Controlled Anchoring of (Phenylureido)sulfonamide-Based Receptor Moieties: An Impact of Binding Site Multiplication on Complexation Properties
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-07833S
Grantová Agentura České Republiky
A2_FCHI_2021_002
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34577148
PubMed Central
PMC8468139
DOI
10.3390/molecules26185670
PII: molecules26185670
Knihovny.cz E-zdroje
- Klíčová slova
- dendrimers, host-guest chemistry, supramolecular chemistry,
- MeSH
- magnetická rezonanční spektroskopie MeSH
- močovina chemie MeSH
- molekulární struktura MeSH
- sulfonamidy * chemie MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- močovina MeSH
- sulfonamidy * MeSH
The repetition of urea-based binding units within the receptor structure does not only lead to monomer properties multiplication. As confirmed by spectroscopic studies, UV-Vis and 1H-NMR in classical or competitive titration mode, the attachment to a carrier allocates the active moieties to mutual positions predetermining the function of the whole receptor molecule. Bivalent receptors form self-aggregates. Dendritic receptors with low dihydrogen phosphate loadings offer a cooperative complexation mode associated with a positive dendritic effect. In higher dihydrogen phosphate concentrations, the dendritic branches act independently and the binding mode changes to 1:1 anion: complexation site. Despite the anchoring, the dendritic receptors retain the superior efficiency and selectivity of a monomer, paving the way to recyclable receptors, desirable for economic and ecological reasons.
Zobrazit více v PubMed
Tomalia D.A. In: Dendrimers and Other Dendritic Polymers. Fréchet J.M.J., Tomalia D.A., editors. Volume 1. John Wiley & Sons, Ltd.; Chichester, UK: 2001.
Newkome G.R., Moorefield C.N., Vögtle F. Dendritic Molecules: Concepts, Syntheses, Perspectives. Wiley-VCH; Weinheim, Germany: 1996.
Tomalia D.A., Christensen J.B., Boas U. The dendritic effect. Dendrimers, Dendrons, and Dendritic Polym. Cambridge University Press; Cambridge, UK: 2012. pp. 276–292. DOI
Caminade A.M., Ouali A., Laurent R., Turrin C.O., Majoral J.P. The dendritic effect illustrated with phosphorus dendrimers. Chem. Soc. Rev. 2015;44:3890–3899. doi: 10.1039/C4CS00261J. PubMed DOI
Zaupa G., Scrimin P., Prins L.J. Origin of the Dendritic Effect in Multivalent Enzyme-Like Catalysts. J. Am. Chem. Soc. 2008;130:5699–5709. doi: 10.1021/ja7113213. PubMed DOI
Tomalia D.A. Dendritic effects: Dependency of dendritic nano-periodic property patterns on critical nanoscale design parameters (CNDPs) New J. Chem. 2012;36:264–281. doi: 10.1039/C1NJ20501C. DOI
Chow H.F., Leung C.F., Wang G.X., Yang Y.Y. Dendritic effects in functional dendrimer molecules. Comptes Rendus Chim. 2003;6:735–745. doi: 10.1016/j.crci.2003.07.001. DOI
Madaan K., Kumar S., Poonia N., Lather V., Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioallied Sci. 2014;6:139–150. doi: 10.4103/0975-7406.130965. PubMed DOI PMC
Gothwal A., Jain K., Kesharwani P., Gupta U., Chourasia M.K., Iyer A.K. Dendrimer nanohybrid carrier systems: An expanding horizon for targeted drug and gene delivery. Drug Discov. Today. 2017;23:300–314. doi: 10.1016/j.drudis.2017.06.009. PubMed DOI
Bronstein L.M. Magnetically Recoverable Catalysts with Dendritic Ligands for Enhanced Catalysis and Easy Separation. ChemCatChem. 2015;7:1058–1060. doi: 10.1002/cctc.201500007. DOI
Caminade A.M., Laurent R., Chaudret B., Majoral J.P. Phosphine-terminated dendrimers Synthesis and complexation properties. Coord. Chem. Rev. 1998;178–180:793–821. doi: 10.1016/S0010-8545(98)00057-5. DOI
Liang L., Ruiz J., Astruc D. The efficient copper(I) (hexabenzyl)tren catalyst and dendritic analogues for green “click” reactions between azides and alkynes in organic solvent and in water: Positive dendritic effects and monometallic mechanism. Adv. Synth. Catal. 2011;353:3434–3450. doi: 10.1002/adsc.201100449. DOI
Jishkariani D., Lee J.D., Yun H., Paik T., Kikkawa J.M., Kagan C.R., Donnio B., Murray C.B. The dendritic effect and magnetic permeability in dendron coated nickel and manganese zinc ferrite nanoparticles. Nanoscale. 2017;9:13922–13928. doi: 10.1039/C7NR05769E. PubMed DOI
Ogasawara S., Ikeda A., Kikuchi J.I. Positive dendritic effect in DNA/porphyrin composite photocurrent generators containing dendrimers as the stationary phase. Chem. Mater. 2006;18:5982–5987. doi: 10.1021/cm061812i. DOI
Hu J., Xu T., Cheng Y. NMR insights into dendrimer-based host-guest systems. Chem. Rev. 2012;112:3856–3891. doi: 10.1021/cr200333h. PubMed DOI
Esipenko N.A., Koutnik P., Minami T., Mosca L., Lynch V.M., Zyryanov G.V., Anzenbacher P. First supramolecular sensors for phosphonate anions. Chem. Sci. 2013;4:3617–3623. doi: 10.1039/c3sc51407b. DOI
Valerio C., Fillaut J.L., Ruiz J., Guittard J., Blais J.C., Astruc D. The dendritic effect in molecular recognition: Ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc. 1997;119:2588–2589. doi: 10.1021/ja964127t. DOI
Ornelas C., Ruiz J., Astruc D. Dendritic and ion-pairing effects in oxo-anion recognition by giant alkylferrocenyl dendrimers. Organometallics. 2009;28:4431–4437. doi: 10.1021/om900277u. DOI
Boas U., Karlsson A.J., De Waal B.F.M., Meijer E.W. Synthesis and properties of new thiourea-functionalized poly(propylene imine) dendrimers and their role as hosts for urea functionalized guests. J. Org. Chem. 2001;66:2136–2145. doi: 10.1021/jo001573x. PubMed DOI
Stephan H., Spies H., Johannsen B., Klein L., Vögtle F. Lipophilic urea-functionalized dendrimers as efficient carriers for oxyanions. Chem. Commun. 1999:1875–1876. doi: 10.1039/a905862a. DOI
Cuřínová P., Winkler M., Krupková A., Císařová I., Budka J., Wun C.N., Blechta V., Malý M., Červenková Št’astná L., Sýkora J., et al. Transport of Anions across the Dialytic Membrane Induced by Complexation toward Dendritic Receptors. ACS Omega. 2021;6:15514–15522. doi: 10.1021/acsomega.1c02142. PubMed DOI PMC
Casado C.M., Cuadrado I., Alonso B., Morán M., Losada J. Silicon-based ferrocenyl dendrimers as anion receptors in solution and immobilized onto electrode surfaces. J. Electroanal. Chem. 1999;463:87–92. doi: 10.1016/S0022-0728(98)00446-X. DOI
Villoslada R., Alonso B., Casado C.M., García-Armada P., Losada J. Anion receptor electrochemical sensing properties of poly(propyleneimine) dendrimers with ferrocenylamidoalkyl terminal groups. Organometallics. 2009;28:727–733. doi: 10.1021/om8007019. DOI
Salvadori K., Šimková L., Císařová I., Sýkora J., Ludvík J., Cuřínová P. Sulphonamidic Groups as Electron-Withdrawing Units in Ureido-Based Anion Receptors: Enhanced Anion Complexation versus Deprotonation. ChemPlusChem. 2020;85:1401–1411. doi: 10.1002/cplu.202000326. PubMed DOI
Klejch T., Slavíček J., Hudeček O., Eigner V., Gutierrez N.A., Cuřínová P., Lhoták P. Calix[4]arenes containing a ureido functionality on the lower rim as highly efficient receptors for anion recognition. New J. Chem. 2016;40:7935–7942. doi: 10.1039/C6NJ01271J. DOI
Ramenda T., Steinbach J., Wuest F. 4-[18F]Fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([18F]F-SA): A versatile building block for labeling of peptides, proteins and oligonucleotides with fluorine-18 via Cu(I)-mediated click chemistry. Amino Acids. 2013;44:1167–1180. doi: 10.1007/s00726-012-1450-4. PubMed DOI
Lafay J., Latxague L., Lacroix C., Déléris G. Synthesis of novel C-organosilicon derivatives, potential inhibitors of HIV reverse transcription. Phosphorus. Sulfur. Silicon Relat. Elem. 1995;102:155–168. doi: 10.1080/10426509508042553. DOI
Strašák T., Malý J., Wróbel D., Malý M., Herma R., Čermák J., Müllerová M., Št′astná L.Č., Cuřínová P. Phosphonium carbosilane dendrimers for biomedical applications-synthesis, characterization and cytotoxicity evaluation. RSC Adv. 2017;7:18724–18744. doi: 10.1039/C7RA01845B. DOI
Liegertová M., Wrobel D., Herma R., Müllerová M., Šťastná L.Č., Cuřínová P., Strašák T., Malý M., Čermák J., Smejkal J., et al. Evaluation of toxicological and teratogenic effects of carbosilane glucose glycodendrimers in zebrafish embryos and model rodent cell lines. Nanotoxicology. 2018;12:797–818. doi: 10.1080/17435390.2018.1475582. PubMed DOI
Rostovtsev V.V., Green L.G., Fokin V.V., Sharpless K.B. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. Int. Ed. 2002;41:2596–2599. doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. PubMed DOI
Meldal M., Tornøe C.W. Cu-Catalyzed Azide−Alkyne Cycloaddition. Chem. Rev. 2008;108:2952–3015. doi: 10.1021/cr0783479. PubMed DOI
Hirose K. A Practical Guide for the Determination of Binding Constants. J. Incl. Phenom. Macrocycl. Chem. 2001;39:193–209. doi: 10.1023/A:1011117412693. DOI
Thordarson P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011;40:1305–1323. doi: 10.1039/C0CS00062K. PubMed DOI
The Binding Constants Were Calculated Using the Bindfit Application Freely. [(accessed on 12 August 2021)]. Available online: http://supramolecular.org.
Haav K., Kadam S.A., Toom L., Gale P.A., Busschaert N., Wenzel M., Hiscock J.R., Kirby I.L., Haljasorg T., Lõkov M., et al. Accurate Method to Quantify Binding in Supramolecular Chemistry. J. Org. Chem. 2013;78:7796–7808. doi: 10.1021/jo400626p. PubMed DOI
Zhou L.-L., Roovers J. Synthesis of Novel Carbosilane Dendritic Macromolecules. Macromolecules. 1993;26:963–968. doi: 10.1021/ma00057a013. DOI
Van Der Made A.W., Van Leeuwen P.W.N.M., De Wilde J.C., Brandes R.A.C. Dendrimeric silanes. Adv. Mater. 1993;5:466–468. doi: 10.1002/adma.19930050613. DOI
Palatinus L., Chapuis G. SUPERFLIP-a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Cryst. 2007;40:786–790. doi: 10.1107/S0021889807029238. DOI
Betteridge P.W., Carruthers J.R., Cooper R.I., Prout K., Watkin D.J. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Cryst. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Macrae C.F., Bruno I.J., Chisholm J.A., Edgington P.R., McCabe P., Pidcock E., Rodriguez-Monge L., Taylor R., van de Streek J., Wood P.A. Mercury CSD 2.0-new features for the visualization and investigation of crystal structures. J. Appl. Cryst. 2008;41:466–470. doi: 10.1107/S0021889807067908. DOI