Solid-Water Interface Interaction of Selenium with Fe(II)-Bearing Minerals and Aqueous Fe(II) and S(-II) Ions in the Near-Field of the Radioactive Waste Disposal System
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
VEGA 1/0139/22
Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
VEGA 1/0175/22
Scientific Grant Agency of the Slovak Republic Ministry of Education and the Slovak Academy of Sciences
PubMed
36613759
PubMed Central
PMC9820544
DOI
10.3390/ijms24010315
PII: ijms24010315
Knihovny.cz E-zdroje
- Klíčová slova
- ferrous minerals, nuclear waste, reduction processes, selenium, sorption,
- MeSH
- lidé MeSH
- minerály MeSH
- oxidace-redukce MeSH
- radioaktivní odpad * MeSH
- selen * MeSH
- voda MeSH
- železité sloučeniny MeSH
- železnaté sloučeniny MeSH
- železo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- minerály MeSH
- radioaktivní odpad * MeSH
- selen * MeSH
- voda MeSH
- železité sloučeniny MeSH
- železnaté sloučeniny MeSH
- železo MeSH
Selenium can be highly toxic in excess for both animals and humans. However, since its mobile forms can be easily adsorbed with ferric minerals, its mobility in the natural oxic environment is generally not an issue. Still, the removal and immobilization of the long-lived radioactive isotope 79Se from the contaminated anoxic waters is currently a significant concern. 79Se can be accessible in the case of radionuclides' leaching from radioactive waste disposals, where anoxic conditions prevail and where ferrous ions and Fe(II)-bearing minerals predominate after corrosion processes (e.g., magnetite). Therefore, reductive and adsorptive immobilizations by Fe(II)-bearing minerals are the primary mechanisms for removing redox-sensitive selenium. Even though the information on the sorptive interactions of selenium and Fe(II)-bearing minerals seems to be well documented, this review focuses specifically on the state of the available information on the effects of the redox properties of Fe(II)-bearing solid phases (e.g., ferrous oxides, hydroxides, sulfides, and carbonates) on selenium speciation via redox transformation and co-occurring coprecipitation.
Zobrazit více v PubMed
Hagarová I., Nemček L. Selenium in Blood Serum of Healthy European Population. Chem. Listy. 2020;114:329–335.
Hagarová I., Žemberyová M. Determination of selenium in blood serum of children by electrothermal atomic absorption spectrometry. Chem. Listy. 2005;99:34–39.
Hagarová I., Žemberyová M., Bajčan D. Sequential and single step extraction procedures used for fractionation of selenium in soil samples. Chem. Pap. 2005;59:93–98.
Zhang L., Song H., Guo Y., Fan B., Huang Y., Mao X., Liang K., Hu Z., Sun X., Fang Y., et al. Benefit–risk assessment of dietary selenium and its associated metals intake in China (2017–2019): Is current selenium-rich agro-food safe enough? J. Hazard. Mater. 2020;398:123224. doi: 10.1016/j.jhazmat.2020.123224. PubMed DOI
Farkasovska I., Zemberyova M. Determination and speciation by AAS techniques of selenium in environmental and biological samples. Chem. Listy. 1999;93:633–638.
Matulová M., Bujdoš M., Miglierini M.B., Mitróová Z., Kubovčíková M., Urík M. The effects of selenate on goethite synthesis and selenate sorption kinetics onto a goethite surface—A three-step process with an unexpected desorption phase. Chem. Geol. 2020;556:119852. doi: 10.1016/j.chemgeo.2020.119852. DOI
Matulová M., Bujdoš M., Miglierini M.B., Cesnek M., Duborská E., Mosnáčková K., Vojtková H., Kmječ T., Dekan J., Matúš P., et al. The effect of high selenite and selenate concentrations on ferric oxyhydroxides transformation under alkaline conditions. Int. J. Mol. Sci. 2021;22:9955. doi: 10.3390/ijms22189955. PubMed DOI PMC
Matulová M., Urík M., Bujdoš M., Duborská E., Cesnek M., Miglierini M.B. Selenite sorption onto goethite: Isotherm and ion-competitive studies, and effect of pH on sorption kinetics. Chem. Pap. 2019;73:2975–2985. doi: 10.1007/s11696-019-00847-1. DOI
Fernández-Martínez A., Charlet L. Selenium environmental cycling and bioavailability: A structural chemist point of view. Rev. Environ. Sci. Bio/Technol. 2009;8:81–110. doi: 10.1007/s11157-009-9145-3. DOI
Bujdoš M., Mul’ová A., Kubová J., Medved J. Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surface mine environment. Environ. Geol. 2005;47:353–360. doi: 10.1007/s00254-004-1157-2. DOI
Ni R., Luo K., Tian X., Yan S., Zhong J., Liu M. Distribution and geological sources of selenium in environmental materials in Taoyuan County, Hunan Province, China. Environ. Geochem. Health. 2016;38:927–938. doi: 10.1007/s10653-015-9772-2. PubMed DOI
Bujdoš M., Kubová J., Streško V. Problems of selenium fractionation in soils rich in organic matter. Anal. Chim. Acta. 2000;408:103–109. doi: 10.1016/S0003-2670(99)00845-4. DOI
Tabelin C.B., Park I., Phengsaart T., Jeon S., Villacorte-Tabelin M., Alonzo D., Yoo K., Ito M., Hiroyoshi N. Copper and critical metals production from porphyry ores and E-wastes: A review of resource availability, processing/recycling challenges, socio-environmental aspects, and sustainability issues. Resour. Conserv. Recycl. 2021;170:105610. doi: 10.1016/j.resconrec.2021.105610. DOI
Tamoto S., Tabelin C.B., Igarashi T., Ito M., Hiroyoshi N. Short and long term release mechanisms of arsenic, selenium and boron from a tunnel-excavated sedimentary rock under in situ conditions. J. Contam. Hydrol. 2015;175–176:60–71. doi: 10.1016/j.jconhyd.2015.01.003. PubMed DOI
Etteieb S., Magdouli S., Zolfaghari M., Brar S. Monitoring and analysis of selenium as an emerging contaminant in mining industry: A critical review. Sci. Total Environ. 2020;698:134339. doi: 10.1016/j.scitotenv.2019.134339. PubMed DOI
Xiong X., Liu X., Iris K., Wang L., Zhou J., Sun X., Rinklebe J., Shaheen S.M., Ok Y.S., Lin Z. Potentially toxic elements in solid waste streams: Fate and management approaches. Environ. Pollut. 2019;253:680–707. doi: 10.1016/j.envpol.2019.07.012. PubMed DOI
Grambow B., Smailos E., Geckeis H., Müller R., Hentschel H. Sorption and Reduction of Uranium(VI) on Iron Corrosion Products under Reducing Saline Conditions. Radiochim. Acta. 1996;74:149–154. doi: 10.1524/ract.1996.74.special-issue.149. DOI
Savoye S., Legrand L., Sagon G., Lecomte S., Chausse A., Messina R., Toulhoat P. Experimental investigations on iron corrosion products formed in bicarbonate/carbonate-containing solutions at 90 °C. Corros. Sci. 2001;43:2049–2064. doi: 10.1016/S0010-938X(01)00012-9. DOI
Lee C.T., Odziemkowski M.S., Shoesmith D.W. An in situ Raman-Electrochemical Investigation of Carbon Steel Corrosion in Na2CO3∕NaHCO3, Na2SO4, and NaCl Solutions. J. Electrochem. Soc. 2006;153:B33. doi: 10.1149/1.2140680. DOI
Park C.-K., Park T.-J., Lee S.-Y., Lee J.-K. Sorption characteristics of iodide on chalcocite and mackinawite under pH variations in alkaline conditions. Nucl. Eng. Technol. 2019;51:1041–1046. doi: 10.1016/j.net.2019.01.014. DOI
Bossart P., Bernier F., Birkholzer J., Bruggeman C., Connolly P., Dewonck S., Fukaya M., Herfort M., Jensen M., Matray J.-M., et al. Mont Terri rock laboratory, 20 years of research: Introduction, site characteristics and overview of experiments. Swiss J. Geosci. 2017;110:3–22. doi: 10.1007/s00015-016-0236-1. DOI
Schlegel M.L., Bataillon C., Benhamida K., Blanc C., Menut D., Lacour J.-L. Metal corrosion and argillite transformation at the water-saturated, high-temperature iron–clay interface: A microscopic-scale study. Appl. Geochem. 2008;23:2619–2633. doi: 10.1016/j.apgeochem.2008.05.019. DOI
Schlegel M.L., Bataillon C., Blanc C., Prêt D., Foy E. Anodic activation of iron corrosion in clay media under water-saturated conditions at 90 degrees C: Characterization of the corrosion interface. Environ. Sci. Technol. 2010;44:1503–1508. doi: 10.1021/es9021987. PubMed DOI
Pandarinathan V., Lepková K., van Bronswijk W. Chukanovite (Fe2(OH)2CO3) identified as a corrosion product at sand-deposited carbon steel in CO2-saturated brine. Corros. Sci. 2014;85:26–32. doi: 10.1016/j.corsci.2014.03.032. DOI
Spadini L., Bott M., Wehrli B., Manceau A. Analysis of the major Fe bearing mineral phases in recent lake sediments by EXAFS spectroscopy. Aquat. Geochem. 2003;9:1–17. doi: 10.1023/B:AQUA.0000005608.69468.1e. DOI
Smart N.R., Blackwood D.J., Werme L. Anaerobic Corrosion of Carbon Steel and Cast Iron in Artificial Groundwaters: Part 2—Gas Generation. Corrosion. 2002;58:627–637. doi: 10.5006/1.3287691. DOI
Diener A., Neumann T., Kramar U., Schild D. Structure of selenium incorporated in pyrite and mackinawite as determined by XAFS analyses. J. Contam. Hydrol. 2012;133:30–39. doi: 10.1016/j.jconhyd.2012.03.003. PubMed DOI
Pavón S., Martínez M., Giménez J., de Pablo J. Se(IV) Immobilization onto Natural Siderite: Implications for High-Level Nuclear Waste Repositories. Chem. Eng. Technol. 2021;44:1160–1167. doi: 10.1002/ceat.202000424. DOI
Pašteka L., Bujdoš M., Miglierini M. Application of mössbauer spectrometry in the study of iron polymorph compounds. Chem. Listy. 2018;112:86–92.
Goberna-Ferrón S., Asta M.P., Zareeipolgardani B., Bureau S., Findling N., Simonelli L., Greneche J.-M., Charlet L., Fernández-Martínez A. Influence of Silica Coatings on Magnetite-Catalyzed Selenium Reduction. Environ. Sci. Technol. 2021;55:3021–3031. doi: 10.1021/acs.est.0c08146. PubMed DOI
King F. Status of the Understanding of Used Fuel Container Corrosion Processes—Summary of Current Knowledge and Gap Analysis. Nuclear Waste Management Organization; Toronto, ON, Canada: 2007. NWMO TR-2007-09.
Ma H., Cheng X., Li G., Chen S., Quan Z., Zhao S., Niu L. The influence of hydrogen sulfide on corrosion of iron under different conditions. Corros. Sci. 2000;42:1669–1683. doi: 10.1016/S0010-938X(00)00003-2. DOI
Enning D., Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: New views of an old problem. Appl. Environ. Microbiol. 2014;80:1226–1236. doi: 10.1128/AEM.02848-13. PubMed DOI PMC
Curti E., Puranen A., Grolimund D., Jädernas D., Sheptyakov D., Mesbah A. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability. Environ. Sci. Process. Impacts. 2015;17:1760–1768. doi: 10.1039/C5EM00275C. PubMed DOI
Dardenne K., González-Robles E., Rothe J., Müller N., Christill G., Lemmer D., Praetorius R., Kienzler B., Metz V., Roth G., et al. XAS and XRF investigation of an actual HAWC glass fragment obtained from the Karlsruhe vitrification plant (VEK) J. Nucl. Mater. 2015;460:209–215. doi: 10.1016/j.jnucmat.2015.02.021. DOI
Singh B.K., Hafeez M.A., Kim H., Hong S., Kang J., Um W. Inorganic Waste Forms for Efficient Immobilization of Radionuclides. ACS ES&T Eng. 2021;1:1149–1170. doi: 10.1021/acsestengg.1c00184. DOI
Matulová M., Bujdoš M. Radiometric methods and mass spectrometric methods for determination of long-lived fission products of uranium. Chem. Listy. 2020;114:753–759.
Usman M., Byrne J.M., Chaudhary A., Orsetti S., Hanna K., Ruby C., Kappler A., Haderlein S.B. Magnetite and Green Rust: Synthesis, Properties, and Environmental Applications of Mixed-Valent Iron Minerals. Chem. Rev. 2018;118:3251–3304. doi: 10.1021/acs.chemrev.7b00224. PubMed DOI
Canfield D., Kristensen E., Thamdrup B. Thermodynamics and Microbial Metabolism. Adv. Mar. Biol. 2005;48:65–94. doi: 10.1016/S0065-2881(05)48003-7. PubMed DOI
Cheng W., Marsac R., Hanna K. Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants. Environ. Sci. Technol. 2018;52:467–473. doi: 10.1021/acs.est.7b04849. PubMed DOI
Gorski C.A., Scherer M.M. Influence of Magnetite Stoichiometry on FeII Uptake and Nitrobenzene Reduction. Environ. Sci. Technol. 2009;43:3675–3680. doi: 10.1021/es803613a. PubMed DOI
White A.F., Peterson M.L., Hochella M.F. Electrochemistry and dissolution kinetics of magnetite and ilmenite. Geochim. Cosmochim. Acta. 1994;58:1859–1875. doi: 10.1016/0016-7037(94)90420-0. DOI
Thamdrup B. Bacterial Manganese and Iron Reduction in Aquatic Sediments. In: Schink B., editor. Advances in Microbial Ecology. Springer; Boston, MA, USA: 2000. pp. 41–84.
Sander M., Hofstetter T.B., Gorski C.A. Electrochemical Analyses of Redox-Active Iron Minerals: A Review of Nonmediated and Mediated Approaches. Environ. Sci. Technol. 2015;49:5862–5878. doi: 10.1021/acs.est.5b00006. PubMed DOI
Gorski C.A., Nurmi J.T., Tratnyek P.G., Hofstetter T.B., Scherer M.M. Redox behavior of magnetite: Implications for contaminant reduction. Environ. Sci. Technol. 2010;44:55–60. doi: 10.1021/es9016848. PubMed DOI
Castro P.A., Vago E.R., Calvo E.J. Surface electrochemical transformations on spinel iron oxide electrodes in aqueous solutions. J. Chem. Soc. Faraday Trans. 1996;92:3371–3379. doi: 10.1039/ft9969203371. DOI
Saxena R., Lochab A., Saxena M. Magnetite Carbon Nanomaterials for Environmental Remediation. In: Jawaid M., Ahmad A., Ismail N., Rafatullah M., editors. Environmental Remediation through Carbon Based Nano Composites. Green Energy and Technology. Springer; Singapore: 2021. DOI
Latta D.E., Gorski C.A., Boyanov M.I., O’Loughlin E.J., Kemner K.M., Scherer M.M. Influence of Magnetite Stoichiometry on UVI Reduction. Environ. Sci. Technol. 2012;46:778–786. doi: 10.1021/es2024912. PubMed DOI
Xu L., Huang Y. Kinetics and mechanism of selenite reduction by zero valent iron under anaerobic condition activated and enhanced by dissolved Fe(II) Sci. Total Environ. 2019;664:698–706. doi: 10.1016/j.scitotenv.2019.02.044. PubMed DOI
Xiong J., Wang H., Yao J., He Q., Ma J., Yang J., Liu C., Chen Y., Huangfu X., Liu H. A critical review on sulfur reduction of aqueous selenite: Mechanisms and applications. J. Hazard. Mater. 2022;422:126852. doi: 10.1016/j.jhazmat.2021.126852. PubMed DOI
Séby F., Potin-Gautier M., Giffaut E., Borge G., Donard O.F.X. A critical review of thermodynamic data for selenium species at 25 °C. Chem. Geol. 2001;171:173–194. doi: 10.1016/S0009-2541(00)00246-1. DOI
Herbel M.J., Blum J.S., Oremland R.S., Borglin S.E. Reduction of Elemental Selenium to Selenide: Experiments with Anoxic Sediments and Bacteria that Respire Se-Oxyanions. Geomicrobiol. J. 2003;20:587–602. doi: 10.1080/713851163. DOI
Oremland R.S., Herbel M.J., Blum J.S., Langley S., Beveridge T.J., Ajayan P.M., Sutto T., Ellis A.V., Curran S. Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl. Environ. Microbiol. 2004;70:52–60. doi: 10.1128/AEM.70.1.52-60.2004. PubMed DOI PMC
Herbel M.J., Blum J., Borglin S., Oremland R. Microbial Reduction of Elemental Selenium to Selenide in Anoxic Sediments—A XANES Study. AGU Fall Meeting Abstracts; Abstract Id. V51A-1234. 2002. [(accessed on 15 September 2022)]. Available online: https://escholarship.org/content/qt9rr4c1vg/qt9rr4c1vg_noSplash_0ed4887e5b11d83cf16072f48cab54fc.pdf.
Sumoondur A., Shaw S., Ahmed I., Benning L.G. Green rust as a precursor for magnetite: An in situ synchrotron based study. Mineral. Mag. 2018;72:201–204. doi: 10.1180/minmag.2008.072.1.201. DOI
Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. Wiley; Hoboken, NJ, USA: 2003. pp. 491–508.
Shi Y., Wang L., Chen Y., Xu D. Research on removing selenium from raw water by using Fe/Se co-precipitation system. J. Water Supply Res. Technol.-AQUA. 2009;58:51–56. doi: 10.2166/aqua.2009.085. DOI
Finck N., Dardenne K. Interaction of selenite with reduced Fe and/or S species: An XRD and XAS study. J. Contam. Hydrol. 2016;188:44–51. doi: 10.1016/j.jconhyd.2016.03.001. PubMed DOI
Baek K., Kasem N., Ciblak A., Vesper D., Padilla I., Alshawabkeh A.N. Electrochemical Removal of Selenate from Aqueous Solutions. J. Chem. Eng. 2013;215–216:678–684. doi: 10.1016/j.cej.2012.09.135. PubMed DOI PMC
Bouroushian M. Electrochemistry of the Chalcogens. In: Bouroushian M., editor. Electrochemistry of Metal Chalcogenides. Springer; Berlin/Heidelberg, Germany: 2010. pp. 57–75.
Missana T., Alonso U., Scheinost A.C., Granizo N., García-Gutiérrez M. Selenite retention by nanocrystalline magnetite: Role of adsorption, reduction and dissolution/co-precipitation processes. Geochim. Cosmochim. Acta. 2009;73:6205–6217. doi: 10.1016/j.gca.2009.07.005. DOI
Charlet L., Scheinost A., Tournassat C., Greneche J.-M., Géhin A., Fernández-Martı A., Coudert S., Tisserand D., Brendle J. Electron transfer at the mineral/water interface: Selenium reduction by ferrous iron sorbed on clay. Geochim. Cosmochim. Acta. 2007;71:5731–5749. doi: 10.1016/j.gca.2007.08.024. DOI
Scheinost A.C., Charlet L. Selenite Reduction by Mackinawite, Magnetite and Siderite: XAS Characterization of Nanosized Redox Products. Environ. Sci. Technol. 2008;42:1984–1989. doi: 10.1021/es071573f. PubMed DOI
Zingaro R.A. Reduction of oxoselenium anions by iron(II) hydroxide. Environ. Int. 1997;23:299–304. doi: 10.1016/S0160-4120(97)00032-9. DOI
Murphy A.P. Removal of selenate from water by chemical reduction. Ind. Eng. Chem. Res. 1988;27:187–191. doi: 10.1021/ie00073a033. DOI
Scheidegger A., Grolimund D., Cui D., Devoy J., Spahiu K., Wersin P., Bonhoure I., Janousch M. Reduction of selenite on iron surfaces: A micro-spectroscopic study. J. Phys. IV. 2003;104:417–420. doi: 10.1051/jp4:20030112. DOI
Onoguchi A., Granata G., Haraguchi D., Hayashi H., Tokoro C. Kinetics and mechanism of selenate and selenite removal in solution by green rust-sulfate. R. Soc. Open Sci. 2019;6:182147. doi: 10.1098/rsos.182147. PubMed DOI PMC
Myneni S.C.B., Tokunaga T.K., Brown G. Abiotic selenium redox transformations in the presence of Fe(II, III) oxides. Science. 1997;278:1106–1109. doi: 10.1126/science.278.5340.1106. DOI
Yoon I.-H., Bang S., Kim K.-W., Kim M.G., Park S.Y., Choi W.-K. Selenate removal by zero-valent iron in oxic condition: The role of Fe (II) and selenate removal mechanism. Environ. Sci. Pollut. Res. 2016;23:1081–1090. doi: 10.1007/s11356-015-4578-4. PubMed DOI
Chen Y.-W., Truong H.-Y.T., Belzile N. Abiotic formation of elemental selenium and role of iron oxide surfaces. Chemosphere. 2009;74:1079–1084. doi: 10.1016/j.chemosphere.2008.10.043. PubMed DOI
Olin A., Noläng B., Osadchii E.G., Öhman L.-O., Rosén E. Chemical Thermodynamics of Selenium. Elsevier; Amsterdam, The Netherlands: 2005.
Schellenger A.E., Larese-Casanova P. Oxygen isotope indicators of selenate reaction with Fe(II) and Fe(III) hydroxides. Environ. Sci. Technol. 2013;47:6254–6262. doi: 10.1021/es4000033. PubMed DOI
Johnson T.M., Bullen T.D. Selenium isotope fractionation during reduction by Fe(II)-Fe(III) hydroxide-sulfate (green rust) Geochim. Cosmochim. Acta. 2003;67:413–419. doi: 10.1016/S0016-7037(02)01137-7. DOI
Refait P., Simon L., Génin J.-M. Reduction of SeO42− Anions and Anoxic Formation of Iron(II)−Iron(III) Hydroxy-Selenate Green Rust. Environ. Sci. Technol. 2000;34:819–825. doi: 10.1021/es990376g. DOI
Skovbjerg L., Stipp S.L.S. Garnet growth in the Zermatt-Saas Fee eclogites Investigation of the interaction between green rust sodium sulfate and aqueous selenium. Geochim. Cosmochim. Acta Suppl. 2007;71:3592.
Standish T., Chen J., Jacklin R., Jakupi P., Ramamurthy S., Zagidulin D., Keech P., Shoesmith D. Corrosion of copper-coated shell high level nuclear waste containers under permanent disposal conditions. Electrochim. Acta. 2016;211:331–342. doi: 10.1016/j.electacta.2016.05.135. DOI
Simard S., Odziemkowski M., Irish D.E., Brossard L., Ménard H. In situ micro-Raman spectroscopy to investigate pitting corrosion product of 1024 mild steel in phosphate and bicarbonate solutions containing chloride and sulfate ions. J. Appl. Electrochem. 2001;31:913–920. doi: 10.1023/A:1017517618191. DOI
Simard S., Drogowska M., Me´Nard H., Brossard L. Electrochemical behaviour of 1024 mild steel in slightly alkaline bicarbonate solutions. J. Appl. Electrochem. 1997;27:317–324. doi: 10.1023/A:1018484814627. DOI
Antunes R.A., Costa I., de Faria D.L.A. Characterization of corrosion products formed on steels in the first months of atmospheric exposure. Mater. Res. 2003;6:403–408. doi: 10.1590/S1516-14392003000300015. DOI
Costa T.G., Cunha Ostroski V.W., de Souza F.S. “Self arranged Cactis” as new goethite morphology from the natural corrosion process of SAE 1020 carbon steel. Heliyon. 2019;5:e02771. doi: 10.1016/j.heliyon.2019.e02771. PubMed DOI PMC
Hayashi H., Kanie K., Shinoda K., Muramatsu A., Suzuki S., Sasaki H. pH-dependence of selenate removal from liquid phase by reductive Fe(II)-Fe(III) hydroxysulfate compound, green rust. Chemosphere. 2009;76:638–643. doi: 10.1016/j.chemosphere.2009.04.037. PubMed DOI
Börsig N., Scheinost A., Shaw S., Schild D., Neumann T. Retention and multiphase transformation of selenium oxyanions during the formation of magnetite via iron(II) hydroxide and green rust. Dalton Trans. 2018;47:11002–11015. doi: 10.1039/C8DT01799A. PubMed DOI
Kim Y., Yuan K., Ellis B.R., Becker U. Redox reactions of selenium as catalyzed by magnetite: Lessons learned from using electrochemistry and spectroscopic methods. Geochim. Cosmochim. Acta. 2017;199:304–323. doi: 10.1016/j.gca.2016.10.039. DOI
Iida Y., Yamaguchi T., Tanaka T. Sorption behavior of hydroselenide (HSe−) onto iron-containing minerals. J. Nucl. Sci. Technol. 2014;51:305–322. doi: 10.1080/00223131.2014.864457. DOI
Jung B., Safan A., Batchelor B., Abdel-Wahab A. Spectroscopic study of Se(IV) removal from water by reductive precipitation using sulfide. Chemosphere. 2016;163:351–358. doi: 10.1016/j.chemosphere.2016.08.024. PubMed DOI
Millero F.J. The thermodynamics and kinetics of the hydrogen sulfide system in natural waters. Mar. Chem. 1986;18:121–147. doi: 10.1016/0304-4203(86)90003-4. DOI
Kharma A., Grman M., Misak A., Domínguez-Álvarez E., Nasim M.J., Ondrias K., Chovanec M., Jacob C. Inorganic polysulfides and related reactive sulfur selenium species from the perspective of chemistry. Molecules. 2019;24:1359. doi: 10.3390/molecules24071359. PubMed DOI PMC
Truong H.-Y.T., Chen Y.-W., Belzile N. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans. Sci. Total Environ. 2013;449:373–384. doi: 10.1016/j.scitotenv.2013.01.054. PubMed DOI
Geoffroy N., Demopoulos G.P. The elimination of selenium(IV) from aqueous solution by precipitation with sodium sul-fide. J. Hazard. Mater. 2011;185:148–154. doi: 10.1016/j.jhazmat.2010.09.009. PubMed DOI
Pettine M., Gennari F., Campanella L., Casentini B., Marani D. The reduction of selenium(IV) by hydrogen sulfide in aqueous solutions. Geochim. Cosmochim. Acta. 2012;83:37–47. doi: 10.1016/j.gca.2011.12.024. DOI
Zehr J.P., Oremland R.S. Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol. 1987;53:1365–1369. doi: 10.1128/aem.53.6.1365-1369.1987. PubMed DOI PMC
Oremland R.S., Hollibaugh J.T., Maest A.S., Presser T.S., Miller L.G., Culbertson C.W. Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Appl. Environ. Microbiol. 1989;55:2333–2343. doi: 10.1128/aem.55.9.2333-2343.1989. PubMed DOI PMC
Hockin S.L., Gadd G.M. Linked redox precipitation of sulfur and selenium under anaerobic conditions by sulfate-reducing bacterial biofilms. Appl. Environ. Microbiol. 2003;69:7063–7072. doi: 10.1128/AEM.69.12.7063-7072.2003. PubMed DOI PMC
Xu H., Barton L.L. Se-Bearing Colloidal Particles Produced by Sulfate-Reducing Bacteria and Sulfide-Oxidizing Bacteria: TEM Study. Adv. Microbiol. 2013;3:205–211. doi: 10.4236/aim.2013.32031. DOI
Belzile N., Chen Y.-W., Cai M.-F., Li Y. A review on pyrrhotite oxidation. J. Geochem. Explor. 2004;84:65–76. doi: 10.1016/j.gexplo.2004.03.003. DOI
Ma B., Kang M., Zheng Z., Chen F., Xie J., Charlet L., Liu C. The reductive immobilization of aqueous Se(IV) by natural pyrrhotite. J. Hazard. Mater. 2014;276:422–432. doi: 10.1016/j.jhazmat.2014.05.066. PubMed DOI
Han D.S., Batchelor B., Abdel-Wahab A. XPS analysis of sorption of selenium(IV) and selenium(VI) to mackinawite (FeS) Environ. Prog. Sustain. Energy. 2013;32:84–93. doi: 10.1002/ep.10609. DOI
Naveau A., Monteil-Rivera F., Guillon E., Dumonceau J. Interactions of Aqueous Selenium (−II) and (IV) with Metallic Sulfide Surfaces. Environ. Sci. Technol. 2007;41:5376–5382. doi: 10.1021/es0704481. PubMed DOI
Wang J., Xie L., Li S., Wang J., Zhang J., Zeng H. Probing the in situ Redox Behavior of Selenium on a Pyrite Surface by Scanning Electrochemical Microscopy. J. Phys. Chem. C. 2021;125:3018–3026. doi: 10.1021/acs.jpcc.0c10333. DOI
Charlet L., Kang M., Bardelli F., Kirsch R., Géhin A., Grenèche J.-M., Chen F. Nanocomposite pyrite–greigite reactivity toward Se(IV)/Se(VI) Environ. Sci. Technol. 2012;46:4869–4876. doi: 10.1021/es204181q. PubMed DOI
Kang M., Chen F., Wu S., Yang Y., Bruggeman C., Charlet L. Effect of pH on aqueous Se(IV) reduction by pyrite. Environ. Sci. Technol. 2011;45:2704–2710. doi: 10.1021/es1033553. PubMed DOI
Finck N., Dardenne K., Bosbach D., Geckeis H. Selenide Retention by Mackinawite. Environ. Sci. Technol. 2012;46:10004–10011. doi: 10.1021/es301878y. PubMed DOI
Liu X., Fattahi M., Montavon G., Grambow B. Selenide retention onto pyrite under reducing conditions. Radiochim. Acta. 2008;96:473–479. doi: 10.1524/ract.2008.1514. DOI
Yang Q., Yang Z., Li H., Zhao J., Yang J., Qu W., Shih K. Selenide functionalized natural mineral sulfides as efficient sorbents for elemental mercury capture from coal combustion flue gas. Chem. Eng. J. 2020;398:125611. doi: 10.1016/j.cej.2020.125611. DOI
Diener A., Neumann T.A. Synthesis and incorporation of selenide in pyrite and mackinawite. Radiochim. Acta. 2011;99:791–798. doi: 10.1524/ract.2011.1883. DOI
Wolthers M., Charlet L., van Der Linde P.R., Rickard D., van Der Weijden C.H. Surface chemistry of disordered macki-nawite (FeS) Geochim. Cosmochim. Acta. 2005;69:3469–3481. doi: 10.1016/j.gca.2005.01.027. DOI
Wu H., Chen J., Xu L., Guo X., Fang P., Du K., Shen C., Sheng G. Decorating nanoscale FeS onto metal-organic framework for the decontamination performance and mechanism of Cr(VI) and Se(IV) Colloids Surfaces A Physicochem. Eng. Asp. 2021;625:126887. doi: 10.1016/j.colsurfa.2021.126887. DOI
Chiriţă P., Schlegel M.L. Oxidative dissolution of iron monosulfide (FeS) in acidic conditions: The effect of solid pretreatment. Int. J. Miner. Process. 2015;135:57–64. doi: 10.1016/j.minpro.2015.02.001. DOI
Smyth J.R., Ahrens T.J. The crystal structure of calcite III. Geophys. Res. Lett. 1997;24:1595–1598. doi: 10.1029/97GL01603. DOI
Heberling F., Trainor T.P., Lützenkirchen J., Eng P., Denecke M.A., Bosbach D. Structure and reactivity of the calcite-water interface. J. Colloid Interface Sci. 2011;354:843–857. doi: 10.1016/j.jcis.2010.10.047. PubMed DOI
Fenter P., Sturchio N. Calcite (1 0 4)–water interface structure, revisited. Geochim. Cosmochim. Acta. 2012;97:58–69. doi: 10.1016/j.gca.2012.08.021. DOI
Ma B., Charlet L., Fernandez-Martinez A., Kang M., Madé B. A review of the retention mechanisms of redox-sensitive radionuclides in multi-barrier systems. Appl. Geochem. 2019;100:414–431. doi: 10.1016/j.apgeochem.2018.12.001. DOI
Heberling F., Bosbach D., Eckhardt J.-D., Fischer U., Glowacky J., Haist M., Kramar U., Loos S., Müller H.S., Neumann T. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering. Appl. Geochem. 2014;45:158–190. doi: 10.1016/j.apgeochem.2014.03.006. DOI
Wijnja H., Schulthess C.P. Effect of Carbonate on the Adsorption of Selenate and Sulfate on Goethite. Soil Sci. Soc. Am. J. 2002;66:1190–1197. doi: 10.2136/sssaj2002.1190. DOI
Sjöberg E.L., Rickard D.T. Calcite dissolution kinetics: Surface speciation and the origin of the variable pH dependence. Chem. Geol. 1984;42:119–136. doi: 10.1016/0009-2541(84)90009-3. DOI
Appelo T., Postma D. Geochemistry, Groundwater and Pollution. CRC Press; London, UK: 2005.
Ariyanti D., Handayani N.A., Hadiyanto H. An overview of biocement production from microalgae. Int. J. Eng. Res. Generic Sci. 2011;2:30–33. doi: 10.12777/ijse.2.2.31-33. DOI
Mackenzie F.T., Andersson A.J. The Marine Carbon System and Ocean Acidification during Phanerozoic Time. Geochemical Perspect. 2013;2:1–227. doi: 10.7185/geochempersp.2.1. DOI
Wajon J.E., Ho G.-E., Murphy P.J. Rate of precipitation of ferrous iron and formation of mixed iron-calcium carbonates by naturally occurring carbonate materials. Water Res. 1985;19:831–837. doi: 10.1016/0043-1354(85)90140-X. DOI
Henderson T. Geochemistry of Ground-Water in Two Sandstone Aquifer Systems in the Northern Great Plains in Parts of Montana and Wyoming, North Dakota, and South Dakota. U.S. Geological Survey; Reston, VA, USA: 1985.
Stumm W., Morgan J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd ed. John Wiley & Sons; New York, NY, USA: 1996. DOI
Sposito G. ; The Chemistry of Soils. Oxford University Press; Oxford, UK: 2008.
Balistrieri L.S., Chao T.T. Selenium Adsorption by Goethite. Soil Sci. Soc. Am. J. 1987;51:1145–1151. doi: 10.2136/sssaj1987.03615995005100050009x. DOI
Jiang C.Z., Tosca N.J. Fe(II)-carbonate precipitation kinetics and the chemistry of anoxic ferruginous seawater. EPSL. 2019;506:231–242. doi: 10.1016/j.epsl.2018.11.010. DOI
Matthiesen H., Hilbert L.R., Gregory D.J. Siderite as a Corrosion Product on Archaeological Iron from a Waterlogged Environment. Stud. Conserv. 2003;48:183–194. doi: 10.1179/sic.2003.48.3.183. DOI
Chakraborty S., Bardelli F., Charlet L. Reactivities of Fe(II) on Calcite: Selenium Reduction. Environ. Sci. Technol. 2010;44:1288–1294. doi: 10.1021/es903037s. PubMed DOI
Badaut V., Schlegel M.L., Descostes M., Moutiers G. In situ Time-Resolved X-ray Near-Edge Absorption Spectroscopy of Selenite Reduction by Siderite. Environ. Sci. Technol. 2012;46:10820–10826. doi: 10.1021/es301611e. PubMed DOI
Essington M.E. Estimation of the Standard Free Energy of Formation of Metal Arsenates, Selenates, and Selenites. Soil Sci. Soc. Am. J. 1988;52:1574–1579. doi: 10.2136/sssaj1988.03615995005200060010x. DOI
Hayes K.F., Roe A.L., Brown G.E., Hodgson K.O., Leckie J.O., Parks G.A. In situ X-ray Absorption Study of Surface Complexes: Selenium Oxyanions on α-FeOOH. Science. 1987;238:783–786. doi: 10.1126/science.238.4828.783. PubMed DOI
Duc M., Lefevre G., Fedoroff M., Jeanjean J., Rouchaud J.C., Monteil-Rivera F., Dumonceau J., Milonjic S. Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J. Environ. Radioact. 2003;70:61–72. doi: 10.1016/S0265-931X(03)00125-5. PubMed DOI
Yokoyama Y., Qin H.-B., Tanaka M., Takahashi Y. The uptake of selenite in calcite revealed by X-ray absorption spec-troscopy and quantum chemical calculations. Sci. Total Environ. 2022;802:149221. doi: 10.1016/j.scitotenv.2021.149221. PubMed DOI
Pekov I.V., Perchiazzi N., Merlino S., Kalachev V.N., Merlini M., Zadov A.E. Chukanovite, Fe2(CO3)(OH)2, a new mineral from the weathered iron meteorite Dronino. Eur. J. Mineral. 2007;19:891–898. doi: 10.1127/0935-1221/2007/0019-1767. DOI
Kirsch R., Fellhauer D., Altmaier M., Neck V., Rossberg A., Fanghänel T., Charlet L., Scheinost A.C. Oxidation State and Local Structure of Plutonium Reacted with Magnetite, Mackinawite, and Chukanovite. Environ. Sci. Technol. 2011;45:7267–7274. doi: 10.1021/es200645a. PubMed DOI
Gui M., Papp J.K., Colburn A.S., Meeks N.D., Weaver B., Wilf I., Bhattacharyya D. Engineered iron/iron oxide function-alized membranes for selenium and other toxic metal removal from power plant scrubber water. J. Membr. Sci. 2015;488:79–91. doi: 10.1016/j.memsci.2015.03.089. PubMed DOI PMC
Okonji S.O., Dominic J.A., Pernitsky D., Achari G. Removal and recovery of selenium species from wastewater: Adsorption kinetics and co-precipitation mechanisms. J. Water Process. Eng. 2020;38:101666. doi: 10.1016/j.jwpe.2020.101666. DOI
Börsig N., Scheinost A.C., Schild D., Neumann T. Mechanisms of selenium removal by partially oxidized magnetite nanoparticles for wastewater remediation. Appl. Geochem. 2021;132:105062. doi: 10.1016/j.apgeochem.2021.105062. DOI
Zhang N., Lin L.-S., Gang D. Adsorptive selenite removal from water using iron-coated GAC adsorbents. Water Res. 2008;42:3809–3816. doi: 10.1016/j.watres.2008.07.025. PubMed DOI
Suzuki T., Sue K., Morotomi H., Niinae M., Yokoshima M., Nakata H. Immobilization of selenium(VI) in artificially contaminated kaolinite using ferrous ion salt and magnesium oxide. J. Environ. Chem. Eng. 2019;7:102802. doi: 10.1016/j.jece.2018.11.046. DOI
Tian Q., Guo B., Chuaicham C., Sasaki K. Mechanism analysis of selenium(VI) immobilization using alkaline-earth metal oxides and ferrous salt. Chemosphere. 2020;248:126123. doi: 10.1016/j.chemosphere.2020.126123. PubMed DOI
Malakootian M., Shahamat Y.D., Kannan K., Mahdizadeh H. Degradation of p-nitroaniline from aqueous solutions using ozonation/Mg-Al layered double hydroxides integrated with the sequencing batch moving bed biofilm reactor. J. Taiwan Inst. Chem. Eng. 2020;113:241–252. doi: 10.1016/j.jtice.2020.08.019. DOI
Malakootian M., Kannan K., Gharaghani M.A., Dehdarirad A., Nasiri A., Shahamat Y.D., Mahdizadeh H. Removal of metronidazole from wastewater by Fe/charcoal micro electrolysis fluidized bed reactor. J. Environ. Chem. Eng. 2019;7:103457. doi: 10.1016/j.jece.2019.103457. DOI
Prasad K., Rao K., Gladis M., Naidu G.R.K., Prasada Rao T. Determination of selenium(IV) after co-precipitation with Fe-Ti layered double hydroxides. Chem. Anal. 2006;51:613–622.