The Effect of High Selenite and Selenate Concentrations on Ferric Oxyhydroxides Transformation under Alkaline Conditions

. 2021 Sep 15 ; 22 (18) : . [epub] 20210915

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576122

Grantová podpora
1/0146/18 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
1/0130/20 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
CZ.02.1.01/0.0/0.0/16_019/0000778 European Regional Development Fund
ITMS 26240220086 European Regional Development Fund
SP2021/11 Project for Specific University Research (SGS) from the Faculty of Mining and Geology of VŠB - Technical University of Ostrava & Ministry of Education, Youth and Sports of the Czech Republic

Odkazy
PubMed 34576122
PubMed Central PMC8466294
DOI 10.3390/ijms22189955
PII: ijms22189955
Knihovny.cz E-zdroje

Iron-based nanomaterials have high technological impacts on various pro-environmental applications, including wastewater treatment using the co-precipitation method. The purpose of this research was to identify the changes of iron nanomaterial's structure caused by the presence of selenium, a typical water contaminant, which might affect the removal when the iron co-precipitation method is used. Therefore, we have investigated the maturation of co-precipitated nanosized ferric oxyhydroxides under alkaline conditions and their thermal transformation into hematite in the presence of selenite and selenate with high concentrations. Since the association of selenium with precipitates surfaces has been proven to be weak, the mineralogy of the system was affected insignificantly, and the goethite was identified as an only ferric phase in all treatments. However, the morphology and the crystallinity of ferric oxyhydroxides was slightly altered. Selenium affected the structural order of precipitates, especially at the initial phase of co-precipitation. Still, the crystal integrity and homogeneity increased with time almost constantly, regardless of the treatment. The thermal transformation into well crystalized hematite was more pronounced in the presence of selenite, while selenate-treated and selenium-free samples indicated the presence of highly disordered fraction. This highlights that the aftermath of selenium release does not result in destabilization of ferric phases; however, since weak interactions of selenium are dominant at alkaline conditions with goethite's surfaces, it still poses a high risk for the environment. The findings of this study should be applicable in waters affected by mining and metallurgical operations.

Zobrazit více v PubMed

Bassil J., Naveau A., Bueno M., Razack M., Kazpard V. Leaching behavior of selenium from the karst infillings of the Hydrogeological Experimental Site of Poitiers. Chem. Geol. 2018;483:141–150. doi: 10.1016/j.chemgeo.2018.02.032. DOI

Farkasovska I., Zemberyova M. Determination and speciation by AAS techniques of selenium in environmental and biological samples. Chem. Listy. 1999;93:633–638.

PubMed DOI

Hagarova I., Nemcek L. Selenium in Blood Serum of Healthy European Population. Chem. Listy. 2020;114:329–335.

Žemberyová M., Hagarová I. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy. 2005;99:34–39.

Hagarová I., Žemberyová M., Bajčan D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005;59:93–98.

PubMed DOI

Dudova J., Bujdos M. Study of Selenium Sorption on Iron Oxide Hydroxides. Chem. Listy. 2015;109:770–774.

Fernández-Martínez A., Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Bio/Technol. 2009;8:81–110. doi: 10.1007/s11157-009-9145-3. DOI

PubMed DOI

Tabelin C.B., Park I., Phengsaart T., Jeon S., Villacorte-Tabelin M., Alonzo D., Yoo K., Ito M., Hiroyoshi N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021;170:105610. doi: 10.1016/j.resconrec.2021.105610. DOI

PubMed DOI

PubMed DOI

PubMed DOI

Li X.-Q., Elliott D.W., Zhang W.-X. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and engineering aspects. Crit. Rev. Solid State Mater. Sci. 2006;31:111–122. doi: 10.1080/10408430601057611. DOI

PubMed DOI PMC

Aragaw T.A., Bogale F.M., Aragaw B.A. Iron-based nanoparticles in wastewater treatment: A review on synthesis methods, applications, and removal mechanisms. J. Saudi Chem. Soc. 2021;25:101280. doi: 10.1016/j.jscs.2021.101280. DOI

PubMed DOI PMC

PubMed DOI

PubMed DOI

Kowalski K.P. Chemistry of Advanced Environmental Purification Processes of Water. Elsevier; Amsterdam, The Netherlands: 2014. Advanced arsenic removal technologies review; pp. 285–337.

PubMed DOI PMC

Malakootian M., Shahamat Y.D., Kannan K., Mahdizadeh H. Degradation of p-nitroaniline from aqueous solutions using ozonation/Mg-Al layered double hydroxides integrated with the sequencing batch moving bed biofilm reactor. J. Taiwan Inst. Chem. Eng. 2020;113:241–252. doi: 10.1016/j.jtice.2020.08.019. DOI

Malakootian M., Kannan K., Gharaghani M.A., Dehdarirad A., Nasiri A., Shahamat Y.D., Mahdizadeh H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 2019;7:103457. doi: 10.1016/j.jece.2019.103457. DOI

Prasad K., Rao K., Gladis M., Naidu G.R.K., Prasada Rao T. Determination of selenium(IV) after co-precipitation with Fe-Ti layered double hydroxides. Chem. Anal. 2006;51:613–622.

Mondal K., Jegadeesan G., Lalvani S.B. Removal of selenate by Fe and NiFe nanosized particles. Ind. Eng. Chem. Res. 2004;43:4922–4934. doi: 10.1021/ie030715l. DOI

PubMed DOI

Montgomery J.M. Water Treatment Principles and Design. Wiley; New York, NY, USA: 1985.

PubMed DOI

Adams B., Anderson R., Bless D., Butler B., Conway B., Dailey A., Freed E., Gervais G., Gill M., Grosse D. Reference Guide to Treatment Technologies for Mining-Influenced Water. Office of Superfund Remediation and Technology Innovation; Washington, DC, USA: 2014. EPA 542-R-14-001.

Merrill D.T., Manzione M.A., Parker D.S., Petersen J.J., Chow W., Hobbs A.O. Field evaluation of arsenic and selenium removal by iron coprecipitation. Environ. Prog. 1987;6:82–90. doi: 10.1002/ep.670060209. DOI

Okonji S.O., Dominic J.A., Pernitsky D., Achari G. Removal and recovery of selenium species from wastewater: Adsorption kinetics and co-precipitation mechanisms. J. Water Process. Eng. 2020;38:101666. doi: 10.1016/j.jwpe.2020.101666. DOI

Shi Y., Wang L., Chen Y., Xu D. Research on removing selenium from raw water by using Fe/Se co-precipitation system. J. Water Supply Res. Technol.-AQUA. 2009;58:51–56. doi: 10.2166/aqua.2009.085. DOI

Crawford R.J., Harding I.H., Mainwaring D.E. Adsorption and coprecipitation of single heavy metal ions onto the hydrated oxides of iron and chromium. Langmuir. 1993;9:3050–3056. doi: 10.1021/la00035a051. DOI

Matulová M., Urík M., Bujdoš M., Duborská E., Cesnek M., Miglierini M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019;73:2975–2985. doi: 10.1007/s11696-019-00847-1. DOI

Matulová M., Bujdoš M., Miglierini M.B., Mitróová Z., Kubovčíková M., Urík M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020;556:119852. doi: 10.1016/j.chemgeo.2020.119852. DOI

Ahmad A., Rutten S., Eikelboom M., de Waal L., Bruning H., Bhattacharya P., van der Wal A. Impact of phosphate, silicate and natural organic matter on the size of Fe(III) precipitates and arsenate co-precipitation efficiency in calcium containing water. Sep. Purif. Technol. 2020;235:116117. doi: 10.1016/j.seppur.2019.116117. DOI

PubMed DOI

Cudennec Y., Lecerf A. The transformation of ferrihydrite into goethite or hematite, revisited. J. Solid State Chem. 2006;179:716–722. doi: 10.1016/j.jssc.2005.11.030. DOI

Schwertmann U., Fischer W.R. Natural “amorphous” ferric hydroxide. Geoderma. 1973;10:237–247. doi: 10.1016/0016-7061(73)90066-9. DOI

Börsig N., Scheinost A.C., Shaw S., Schild D., Neumann T. Uptake mechanisms of selenium oxyanions during the ferrihydrite-hematite recrystallization. Geochim. Cosmochim. Acta. 2017;206:236–253. doi: 10.1016/j.gca.2017.03.004. DOI

Schwertmann U., Cornell R.M. Iron Oxides in the Laboratory: Preparation and Characterization. Wiley-VCH; Weinheim, Germany: 2000.

Kukkadapu R.K., Zachara J.M., Fredrickson J.K., Smith S.C., Dohnalkova A.C., Russell C.K. Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am. Mineral. 2003;88:1903–1914. doi: 10.2138/am-2003-11-1233. DOI

Zhang D., Wang S., Wang Y., Gomez M.A., Duan Y., Jia Y. The Transformation of Two-Line Ferrihydrite into Crystalline Products: Effect of pH and Media (Sulfate versus Nitrate) ACS Earth Space Chem. 2018;2:577–587. doi: 10.1021/acsearthspacechem.8b00001. DOI

Cui H., Ren W., Lin P., Liu Y. Structure control synthesis of iron oxide polymorph nanoparticles through an epoxide precipitation route. J. Exp. Nanosci. 2013;8:869–875. doi: 10.1080/17458080.2011.616541. DOI

Čanecká L., Bujdoš M., Gregor M., Hudec P., Boriová K., Dudová J. Sorption of P(V), As(V), and Sb(V) Oxyanions on Goethite and Hematite During their Thermal Transformation. Sep. Sci. Technol. 2014;49:721–726. doi: 10.1080/01496395.2013.855786. DOI

Busca G., Cotena N., Rossi P.F. Infrared spectroscopic study of micronised geothite. Mater. Chem. 1978;3:271–283. doi: 10.1016/0390-6035(78)90038-X. DOI

Amrani M.A., Ghaleb A.M., Ragab A.E., Ramadan M.Z., Khalaf T.M. Low-Cost Goethite Nanorods for As (III) and Se (VI) Removal from Water. Appl. Sci. 2020;10:7237. doi: 10.3390/app10207237. DOI

PubMed DOI

Rochester C.H., Topham S.A. Infrared study of surface hydroxyl groups on haematite. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1979;75:1073–1088. doi: 10.1039/f19797501073. DOI

Walter D., Buxbaum G., Laqua W. The mechanism of the thermal transformation from goethite to hematite. J. Therm. Anal. Calorim. 2001;63:733–748. doi: 10.1023/A:1010187921227. DOI

Das S., Hendry M.J. Changes of crystal morphology of aged goethite over a range of pH (2–13) at 100 °C. Appl. Clay Sci. 2011;51:192–197. doi: 10.1016/j.clay.2010.11.006. DOI

Cornell R., Giovanoli R., Schindler P. Effect of silicate species on the transformation of ferrihydrite into goethite and hematite in alkaline media. Clays Clay Miner. 1987;35:21–28. doi: 10.1346/CCMN.1987.0350103. DOI

Gálvez N., Barrón V., Torrent J. Effect of Phosphate on the Crystallization of Hematite, Goethite, and Lepidocrocite from Ferrihydrite. Clays Clay Miner. 1999;47:304–311. doi: 10.1346/CCMN.1999.0470306. DOI

PubMed DOI

PubMed DOI

Zhao J., Huggins F.E., Feng Z., Huffman G.P. Ferrihydrite: Surface Structure and Its Effects on Phase Transformation. Clays Clay Miner. 1994;42:737–746. doi: 10.1346/CCMN.1994.0420610. DOI

PubMed DOI

Wang T., Jin Y., Wang Z., Yu Z. A study of the morphology of the goethite crystallization process. Chem. Eng. J. 1998;69:1–5. doi: 10.1016/S1385-8947(97)00104-6. DOI

Gialanella S., Girardi F., Ischia G., Lonardelli I., Mattarelli M., Montagna M. On the goethite to hematite phase transformation. J. Therm. Anal. Calorim. 2010;102:867–873. doi: 10.1007/s10973-010-0756-2. DOI

Ruan H.D., Gilkes R.J. Kinetics of thermal dehydroxylation of aluminous goethite. J. Therm. Anal. 1996;46:1223–1238. doi: 10.1007/BF01979237. DOI

Mackenzie R.C. Thermal Analysis. In: Nicol A.W., editor. Physicochemical Methods of Mineral Analysis. Springer; Boston, MA, USA: 1975. pp. 389–420.

Balistrieri L.S., Chao T.T. Adsorption of selenium by amorphous iron oxyhydroxide and manganese dioxide. Geochim. Cosmochim. Acta. 1990;54:739–751. doi: 10.1016/0016-7037(90)90369-V. DOI

Zelmanov G., Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013;103:167–172. doi: 10.1016/j.seppur.2012.10.037. DOI

Mendez J.C., Hiemstra T. Surface area of ferrihydrite consistently related to primary surface charge, ion pair formation, and specific ion adsorption. Chem. Geol. 2020;532:119304. doi: 10.1016/j.chemgeo.2019.119304. DOI

Cristiano E., Hu Y.J., Siegfried M., Kaplan D., Nitsche H. A comparison of point of zero charge measurement methodology. Clays Clay Miner. 2011;59:107–115. doi: 10.1346/CCMN.2011.0590201. DOI

Zhang P., Sparks D.L. Kinetics of selenate and selenite adsorption/desorption at the goethite/water interface. Environ. Sci. Technol. 1990;24:1848–1856. doi: 10.1021/es00082a010. DOI

PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...