Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties

. 2021 Sep 18 ; 26 (18) : . [epub] 20210918

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34577148

Grantová podpora
20-07833S Grantová Agentura České Republiky
A2_FCHI_2021_002 Ministerstvo Školství, Mládeže a Tělovýchovy

The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.

Zobrazit více v PubMed

Tomalia D.A. In: Dendrimers and Other Dendritic Polymers. Fréchet J.M.J., Tomalia D.A., editors. Volume 1. John Wiley & Sons, Ltd.; Chichester, UK: 2001.

Newkome G.R., Moorefield C.N., Vögtle F. Dendritic Molecules: Concepts, Syntheses, Perspectives. Wiley-VCH; Weinheim, Germany: 1996.

Tomalia D.A., Christensen J.B., Boas U. The dendritic effect. Dendrimers, Dendrons, and Dendritic Polym. Cambridge University Press; Cambridge, UK: 2012. pp. 276–292. DOI

Caminade A.M., Ouali A., Laurent R., Turrin C.O., Majoral J.P. The dendritic effect illustrated with phosphorus dendrimers. Chem. Soc. Rev. 2015;44:3890–3899. doi: 10.1039/C4CS00261J. PubMed DOI

Zaupa G., Scrimin P., Prins L.J. Origin of the Dendritic Effect in Multivalent Enzyme-Like Catalysts. J. Am. Chem. Soc. 2008;130:5699–5709. doi: 10.1021/ja7113213. PubMed DOI

Tomalia D.A. Dendritic effects: Dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs) New J. Chem. 2012;36:264–281. doi: 10.1039/C1NJ20501C. DOI

Chow H.F., Leung C.F., Wang G.X., Yang Y.Y. Dendritic effects in functional dendrimer molecules. Comptes Rendus Chim. 2003;6:735–745. doi: 10.1016/j.crci.2003.07.001. DOI

Madaan K., Kumar S., Poonia N., Lather V., Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014;6:139–150. doi: 10.4103/0975-7406.130965. PubMed DOI PMC

Gothwal A., Jain K., Kesharwani P., Gupta U., Chourasia M.K., Iyer A.K. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery. Drug Discov. Today. 2017;23:300–314. doi: 10.1016/j.drudis.2017.06.009. PubMed DOI

Bronstein L.M. Magnetically Recoverable Catalysts with Dendritic Ligands for Enhanced Catalysis and Easy Separation. ChemCatChem. 2015;7:1058–1060. doi: 10.1002/cctc.201500007. DOI

Caminade A.M., Laurent R., Chaudret B., Majoral J.P. Phosphine-terminated dendrimers Synthesis and complexation properties. Coord. Chem. Rev. 1998;178–180:793–821. doi: 10.1016/S0010-8545(98)00057-5. DOI

Liang L., Ruiz J., Astruc D. The efficient copper(I) (hexabenzyl)tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: Positive dendritic effects and monometallic mechanism. Adv. Synth. Catal. 2011;353:3434–3450. doi: 10.1002/adsc.201100449. DOI

Jishkariani D., Lee J.D., Yun H., Paik T., Kikkawa J.M., Kagan C.R., Donnio B., Murray C.B. The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles. Nanoscale. 2017;9:13922–13928. doi: 10.1039/C7NR05769E. PubMed DOI

Ogasawara S., Ikeda A., Kikuchi J.I. Positive dendritic effect in DNA/porphyrin composite photocurrent generators containing dendrimers as the stationary phase. Chem. Mater. 2006;18:5982–5987. doi: 10.1021/cm061812i. DOI

Hu J., Xu T., Cheng Y. NMR insights into dendrimer-based host-guest systems. Chem. Rev. 2012;112:3856–3891. doi: 10.1021/cr200333h. PubMed DOI

Esipenko N.A., Koutnik P., Minami T., Mosca L., Lynch V.M., Zyryanov G.V., Anzenbacher P. First supramolecular sensors for phosphonate anions. Chem. Sci. 2013;4:3617–3623. doi: 10.1039/c3sc51407b. DOI

Valerio C., Fillaut J.L., Ruiz J., Guittard J., Blais J.C., Astruc D. The dendritic effect in molecular recognition: Ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc. 1997;119:2588–2589. doi: 10.1021/ja964127t. DOI

Ornelas C., Ruiz J., Astruc D. Dendritic and ion-pairing effects in oxo-anion recognition by giant alkylferrocenyl dendrimers. Organometallics. 2009;28:4431–4437. doi: 10.1021/om900277u. DOI

Boas U., Karlsson A.J., De Waal B.F.M., Meijer E.W. Synthesis and properties of new thiourea-functionalized poly(propylene imine) dendrimers and their role as hosts for urea functionalized guests. J. Org. Chem. 2001;66:2136–2145. doi: 10.1021/jo001573x. PubMed DOI

Stephan H., Spies H., Johannsen B., Klein L., Vögtle F. Lipophilic urea-functionalized dendrimers as efficient carriers for oxyanions. Chem. Commun. 1999:1875–1876. doi: 10.1039/a905862a. DOI

Cuřínová P., Winkler M., Krupková A., Císařová I., Budka J., Wun C.N., Blechta V., Malý M., Červenková Št’astná L., Sýkora J., et al. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS Omega. 2021;6:15514–15522. doi: 10.1021/acsomega.1c02142. PubMed DOI PMC

Casado C.M., Cuadrado I., Alonso B., Morán M., Losada J. Silicon-based ferrocenyl dendrimers as anion receptors in solution and immobilized onto electrode surfaces. J. Electroanal. Chem. 1999;463:87–92. doi: 10.1016/S0022-0728(98)00446-X. DOI

Villoslada R., Alonso B., Casado C.M., García-Armada P., Losada J. Anion receptor electrochemical sensing properties of poly(propyleneimine) dendrimers with ferrocenylamidoalkyl terminal groups. Organometallics. 2009;28:727–733. doi: 10.1021/om8007019. DOI

Salvadori K., Šimková L., Císařová I., Sýkora J., Ludvík J., Cuřínová P. Sulphonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation. ChemPlusChem. 2020;85:1401–1411. doi: 10.1002/cplu.202000326. PubMed DOI

Klejch T., Slavíček J., Hudeček O., Eigner V., Gutierrez N.A., Cuřínová P., Lhoták P. Calix[4]arenes containing a ureido functionality on the lower rim as highly efficient receptors for anion recognition. New J. Chem. 2016;40:7935–7942. doi: 10.1039/C6NJ01271J. DOI

Ramenda T., Steinbach J., Wuest F. 4-[18F]Fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA): A versatile building block for labeling of peptides, proteins and oligonucleotides with fluorine-18 via Cu(I)-mediated click chemistry. Amino Acids. 2013;44:1167–1180. doi: 10.1007/s00726-012-1450-4. PubMed DOI

Lafay J., Latxague L., Lacroix C., Déléris G. Synthesis of novel C-organosilicon derivatives, potential inhibitors of HIV reverse transcription. Phosphorus. Sulfur. Silicon Relat. Elem. 1995;102:155–168. doi: 10.1080/10426509508042553. DOI

Strašák T., Malý J., Wróbel D., Malý M., Herma R., Čermák J., Müllerová M., Št′astná L.Č., Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications-synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017;7:18724–18744. doi: 10.1039/C7RA01845B. DOI

Liegertová M., Wrobel D., Herma R., Müllerová M., Šťastná L.Č., Cuřínová P., Strašák T., Malý M., Čermák J., Smejkal J., et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology. 2018;12:797–818. doi: 10.1080/17435390.2018.1475582. PubMed DOI

Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI

Meldal M., Tornøe C.W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI

Hirose K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001;39:193–209. doi: 10.1023/A:1011117412693. DOI

Thordarson P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011;40:1305–1323. doi: 10.1039/C0CS00062K. PubMed DOI

The Binding Constants Were Calculated Using the Bindfit Application Freely. [(accessed on 12 August 2021)]. Available online: http://supramolecular.org.

Haav K., Kadam S.A., Toom L., Gale P.A., Busschaert N., Wenzel M., Hiscock J.R., Kirby I.L., Haljasorg T., Lõkov M., et al. Accurate Method to Quantify Binding in Supramolecular Chemistry. J. Org. Chem. 2013;78:7796–7808. doi: 10.1021/jo400626p. PubMed DOI

Zhou L.-L., Roovers J. Synthesis of Novel Carbosilane Dendritic Macromolecules. Macromolecules. 1993;26:963–968. doi: 10.1021/ma00057a013. DOI

Van Der Made A.W., Van Leeuwen P.W.N.M., De Wilde J.C., Brandes R.A.C. Dendrimeric silanes. Adv. Mater. 1993;5:466–468. doi: 10.1002/adma.19930050613. DOI

Palatinus L., Chapuis G. SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI

Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An Insight into Anion Extraction by Amphiphiles: Hydrophobic Microenvironments as a Requirement for the Extractant Selectivity

. 2023 Nov 21 ; 8 (46) : 44221-44228. [epub] 20231103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...