• This record comes from PubMed

Influence of Local Temperature Changes on the Material Microstructure in Abrasive Water Jet Machining (AWJM)

. 2021 Sep 18 ; 14 (18) : . [epub] 20210918

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

This article considers effects of local heat transfer taking place insteel cutting by abrasive water jet machining (AWJM). The influence of temperature changes during AWJM has not been investigated thoroughly. Most studies on AWJM suggest that thermal energy has little or no effect on the material cut. This study focused on the analysis of the material microstructure and indentation microhardness in the jet impact zone and the adjacent area. The structure features revealed through optical metallography and scanning microscopy suggest local temperature changes caused by the impact of the abrasive water jet against the workpiece surface. From the microscopic examinationand hardness tests, it is clear that, during the process, large amounts of energy were transferred locally. The mechanical stress produced by the water jet led to plastic deformation at and near the surface. This was accompanied by the generation and transfer of large amounts of heat resulting in a local rise in temperature to 450 °C or higher.

See more in PubMed

Bańkowski D., Spadło S. The use of abrasive waterjet cutting to remove flash from castings. Arch. Foundry Eng. 2019;19:94–98. doi: 10.24425/afe.2019.129617. DOI

Liu X.C., Liang Z.W., Wen G.L., Yuan X.F. Waterjet machining and research developments: A review. Int. J. Adv. Manuf. Technol. 2019;102:1257–1335. doi: 10.1007/s00170-018-3094-3. DOI

Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI

Yuvaraj N., Pavithra E., Shamli C.S. Investigation of surface morphology and topography features on abrasive water jet milled surface pattern of SS 304. J. Test. Eval. 2020;48:2981–2997. doi: 10.1520/JTE20180856. DOI

Hlaváč L.M., Krajcarz D., Hlaváčová I.M., Spadło S. Precision comparison of analytical and statistical-regression models for AWJ cutting. Prec. Eng. 2017;50:148–159. doi: 10.1016/j.precisioneng.2017.05.002. DOI

Hlaváčová I.M., Sadílek M., Váňová P., Szumilo Š., Tyč M. Influence of steel structure on machinability by abrasive water jet. Materials. 2020;13:4424. doi: 10.3390/ma13194424. PubMed DOI PMC

Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI

Hlaváč L.M., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2015;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI

Chen X., Guan J., Deng S., Liu Q., Chen M. Features and mechanism of abrasive water jet cutting of Q345 steel. Int. J. Heat Technol. 2018;36:81–87. doi: 10.18280/ijht.360111. DOI

Hlaváč L.M., Bańkowski D., Krajcarz D., Štefek A., Tyč M., Młynarczyk P. Abrasive eaterjet (AWJ) forces—Indicator of cutting system malfunction. Materials. 2021;14:1683. doi: 10.3390/ma14071683. PubMed DOI PMC

Zhao W., Guo C. Topography and microstructure of the cutting surface machined with abrasive waterjet. Int. J. Adv. Manuf. Technol. 2014;73:941–947. doi: 10.1007/s00170-014-5869-5. DOI

Hlaváč L.M. Revised model of abrasive water jet cutting for industrial use. Materials. 2021;14:4032. doi: 10.3390/ma14144032. PubMed DOI PMC

Ishfaq K., Ahmed N., Rehman A.U., Hussain A., Umer U., Al-Zabidi A. Minimizing the micro-edge damage at each constituent layer of the clad composite during AWJM. Materials. 2020;13:2685. doi: 10.3390/ma13122685. PubMed DOI PMC

Folkes J. Waterjet—An innovative tool for manufacturing. J. Mater. Process.Technol. 2009;209:6181–6189. doi: 10.1016/j.jmatprotec.2009.05.025. DOI

Kovacevic R., Hashish M., Mohan R., Ramulu M., Kim T.J., Geskin S. State of the art of research and development in abrasive waterjet machining. J.Manuf. Sci. Eng. 1997;119:776–785. doi: 10.1115/1.2836824. DOI

Imanaka O., Shinohara K., Kawete Y. Experimental study of machining characteristics by liquid jets of high power density up to 108Wcm−2; Proceedings of the First International Symposium on Jet Cutting Technology; Coventry, UK. 5–7 April 1972; Cranfield, UK: BHRA Group Publ.; 1972. pp. 22–35.

Neusen K.F., Schramm S.W. Jet induced target material temperature increases during jet cutting; Proceedings of the Fourth International Symposium on Jet Cutting Technology; Canterbury, UK. 12–14 April 1978; Cranfield, UK: BHRA Group Publ.; 1978. pp. 45–52.

Ansari A., Ohadi M., Hashish M. Effect of waterjet pressure on thermal energy distribution in the workpiece during cutting with an abrasive-waterjet; Proceedings of the Symposium on Research and Technological Developments in Nontraditional Machining; Chicago, IL, USA. 27 November–2 December 1988; New York, NY, USA: American Society of Mechanical Engineers, Production Engineering Division; 1988. pp. 141–148.

Ohadi M.M., Cheng K.L. Modelingof temperature distributions in the workpiece during abrasive waterjet machining. J. Heat Transfer. 1993;115:446–452. doi: 10.1115/1.2910697. DOI

Arola D., Fadale T., Ramulu M. Heat flux at the erosion boundary during abrasive waterjet machining of metals; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; London, UK: BHRA Group Publ.; 1996. pp. 735–752.

Arola D., Ramulu M. A residual stress analysis of metals machined with abrasive waterjet; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; London, UK: BHRA Group Publ.; 1996. pp. 269–290.

Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of material structure on forces measured during abrasive waterjet (AWJ) machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC

Spadło S., Krajcarz D., Młynarczyk P. Badania wpływu parametrów przecinania strugą wodno-ścierną stali niestopowej na strukturę geometryczną powierzchni. Mechanik. 2014;9:293–297.

Borkowski J., Sokołowska A. Termiczne Aspekty Obróbki Wysokociśnieniową Strugą Wodną o Różnej Strukturze i Zastosowaniu. Volume 36. XXVII Naukowa Szkoła Obróbki Ściernej; Koszalin-Sarbinowo, Poland: 2004. pp. 515–522.

Kovacevic R., Mohan R., Beardsley H. Monitoring of thermal energy distribution in abrasive waterjet cutting using infrared thermography. ASME J. Manuf. Sci. Eng. 1996;118:555–563. doi: 10.1115/1.2831067. DOI

Perec A. Research into the disintegration of abrasive materials in the abrasive water jet machining process. Materials. 2021;14:3940. doi: 10.3390/ma14143940. PubMed DOI PMC

Przybyłowicz K. Metalozanawstwo. WNT; Warszawa, Poland: 2007.

Newest 20 citations...

See more in
Medvik | PubMed

Temperature Measurement during Abrasive Water Jet Machining (AWJM)

. 2022 Oct 12 ; 15 (20) : . [epub] 20221012

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...