of these membranes, monogalactosyldiacylglycerol, is a non-bilayer lipid. It has also been documented that fully functional thylakoid membranes, in addition to the bilayer, contain an inverted hexagonal (HII) phase and two isotropic phases. To shed light on the origin of these non-lamellar phases, we performed 31P-NMR spectroscopy experiments on sub-chloroplast particles of spinach: stacked, granum and unstacked, stroma thylakoid membranes. These membranes exhibited similar lipid polymorphism as the whole thylakoids. Saturation transfer experiments, applying saturating pulses at characteristic frequencies at 5 °C, provided evidence for distinct lipid phases-with component spectra very similar to those derived from mathematical deconvolution of the 31P-NMR spectra. Wheat-germ lipase treatment of samples selectively eliminated the phases exhibiting sharp isotropic peaks, suggesting easier accessibility of these lipids compared to the bilayer and the HII phases. Gradually increasing lipid exchanges were observed between the bilayer and the two isotropic phases upon gradually elevating the temperature from 5 to 35 °C, suggesting close connections between these lipid phases. Data concerning the identity and structural and functional roles of different lipid phases will be presented in the accompanying paper.
EN FIST Center of Excellence SI 1000 Ljubljana Slovenia
Faculty of Chemistry and Chemical Technology University of Ljubljana SI 1000 Ljubljana Slovenia
Slovenian NMR Center National Institute of Chemistry SI 1000 Ljubljana Slovenia
See more in PubMed
Mitchell P. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Camb. Philos. Soc. 1966;41:445–502. doi: 10.1111/j.1469-185X.1966.tb01501.x. PubMed DOI
Singer S.J., Nicolson G.L. The Fluid Mosaic Model of the Structure of Cell Membranes. Science. 1972;175:720–731. doi: 10.1126/science.175.4023.720. PubMed DOI
Seddon J.M., Templer R.H. Chapter 3—Polymorphism of Lipid-Water Systems. In: Lipowsky R., Sackmann E., editors. Handbook of Biological Physics. Volume 1. Elsevier; Amsterdam, The Netherlands: 1995. pp. 97–160.
Williams W.P. The Physical Properties of Thylakoid Membrane Lipids and Their Relation to Photosynthesis. In: Paul-André S., Norio M., editors. Lipids in Photosynthesis: Structure, Function and Genetics. Springer; Dordrecht, The Netherlands: 1998. pp. 103–118.
Douce R., Joyard J. Biosynthesis of Thylakoid Membrane Lipids. In: Ort D.R., Yocum C.F., Heichel I.F., editors. Oxygenic Photosynthesis: The Light Reactions. Springer; Dordrecht, The Netherlands: 1996. pp. 69–101.
Luzzati V., Reisshus F., Rivas E., Gulikkrz T. Structure and polymorphism in lipid-water systems and their possible biological implications. Ann. N. Y. Acad. Sci. 1966;137:409–413. doi: 10.1111/j.1749-6632.1966.tb50172.x. PubMed DOI
Luzzati V., Delacroix H., Gulik A., Gulik-Krzywicki T., Mariani P., Vargas R. The cubic phases of lipids. In: Epand R.M., editor. Lipid Polymorphism and Membrane Properties. Volume 44. Elsevier; Amsterdam, The Netherlands: 1997. pp. 3–24. Current Topics in Membranes.
Epand R.M. Lipid polymorphism and protein-lipid interactions. Biochim. Biophys. Acta. 1998;1376:353–368. doi: 10.1016/S0304-4157(98)00015-X. PubMed DOI
Shipley G.G., Green J.P., Nichols B.W. Phase behavior of monogalactosyl, digalactosyl, and sulfoquinovosyl diglycerides. Biochim. Biophys. Acta. 1973;311:531–544. doi: 10.1016/0005-2736(73)90128-4. PubMed DOI
van Eerden F.J., de Jong D.H., de Vries A.H., Wassenaar T.A., Marrink S.J. Characterization of thylakoid lipid membranes from cyanobacteria and higher plants by molecular dynamics simulations. Biochim. Biophys. Acta. 2015;1848:1319–1330. doi: 10.1016/j.bbamem.2015.02.025. PubMed DOI
Demé B., Cataye C., Block M.A., Maréchal E., Jouhet J. Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids. FASEB J. 2014;28:3373–3383. doi: 10.1096/fj.13-247395. PubMed DOI
Simidjiev I., Stoylova S., Amenitsch H., Javorfi T., Mustárdy L., Laggner P., Holzenburg A., Garab G. Self-assembly of large, ordered lamellae from non-bilayer lipids and integral membrane proteins in vitro. Proc. Natl. Acad. Sci. USA. 2000;97:1473–1476. doi: 10.1073/pnas.97.4.1473. PubMed DOI PMC
Rietveld A., van Kemenade T.J.J.M., Hak T., Verkleij A.J., de Kruijff B. The effect of cytochrome-c-oxidase on lipid polymorphism of model membranes containing cardiolipin. Eur. J. Biochem. 1987;164:137–140. doi: 10.1111/j.1432-1033.1987.tb11004.x. PubMed DOI
Simidjiev I., Barzda V., Mustardy L., Garab G. Role of thylakoid lipids in the structural flexibility of lamellar aggregates of the isolated light-harvesting chlorophyll a/b complex of photosystem II. Biochemistry. 1998;37:4169–4173. doi: 10.1021/bi972726m. PubMed DOI
Nicolson G.L. The Fluid-Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim. Biophys. Acta. 2014;1838:1451–1466. doi: 10.1016/j.bbamem.2013.10.019. PubMed DOI
de Kruijff B. Biomembranes—Lipids beyond the bilayer. Nature. 1997;386:129–130. doi: 10.1038/386129a0. PubMed DOI
van den Brink-van der Laan E., Killian J.A., de Kruijff B. Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim. Biophys. Acta. 2004;1666:275–288. doi: 10.1016/j.bbamem.2004.06.010. PubMed DOI
Tietz S., Leuenberger M., Höhner R., Olson A.H., Fleming G.R., Kirchhoff H. A proteoliposome-based system reveals how lipids control photosynthetic light harvesting. J. Biol. Chem. 2020 doi: 10.1074/jbc.RA119.011707. PubMed DOI PMC
Brown M.F. Curvature Forces in Membrane Lipid-Protein Interactions. Biochemistry. 2012;51:9782–9795. doi: 10.1021/bi301332v. PubMed DOI PMC
Bagatolli L.A., Ipsen J.H., Simonsen A.C., Mouritsen O.G. An outlook on organization of lipids in membranes: Searching for a realistic connection with the organization of biological membranes. Prog. Lipid Res. 2010;49:378–389. doi: 10.1016/j.plipres.2010.05.001. PubMed DOI
Garab G., Lohner K., Laggner P., Farkas T. Self-regulation of the lipid content of membranes by non-bilayer lipids: A hypothesis. Trends Plant. Sci. 2000;5:489–494. doi: 10.1016/S1360-1385(00)01767-2. PubMed DOI
Garab G., Ughy B., Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. In: Nakamura Y., Li-Beisson Y., editors. Lipids in Plant and Algae Development. Springer International Publishing; Cham, Switzerland: 2016. pp. 127–157. PubMed
Kirchhoff H. Chloroplast ultrastructure in plants. New Phytol. 2019;223:565–574. doi: 10.1111/nph.15730. PubMed DOI
Krumova S.B., Dijkema C., de Waard P., Van As H., Garab G., van Amerongen H. Phase behaviour of phosphatidylglycerol in spinach thylakoid membranes as revealed by P-31-NMR. Biochim. Biophys. Acta. 2008;1778:997–1003. doi: 10.1016/j.bbamem.2008.01.004. PubMed DOI
Cullis P.R., de Kruijff B. Lipid polymorphism and the functional roles of lipids in biological-membranes. Biochim. Biophys. Acta. 1979;559:399–420. doi: 10.1016/0304-4157(79)90012-1. PubMed DOI
Schiller J., Muller M., Fuchs B., Arnold K., Huster D. 31P NMR Spectroscopy of Phospholipids: From Micelles to Membranes. Curr. Anal. Chem. 2007;3:283–301. doi: 10.2174/157341107782109635. DOI
Watts A. NMR of Lipids. In: Roberts G.C.K., editor. Encyclopedia of Biophysics. Springer; Berlin/Heidelberg, Germany: 2013. pp. 1727–1738.
Páli T., Garab G., Horváth L.I., Kóta Z. Functional significance of the lipid-protein interface in photosynthetic membranes. Cell Mol. Life Sci. 2003;60:1591–1606. doi: 10.1007/s00018-003-3173-x. PubMed DOI PMC
Harańczyk H., Strzalka K., Bayerl T., Klose G., Blicharski J.S. P-31 NMR measurements in photosynthetic membranes of wheat. Photosynthetica. 1985;19:414–416.
Harańczyk H., Strzalka K., Dietrich W., Blicharski J.S. P-31-NMR observation of the temperature and glycerol induced non-lamellar phase-formation in wheat thylakoid membranes. J. Biol. Phys. 1995;21:125–139. doi: 10.1007/BF00705595. DOI
Duchene S., Siegenthaler P.A. Do glycerolipids display lateral heterogeneity in the thylakoid membrane? Lipids. 2000;35:739–744. doi: 10.1007/s11745-000-0580-4. PubMed DOI
Garab G., Ughy B., de Waard P., Akhtar P., Javornik U., Kotakis C., Šket P., Karlický V., Materová Z., Špunda V., et al. Lipid polymorphism in chloroplast thylakoid membranes—as revealed by P-31-NMR and timeresolved merocyanine fluorescence spectroscopy. Sci. Rep. 2017;7 doi: 10.1038/s41598-017-13574-y. PubMed DOI PMC
Krumova S.B., Koehorst R.B.M., Bóta A., Páli T., van Hoek A., Garab G., van Amerongen H. Temperature dependence of the lipid packing in thylakoid membranes studied by time- and spectrally resolved fluorescence of Merocyanine 540. Biochim. Biophys. Acta. 2008;1778:2823–2833. doi: 10.1016/j.bbamem.2008.09.007. PubMed DOI
Kotakis C., Akhtar P., Zsiros O., Garab G., Lambrev P.H. Increased thermal stability of photosystem II and the macro-organization of thylakoid membranes, induced by co-solutes, associated with changes in the lipid-phase behaviour of thylakoid membranes. Photosynthetica. 2018;56:254–264. doi: 10.1007/s11099-018-0782-z. DOI
Ughy B., Karlický V., Dlouhý O., Javornik U., Materová Z., Zsiros O., Šket P., Plavec J., Špunda V., Garab G. Lipid-polymorphism of plant thylakoid membranes. Enhanced non-bilayer lipid phases associated with increased membrane permeability. Physiol. Plant. 2019;166:278–287. doi: 10.1111/ppl.12929. PubMed DOI
Dlouhý O., Kurasová I., Karlický V., Javornik U., Šket P., Petrova N.Z., Krumova S.B., Plavec J., Ughy B., Špunda V., et al. Modulation of non-bilayer lipid phases and the structure and functions of thylakoid membranes: Effects on the water-soluble enzyme violaxanthin de-epoxidase. Sci. Rep. 2020;10 doi: 10.1038/s41598-020-68854-x. PubMed DOI PMC
Mustárdy L., Buttle K., Steinbach G., Garab G. The Three-Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum-Stroma Assembly. Plant. Cell. 2008;20:2552–2557. doi: 10.1105/tpc.108.059147. PubMed DOI PMC
Bussi Y., Shimoni E., Weiner A., Kapon R., Charuvi D., Nevo R., Efrati E., Reich Z. Fundamental helical geometry consolidates the plant photosynthetic membrane. Proc. Natl. Acad. Sci. USA. 2019;116:22366–22375. doi: 10.1073/pnas.1905994116. PubMed DOI PMC
Shimoni E., Rav-Hon O., Ohad I., Brumfeld V., Reich Z. Three-dimensional organization of higher-plant chloroplast thylakoid membranes revealed by electron tomography. Plant. Cell. 2005;17:2580–2586. doi: 10.1105/tpc.105.035030. PubMed DOI PMC
Andersson B., Anderson J.M. Lateral heterogenity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach-chloroplast. Biochim. Biophys. Acta. 1980;593:427–440. doi: 10.1016/0005-2728(80)90078-X. PubMed DOI
Anderson J.M., Boardman N.K. Fractionation of photochemical systems of photosynthesis. I. Chlorophyll contents and photochemical activities of particles isolated from spinach chloroplasts. Biochim. Biophys. Acta. 1966;112:403–421. doi: 10.1016/0926-6585(66)90244-5. PubMed DOI
Peters F., van Spanning R., Kraayenhof R. Studies on well coupled photosystem I-enriched sub-chloroplast vesicles—optimization of ferredoxin-mediated cyclic phosphorylation and electric-potential generation. Biochim. Biophys. Acta. 1983;724:159–165. doi: 10.1016/0005-2728(83)90037-3. DOI
Porra R.J., Thompson W.A., Kriedemann P.E. Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim. Biophys. Acta. 1989;975:384–394. doi: 10.1016/S0005-2728(89)80347-0. DOI
Kublicki M., Koszelewski D., Brodzka A., Ostaszewski R. Wheat germ lipase: Isolation, purification and applications. Crit. Rev. Biotechnol. 2021:1–17. doi: 10.1080/07388551.2021.1939259. PubMed DOI
Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J.O., Bujoli B., Gan Z.H., Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002;40:70–76. doi: 10.1002/mrc.984. DOI
de Kruijff B., Morris G.A., Cullis P.R. Application of P-31-NMR saturation transfer techniques to investigate phospholipid motion and organization in model and biological-membranes. Biochim. Biophys. Acta. 1980;598:206–211. doi: 10.1016/0005-2736(80)90281-3. PubMed DOI
Levitt M.H. Spin Dynamics: Basics of Nuclear Magnetic Resonance. John Wiley & Sons; Hoboken, NJ, USA: 2008. chapter 15 (Motion and relaxation)
Mustardy L., Garab G. Granum revisited. A three-dimensional model—where things fall into place. Trends Plant. Sci. 2003;8:117–122. doi: 10.1016/S1360-1385(03)00015-3. PubMed DOI
Garab G. Hierarchical organization and structural flexibility of thylakoid membranes. Biochim. Biophys. Acta. 2014;1837:481–494. doi: 10.1016/j.bbabio.2013.12.003. PubMed DOI
Shen L.L., Huang Z.H., Chang S.H., Wang W.D., Wang J.F., Kuang T.Y., Han G.Y., Shen J.R., Zhang X. Structure of a C2S2M2N2 type PSII-LHCII supercomplex from the green alga Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA. 2019;116:21246–21255. doi: 10.1073/pnas.1912462116. PubMed DOI PMC
Pan X.W., Ma J., Su X.D., Cao P., Chang W.R., Liu Z.F., Zhang X.Z., Li M. Structure of the maize photosystem I supercomplex with light-harvesting complexes I and II. Science. 2018;360:1109–1112. doi: 10.1126/science.aat1156. PubMed DOI
Gasanov S.E., Kim A.A., Yaguzhinsky L.S., Dagda R.K. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity. Biochim. Biophys. Acta. 2018;1860:586–599. doi: 10.1016/j.bbamem.2017.11.014. PubMed DOI PMC
Role of isotropic lipid phase in the fusion of photosystem II membranes