• This record comes from PubMed

Germline determinants of humoral immune response to HPV-16 protect against oropharyngeal cancer

. 2021 Oct 12 ; 12 (1) : 5945. [epub] 20211012

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 CA092039 NCI NIH HHS - United States
RP-PG-0707-10034 Department of Health - United Kingdom
P30 CA047904 NCI NIH HHS - United States
R01 CA090731 NCI NIH HHS - United States
P50 CA097190 NCI NIH HHS - United States
R01 DE025712 NIDCR NIH HHS - United States
C18281/A19169 Cancer Research UK - United Kingdom
001 World Health Organization - International
MR/N005872/1 Medical Research Council - United Kingdom

Links

PubMed 34642315
PubMed Central PMC8511029
DOI 10.1038/s41467-021-26151-9
PII: 10.1038/s41467-021-26151-9
Knihovny.cz E-resources

Although several oropharyngeal cancer (OPC) susceptibility loci have been identified, most previous studies lacked detailed information on human papillomavirus (HPV) status. We conduct a genome-wide analysis by HPV16 serology status in 4,002 oral cancer cases (OPC and oral cavity cancer (OCC)) and 5,256 controls. We detect four susceptibility loci pointing to a distinct genetic predisposition by HPV status. Our most notable finding in the HLA region, that is now confirmed to be specific of HPV(+)OPC risk, reveal two independent loci with strong protective effects, one refining the previously reported HLA class II haplotype association. Antibody levels against HPV16 viral proteins strongly implicate the protective HLA variants as major determinants of humoral response against L1 capsid protein or E6 oncoprotein suggesting a natural immune response against HPV(+)OPC promoted by HLA variants. This indicates that therapeutic vaccines that target E6 and attenuate viral response after established HPV infections might protect against HPV(+)OPC.

Bristol Dental School University of Bristol Bristol UK

Cancer Registry of Norway Oslo Norway

Cancer Surveillance Section International Agency for Research on Cancer World Health Organization Lyon France

Catalan Institute of Oncology IDIBELL Barcelona Spain

Centre for Oral Health Research Newcastle University Newcastle UK

Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública CIBERESP Madrid Spain

CeRMS and University of Turin Turin Italy

Department of Environmental Medicine and Public Health Icahn School of Medicine at Mount Sinai New York NY USA

Department of Epidemiology Gillings School of Global Public Health University of North Carolina at Chapel Hill Chapel Hill NC USA

Department of Head and Neck Surgery Institute of Clinical Otorhinolaryngology Università Cattolica del Sacro Cuore Roma Italy

Department of Human Genetics Graduate School of Public Health University of Pittsburgh Pittsburgh PA USA

Department of Medicine Baylor College of Medicine Houston TX USA

Department of Otolaryngology Head and Neck Surgery University of North Carolina at Chapel Hill Chapel Hill Chapel Hill NC USA

Department of Otorhinolaryngology Head and Neck Surgery Maastricht University Medical Center Maastricht The Netherlands

Department of Research Cancer Registry of Norway Oslo Norway

Department of Woman and Child Health and Public Health Public Health Area Fondazione Policlinico Universitario A Gemelli IRCCS Roma Italy

Division of Medical Oncology and Center for Cancer Research University of Tennessee Health Science Center Memphis TN USA

Infections and Cancer Epidemiology German Cancer Research Center Heidelberg Germany

Institute of Hygiene and Epidemiology Prague Czech Republic

Istituto di Clinica Otorinolaringoiatrica Fondazione Policlinico Universitario A Gemelli IRCCS Roma Italy

Lunenfeld Tanenbaum Research Institute of Sinai Health System University of Toronto Toronto ON Canada

National Cancer Institute IRCCS Aviano Italy

National Institute for Health Research Bristol Biomedical Research Centre University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol Bristol UK

Oncology Data Analytics Program Catalan Institute of Oncology Barcelona Spain

Prosserman Centre for Population Health Research Lunenfeld Tanenbaum Research Institute Sinai Health System Toronto ON Canada

Queen Elizabeth University Hospital NHS Greater Glasgow and Clyde Glasgow UK

School of Medicine Dentistry and Nursing University of Glasgow Glasgow UK

School of Medicine National and Kapodistrian University of Athens Athens Greece

School of Public Health University of West Attica Athens Greece

Section of Early Detection and Prevention Prevention and Implementation Group International Agency for Research on Cancer World Health Organization Lyon France

Section of Genetics Genetic Cancer Susceptibility Group International Agency for Research on Cancer World Health Organization Lyon France

Section of Genetics Genetic Epidemiology Group International Agency for Research on Cancer World Health Organization Lyon France

Section of Hygiene University Department of Life Sciences and Public Health Università Cattolica del Sacro Cuore Roma Italy

Trinity College School of Dental Science Dublin Ireland

University Bremen Bremen Germany

University of Aberdeen Aberdeen UK

University of Padova Padova Italy

UPMC Hillman Cancer Center Pittsburgh PA USA

See more in PubMed

Elrefaey S, Massaro MA, Chiocca S, Chiesa F, Ansarin M. HPV in oropharyngeal cancer: the basics to know in clinical practice. Acta Otorhinolaryngol. Ital. 2014;34:299–309. PubMed PMC

Kreimer, A. R. et al. Timing of HPV16-E6 antibody seroconversion before OPSCC: findings from the HPVC3 consortium. Ann. Oncol. 10.1093/annonc/mdz138 (2019). PubMed PMC

Network TCGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–582. doi: 10.1038/nature14129. PubMed DOI PMC

Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal. Cancer N. Engl. J. Med. 2010;363:24–35. doi: 10.1056/NEJMoa0912217. PubMed DOI PMC

Fakhry C, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl Cancer Inst. 2008;100:261–269. doi: 10.1093/jnci/djn011. PubMed DOI

Kreimer AR, et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J. Clin. Oncol. 2013;31:2708–2715. doi: 10.1200/JCO.2012.47.2738. PubMed DOI PMC

Hashibe M, et al. Multiple ADH genes are associated with upper aerodigestive cancers. Nat. Genet. 2008;40:707–709. doi: 10.1038/ng.151. PubMed DOI

McKay JD, et al. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE Consortium. PLoS Genet. 2011;7:e1001333. doi: 10.1371/journal.pgen.1001333. PubMed DOI PMC

Lesseur C, et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat. Genet. 2016;48:1544–1550. doi: 10.1038/ng.3685. PubMed DOI PMC

Chen D, et al. Genome-wide association study of susceptibility loci for cervical cancer. J. Natl Cancer Inst. 2013;105:624–633. doi: 10.1093/jnci/djt051. PubMed DOI

Dillner J. The serological response to papillomaviruses. Semin. Cancer Biol. 1999;9:423–430. doi: 10.1006/scbi.1999.0146. PubMed DOI

Kreimer AR, et al. Human papillomavirus antibodies and future risk of anogenital cancer: A nested case-control study in the European Prospective Investigation into Cancer and Nutrition study. J. Clin. Oncol. 2015;33:877–884. doi: 10.1200/JCO.2014.57.8435. PubMed DOI PMC

Robbins, H. A. et al. Glutathione S-transferase L1 multiplex serology as a measure of cumulative infection with human papillomavirus. 10.1186/1471-2334-14-120 (2014). PubMed PMC

Holzinger D, et al. Sensitivity and specificity of antibodies against HPV16 E6 and other early proteins for the detection of HPV16-driven oropharyngeal squamous cell carcinoma. Int. J. Cancer. 2017;140:2748–2757. doi: 10.1002/ijc.30697. PubMed DOI

Lang Kuhs KA, et al. Characterization of human papillomavirus antibodies in individuals with head and neck cancer. Cancer Epidemiol. 2016;42:46–52. doi: 10.1016/j.canep.2016.03.003. PubMed DOI PMC

Kreimer, A. R. et al. kinetics of the human papillomavirus type 16 E6 antibody response prior to oropharyngeal cancer. J. Natl. Cancer Inst. 109, djx005. (2017). PubMed PMC

Brenner N, et al. Characterization of human papillomavirus (HPV) 16 E6 seropositive individuals without HPV-associated malignancies after 10 years of follow-up in the UK Biobank. EBioMedicine. 2020;62:103123. doi: 10.1016/j.ebiom.2020.103123. PubMed DOI PMC

Shete, S. et al. A genome-wide association study identifies two novel susceptible regions for squamous cell carcinoma of the head and neck. Cancer Res. Canres.2360.2019. 10.1158/0008-5472.can-19-2360 (2020). PubMed PMC

van der Burg SH, Melief CJM. Therapeutic vaccination against human papilloma virus induced malignancies. Curr. Opin. Immunol. 2011;23:252–257. doi: 10.1016/j.coi.2010.12.010. PubMed DOI

Igietseme JU, Eko FO, He Q, Black CM. Antibody regulation of T-cell immunity: Implications for vaccine strategies against intracellular pathogens. Expert Rev. Vaccines. 2004;3:23–34. doi: 10.1586/14760584.3.1.23. PubMed DOI

Marrack, P., Scott-Browne, J. & Macleod, M. K. L. Terminating the Immune Response. Immunol Rev.236, 5–10 (2010) PubMed PMC

Shishido, S. N., Varahan, S., Yuan, K., Li, X. & Fleming, S. D. Humoral innate immune response and disease. 10.1016/j.clim.2012.06.002 (2012). PubMed PMC

Chabeda A, et al. Therapeutic vaccines for high-risk HPV-associated diseases. Papillomavirus Res. 2018;5:46–58. doi: 10.1016/j.pvr.2017.12.006. PubMed DOI PMC

Khallouf H, Grabowska AK, Riemer AB. Therapeutic vaccine strategies against human papillomavirus. Vaccines. 2014;2:422–462. doi: 10.3390/vaccines2020422. PubMed DOI PMC

Grabowska AK, Kaufmann AM, Riemer AB. Identification of promiscuous HPV16-derived T helper cell epitopes for therapeutic HPV vaccine design. Int. J. Cancer. 2015;136:212–224. doi: 10.1002/ijc.28968. PubMed DOI

Mahdavi A, Monk BJ. Vaccines against human papillomavirus and cervical cancer: promises and challenges. Oncologist. 2005;10:528–538. doi: 10.1634/theoncologist.10-7-528. PubMed DOI

Skeate JG, Woodham AW, Einstein MH, Da Silva DM, Kast WM. Current therapeutic vaccination and immunotherapy strategies for HPV-related diseases. Hum. Vaccines Immunother. 2016;12:1418–1429. doi: 10.1080/21645515.2015.1136039. PubMed DOI PMC

Di Croce L, Helin K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 2013;20:1147–1155. doi: 10.1038/nsmb.2669. PubMed DOI

Chan, H. L. et al. Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat. Commun. 9, 3377 (2018). PubMed PMC

Bilic I, Ellmeier W. The role of BTB domain-containing zinc finger proteins in T cell development and function. Immunol. Lett. 2007;108:1–9. doi: 10.1016/j.imlet.2006.09.007. PubMed DOI

Niu J, et al. Keratinocyte growth factor/fibroblast growth factor-7-regulated cell migration and invasion through activation of NF-κB transcription factors. J. Biol. Chem. 2007;282:6001–6011. doi: 10.1074/jbc.M606878200. PubMed DOI

Patel A, et al. Fibroblast growth factor 7 signalling is disrupted in colorectal cancer and is a potential marker of field cancerisation. J. Gastrointest. Oncol. 2019;10:429–436. doi: 10.21037/jgo.2019.02.11. PubMed DOI PMC

Ndiaye C, et al. HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol. 2014;15:1319–1331. doi: 10.1016/S1470-2045(14)70471-1. PubMed DOI

Combes JD, Franceschi S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral. Oncol. 2014;50:370–379. doi: 10.1016/j.oraloncology.2013.11.004. PubMed DOI

Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat. Methods. 2012;9:179–181. doi: 10.1038/nmeth.1785. PubMed DOI

McCarthy S, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 2016;48:1279–1283. doi: 10.1038/ng.3643. PubMed DOI PMC

de Bakker PIW, et al. A high-resolution HLA and SNP haplotype map for disease association studies in the extended human MHC. Nat. Genet. 2006;38:1166–1172. doi: 10.1038/ng1885. PubMed DOI PMC

Brown WM, et al. Overview of the MHC fine mapping data. Diabetes Obes. Metab. 2009;11:2–7. doi: 10.1111/j.1463-1326.2008.00997.x. PubMed DOI PMC

Jia X, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE. 2013;8:e64683. doi: 10.1371/journal.pone.0064683. PubMed DOI PMC

Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am. J. Hum. Genet. 2009;84:210–223. doi: 10.1016/j.ajhg.2009.01.005. PubMed DOI PMC

Waterboer T, et al. Multiplex human papillomavirus serology based on in situ-purified glutathione S-transferase fusion proteins. Clin. Chem. 2005;51:1845–1853. doi: 10.1373/clinchem.2005.052381. PubMed DOI

Purcell S, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007;81:559–575. doi: 10.1086/519795. PubMed DOI PMC

Team, R. C. R.: a language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).

Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-theoretic-approach (Springer, 2002). 10.1016/j.ecolmodel.2003.11.004

Morris DL, et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am. J. Hum. Genet. 2012;91:778–793. doi: 10.1016/j.ajhg.2012.08.026. PubMed DOI PMC

Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012;40:D930–D934. doi: 10.1093/nar/gkr917. PubMed DOI PMC

Boyle AP, et al. Annotation of functional variation in personal genomes using RegulomeDB. Genome Res. 2012;22:1790. doi: 10.1101/gr.137323.112. PubMed DOI PMC

Lonsdale J, et al. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. doi: 10.1038/ng.2653. PubMed DOI PMC

Myers, T. A., Chanock, S. J. & Machiela, M. J. LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations. Front. Genet. 11, 157 (2020). PubMed PMC

Welter, D. et al. The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res. 42(Database issue): D1001–D1006. (2014). PubMed PMC

Wang SS, et al. Determinants of human papillomavirus 16 serological conversion and persistence in a population-based cohort of 10 000 women in Costa Rica. Br. J. Cancer. 2004;91:1269–1274. doi: 10.1038/sj.bjc.6602088. PubMed DOI PMC

Konya J, Dillner J. Immunity to oncogenic human papillomaviruses. Adv. Cancer Res. 2001;82:205–238. doi: 10.1016/S0065-230X(01)82007-8. PubMed DOI

Frazer IH. Interaction of human papillomaviruses with the host immune system: a well evolved relationship. Virology. 2009;384:410–414. doi: 10.1016/j.virol.2008.10.004. PubMed DOI

Shanmugasundaram, S. & You, J. Targeting persistent human papillomavirus infection. Viruses9, 229. (2017). PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...