Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
MH101673
US National Institutes of Health
R33 MH101673
NIMH NIH HHS - United States
LTAUSA18086
program INTER-EXCELLENCE
R21 MH101673
NIMH NIH HHS - United States
RVO 61388963
Institute of Organic Chemistry and Biochemistry
Ministry of Education, Youth and Sports (MŠMT in Czech)
PubMed
34636150
PubMed Central
PMC8741643
DOI
10.1002/cmdc.202100568
Knihovny.cz E-resources
- Keywords
- Acyclic nucleoside phosphonates, Adenylate cyclase, Bordetella pertussis, Inhibitors, Prodrugs,
- MeSH
- Adenylate Cyclase Toxin antagonists & inhibitors metabolism MeSH
- Antigens, Bacterial metabolism MeSH
- Bacillus anthracis chemistry MeSH
- Bacterial Toxins antagonists & inhibitors metabolism MeSH
- Bordetella pertussis enzymology MeSH
- Halogens chemistry pharmacology MeSH
- Adenylyl Cyclase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Molecular Structure MeSH
- Organophosphonates chemistry pharmacology MeSH
- Thiazoles chemical synthesis chemistry pharmacology MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 2-aminothiazole MeSH Browser
- Adenylate Cyclase Toxin MeSH
- anthrax toxin MeSH Browser
- Antigens, Bacterial MeSH
- Bacterial Toxins MeSH
- Halogens MeSH
- Adenylyl Cyclase Inhibitors MeSH
- Organophosphonates MeSH
- Thiazoles MeSH
A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.
See more in PubMed
Gancedo JM, Biol. Rev 2013, 88, 645–668. PubMed
McKnight GS, Curr. Opin. Cell Biol 1991, 3, 213–217. PubMed
Hanoune J, Defer N, Annu. Rev. Pharmacol. Toxicol 2001, 41, 145–174. PubMed
Sunahara RK, Dessauer CW, Gilman AG, Annu. Rev. Pharmacol. Toxicol 1996, 36, 461–480. PubMed
Ahuja N, Kumar P, Bhatnagar R, Crit. Rev. Microbiol 2004, 30, 187–196. PubMed
Khannpnavar B, Mehta V, Qi C, Korkhov V, Curr. Opin. Struct. Biol 2020, 63, 34–41. PubMed
McDonough K, Rodriguez A, Nat. Rev. Microbiol 2012, 10, 27–38. PubMed PMC
Seifert R, Dove S, Trends Microbiol 2012, 20, 343–351. PubMed
Ivarsson ME, Leroux J-C, Castagner B, Angew. Chem. Int. Ed 2012, 51, 4024–4045. PubMed
Guo Q, Shen Y, Lee Y-S, Gibbs CS, Mrksich M, Tang W-J, EMBO J 2005, 24, 3190–3201. PubMed PMC
Shen Y, Zhukovskaya NL, Zimmer MI, Soelaiman S, Bergson P, Wang C-R, Gibbs CS, Tang W-J, Proc. Natl. Acad. Sci. USA 2004, 101, 3242–3247. PubMed PMC
Shoshani I, Laux WHG, Périgaud C, Gosselin G, Johnson RA, J. Biol. Chem 1999, 274, 34742–34744. PubMed
Česnek M, Jansa P, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Brust TF, Pávek P, Tretnar F, Watts VJ, Janeba Z, ChemMedChem 2015, 10, 1351–1364. PubMed
Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z, ChemMedChem 2018, 13, 1779–1796. PubMed PMC
Břehová P, Šmídková M, Skácel J, Dračínský M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z, ChemMedChem 2016, 11, 2534–2546. PubMed PMC
Frydrych J, Skácel J, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Gnanasekaran R, Lepšík M, Soto-Velasquez M, Watts VJ, Janeba Z, ChemMedChem 2018, 13, 199–206. PubMed
Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z, European J Med. Chem 2021, 222, 113581. PubMed PMC
Erion MD, van Poelje PD, Dang Q, Kasibhatla SR, Potter SC, Reddy MR, Reddy KR, Jiang T, Lipscomb WN, PNAS 2005, 102, 7970–7975. PubMed PMC
Dang Q, Kasibhatla SR, Reddy KR, Jiang T, Reddy MR, Potter SC, Fujitaki JM, van Poelje PD, Huang J, Lipscomb WN, Erion MD, J. Am. Chem. Soc 2007, 129, 15491–15502. PubMed
Dang Q, Kasibhatla SR, Jiang T, Fan K, Liu Y, Taplin F, Schulz W, Cashion DK, Reddy KR, van Poelje PD, Fujitaki JM, Potter SC, Erion MD, J. Med. Chem 2008, 51, 4331–4339. PubMed
Dang Q, Liu Y, Cashion DK, Kasibhatla SR, Jiang T, Taplin F, Jacintho JD, Li H, Sun Z, Fan Y, Da Re J, Tian F, Li W, Gibson T, Lemus R, van Poelje PD, Potter SC, Erion MD, J. Med. Chem 2011, 54, 153–165. PubMed
Pradere U, Garnier-Amblard EC, Coats SJ, Amblard F, Schinazi RF, Chem. Rev 2014, 114, 9154–9218. PubMed PMC
Wiemer AJ, Wiemer DF, Top. Curr. Chem 2015, 360, 115–160. PubMed PMC
Heidel KM, Dowd CS, Future Med. Chem 2019, 11, 1625–1643. PubMed PMC
Šmídková M, Dvořáková A, Tloušťová E, Česnek M, Janeba Z, Mertlíková-Kaiserová H, Antimicrob. Agents Chemother 2014, 58, 664–671. PubMed PMC
Guianvarc’h D, Fourrey J-L, Maurisse R, Sun J-S, Benhida R, Org. Lett 2002, 4, 4209–4212. PubMed
Schnürch M, Spina M, Khan AF, Mihovilovic MD, Stanetty P, Chem. Soc. Rev 2007, 36, 1046–1057. PubMed
Stanetty P, Schnürch M, Mereiter K, Mihovilovic MD, J. Org. Chem 2005, 70, 567–574. PubMed
Schnürch M, Khan AF, Mihovilovic MD, Stanetty P, Eur. J. Org. Chem 2009, 19, 3228–3236.
Jansa P, Baszczyňski O, Dračínský M, Votruba I, Zídek Z, Bahador G, Stepan G, Cihlar T, Mackman R, Holý A, Janeba Z, Eur. J. Med. Chem 2011, 46, 3748–3754. PubMed
Holý A, Rosenberg I, Collect. Czech. Chem. Commun 1987, 52, 2801–2809.
Slusarczyk M, Ferrari V, Serpi M, Gönczy B, Balzarini J, McGuigan C, ChemMedChem 2018, 13, 2305–2316. PubMed
Slusarczyk M, Serpi M, Pertusati F, Antivir. Chem. Chemother 2018, 26, 1–31. PubMed PMC
Procházková E, Navrátil R, Janeba Z, Roithová J, Baszczyňski O, Org. Biomol. Chem 2019, 17, 315–320. PubMed
Soto-Velasquez M, Hayes MP, Alpsoy A, Dykhuizen EC, Watts VJ, Mol Pharmacol 2018, 94, 963–972. PubMed PMC
Brust TF, Alongkronrusmee D, Soto-Velasquez M, Baldwin TA, Ye Z, Dai M, Dessauer CW, van Rijn RM, Watts VJ, Sci. Signaling 2017, 10, eaah5381. PubMed PMC
Conley JM, Brand CS, Bogard AS, Pratt EP, Xu R, Hockerman GH, Ostrom R, Dessauer CW, Watts VJ, J. Pharmacol. Exp. Ther 2013, 347, 276–287. PubMed PMC