Smoking and alcohol by HPV status in head and neck cancer: a Mendelian randomization study
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
001
World Health Organization - International
P30 CA047904
NCI NIH HHS - United States
P30 ES010126
NIEHS NIH HHS - United States
C18281/A19169
Cancer Research UK - United Kingdom
PubMed
39244563
PubMed Central
PMC11380676
DOI
10.1038/s41467-024-51679-x
PII: 10.1038/s41467-024-51679-x
Knihovny.cz E-zdroje
- MeSH
- dlaždicobuněčné karcinomy hlavy a krku * virologie genetika epidemiologie MeSH
- infekce papilomavirem * virologie epidemiologie MeSH
- jednonukleotidový polymorfismus MeSH
- kouření * škodlivé účinky MeSH
- lidé středního věku MeSH
- lidé MeSH
- mendelovská randomizace * MeSH
- nádory hlavy a krku * virologie genetika epidemiologie MeSH
- Papillomaviridae genetika MeSH
- pití alkoholu * škodlivé účinky MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
HPV-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) are recognized as distinct entities. There remains uncertainty surrounding the causal effects of smoking and alcohol on the development of these two cancer types. Here we perform multivariable Mendelian randomization (MR) to evaluate the causal effects of smoking and alcohol on the risk of HPV-positive and HPV-negative HNSCC in 3431 cases and 3469 controls. Lifetime smoking exposure, as measured by the Comprehensive Smoking Index (CSI), is associated with increased risk of both HPV-negative HNSCC (OR = 3.03, 95%CI:1.75-5.24, P = 7.00E-05) and HPV-positive HNSCC (OR = 2.73, 95%CI:1.39-5.36, P = 0.003). Drinks Per Week is also linked with increased risk of both HPV-negative HNSCC (OR = 7.72, 95%CI:3.63-16.4, P = 1.00E-07) and HPV-positive HNSCC (OR = 2.66, 95%CI:1.06-6.68, P = 0.038). Smoking and alcohol independently increase the risk of both HPV-positive and HPV-negative HNSCC. These findings have important implications for understanding the modifying risk factors between HNSCC subtypes.
Dalla Lana School of Public Health University of Toronto Toronto Ontario Canada
Department of Epidemiology and Biostatistics University of Western Ontario London Ontario Canada
Department of Epidemiology University of North Carolina Chapel Hill North Carolina USA
Department of Medical Sciences University of Turin and CPO Piemonte Turin Italy
Department of Otolaryngology Head and Neck Surgery Sinai Health System Toronto Ontario Canada
Department of Otolaryngology Head and Neck Surgery University of Toronto Toronto Ontario Canada
Department of Psychiatry Washington University School of Medicine St Louis MO USA
Department of Radiation Oncology University of Toronto Toronto Ontario Canada
Department of Research Cancer Registry of Norway Norwegian Institute of Public Health Oslo Norway
Infections and Cancer Epidemiology German Cancer Research Center Heidelberg Germany
Princess Margaret Cancer Centre University Health Network Toronto Ontario Canada
School of Medicine Dentistry and Nursing University of Glasgow Glasgow UK
Unit of Cancer Epidemiology Centro di Riferimento Oncologico di Aviano IRCCS Aviano Italy
University of Bristol Dental School 1 Trinity Walk Avon Street Bristol BS2 0PT UK
Zobrazit více v PubMed
Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68, 394–424 (2018). 10.3322/caac.21492 PubMed DOI
Jethwa, A. R. & Khariwala, S. S. Tobacco-related carcinogenesis in head and neck cancer. Cancer Metastasis Rev.36, 411–423 (2017). 10.1007/s10555-017-9689-6 PubMed DOI PMC
Boffetta, P., Hecht, S., Gray, N., Gupta, P. & Straif, K. Smokeless tobacco and cancer. lancet Oncol.9, 667–675 (2008). 10.1016/S1470-2045(08)70173-6 PubMed DOI
Gandini, S. et al. Tobacco smoking and cancer: a meta‐analysis. Int. J. Cancer122, 155–164 (2008). 10.1002/ijc.23033 PubMed DOI
Hashibe, M. et al. Evidence for an important role of alcohol-and aldehyde-metabolizing genes in cancers of the upper aerodigestive tract. Cancer Epidemiol. Biomark. Prev.15, 696–703 (2006).10.1158/1055-9965.EPI-05-0710 PubMed DOI
Hashibe, M. et al. Alcohol drinking in never users of tobacco, cigarette smoking in never drinkers, and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. J. Natl. Cancer Inst.99, 777–789 (2007). 10.1093/jnci/djk179 PubMed DOI
Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med.363, 24–35 (2010). 10.1056/NEJMoa0912217 PubMed DOI PMC
Elrefaey, S., Massaro, M., Chiocca, S., Chiesa, F. & Ansarin, M. HPV in oropharyngeal cancer: the basics to know in clinical practice. Acta Otorhinolaryngol. Italica34, 299 (2014). PubMed PMC
Fakhry, C. et al. Improved survival of patients with human papillomavirus–positive head and neck squamous cell carcinoma in a prospective clinical trial. J. Natl Cancer Inst.100, 261–269 (2008). 10.1093/jnci/djn011 PubMed DOI
Kreimer, A. R. et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J. Clin. Oncol.31, 2708 (2013). 10.1200/JCO.2012.47.2738 PubMed DOI PMC
Lang Kuhs, K. A. et al. Human papillomavirus 16 E6 antibodies in individuals without diagnosed cancer: a pooled analysis. Cancer Epidemiol. Biomark. Prev.24, 683–689 (2015).10.1158/1055-9965.EPI-14-1217 PubMed DOI PMC
Lydiatt, W. M. et al. Head and Neck cancers-major changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin.67, 122–137 (2017). 10.3322/caac.21389 PubMed DOI
Anantharaman, D. et al. Combined effects of smoking and HPV16 in oropharyngeal cancer. Int. J. Epidemiol.45, 752–761 (2016). 10.1093/ije/dyw069 PubMed DOI PMC
Skoulakis, A. et al. Do smoking and human papilloma virus have a synergistic role in the development of head and neck cancer? A systematic review and meta-analysis. J. BUON25, 1107–1115 (2020). PubMed
Arif, R. T., Mogaddam, M. A., Merdad, L. A. & Farsi, N. J. Does human papillomavirus modify the risk of oropharyngeal cancer related to smoking and alcohol drinking? A systematic review and meta-analysis. Laryngoscope Investig. Otolaryngol.7, 1391–1401 (2022). 10.1002/lio2.877 PubMed DOI PMC
Sanderson, E. et al. Mendelian randomization. Nat. Rev. Methods Prim.2, 6 (2022).10.1038/s43586-021-00092-5 PubMed DOI PMC
de Leeuw, C., Savage, J., Bucur, I. G., Heskes, T. & Posthuma, D. Understanding the assumptions underlying Mendelian randomization. Eur. J. Hum. Genet.30, 653–660 (2022). 10.1038/s41431-022-01038-5 PubMed DOI PMC
Sanderson, E. Multivariable Mendelian randomization and mediation. Cold Spring Harb. Perspect. Med.11, a038984 (2021). 10.1101/cshperspect.a038984 PubMed DOI PMC
Auguste, A. et al. Joint effect of tobacco, alcohol, and oral HPV infection on head and neck cancer risk in the French West Indies. Cancer Med.9, 6854–6863 (2020). 10.1002/cam4.3327 PubMed DOI PMC
Liu, M. et al. Data related to association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat. Genet.51, 237–244 (2019). PubMed PMC
Furberg, H. et al. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet.42, 441–447 (2010). 10.1038/ng.571 PubMed DOI PMC
Lesseur, C. et al. Genome-wide association analyses identify new susceptibility loci for oral cavity and pharyngeal cancer. Nat. Genet.48, 1544–1550 (2016). 10.1038/ng.3685 PubMed DOI PMC
Gormley, M. et al. A multivariable Mendelian randomization analysis investigating smoking and alcohol consumption in oral and oropharyngeal cancer. Nat. Commun.11, 6071 (2020). 10.1038/s41467-020-19822-6 PubMed DOI PMC
Karlsson Linnér, R. et al. Genome-wide association analyses of risk tolerance and risky behaviors in over 1 million individuals identify hundreds of loci and shared genetic influences. Nat. Genet.51, 245–257 (2019). 10.1038/s41588-018-0309-3 PubMed DOI PMC
Cogliano, V. J. et al. Preventable exposures associated with human cancers. J. Natl Cancer Inst.103, 1827–1839 (2011). 10.1093/jnci/djr483 PubMed DOI PMC
Hashibe, M. et al. Interaction between tobacco and alcohol use and the risk of head and neck cancer: pooled analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiol. Biomark. Prev.18, 541–550 (2009).10.1158/1055-9965.EPI-08-0347 PubMed DOI PMC
Vineis, P. et al. Tobacco and cancer: recent epidemiological evidence. J. Natl Cancer Inst.96, 99–106 (2004). 10.1093/jnci/djh014 PubMed DOI
Sturgis, E. M. & Ang, K. K. The epidemic of HPV-associated oropharyngeal cancer is here: is it time to change our treatment paradigms? J. Natl Compr. Canc Netw.9, 665–673 (2011). 10.6004/jnccn.2011.0055 PubMed DOI
Eldridge, R. C. et al. Smoking and subsequent human papillomavirus infection: a mediation analysis. Ann. Epidemiol.27, 724–730.e721 (2017). 10.1016/j.annepidem.2017.10.004 PubMed DOI PMC
Sinha, P., Logan, H. L. & Mendenhall, W. M. Human papillomavirus, smoking, and head and neck cancer. Am. J. Otolaryngol.33, 130–136 (2012). 10.1016/j.amjoto.2011.02.001 PubMed DOI PMC
Rees, J. M., Foley, C. N. & Burgess, S. Factorial Mendelian randomization: using genetic variants to assess interactions. Int. J. Epidemiol.49, 1147–1158 (2020). 10.1093/ije/dyz161 PubMed DOI PMC
Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both: a 2× 2 factorial Mendelian randomization study. J. Am. Coll. Cardiol.65, 1552–1561 (2015). 10.1016/j.jacc.2015.02.020 PubMed DOI PMC
Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med.375, 2144–2153 (2016). 10.1056/NEJMoa1604304 PubMed DOI
Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ362, k601 (2018). 10.1136/bmj.k601 PubMed DOI PMC
Heck, J. E. et al. Sexual behaviours and the risk of head and neck cancers: a pooled analysis in the International Head and Neck Cancer Epidemiology (INHANCE) consortium. Int. J. Epidemiol.39, 166–181 (2010). 10.1093/ije/dyp350 PubMed DOI PMC
Gormley, M. et al. Investigating the effect of sexual behaviour on oropharyngeal cancer risk: a methodological assessment of Mendelian randomization. BMC Med.20, 40 (2022). 10.1186/s12916-022-02233-3 PubMed DOI PMC
Budhathoki, S. et al. A risk prediction model for head and neck cancers incorporating lifestyle factors, HPV serology and genetic markers. Int. J. Cancer152, 2069–2080 (2023). 10.1002/ijc.34444 PubMed DOI PMC
Castellsagué, X. et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J. Natl Cancer Inst.108, djv403 (2016). 10.1093/jnci/djv403 PubMed DOI
Ferreiro-Iglesias, A. et al. Germline determinants of humoral immune response to HPV-16 protect against oropharyngeal cancer. Nat. Commun.12, 5945 (2021). 10.1038/s41467-021-26151-9 PubMed DOI PMC
Chi, A. C., Day, T. A. & Neville, B. W. Oral cavity and oropharyngeal squamous cell carcinoma–an update. CA Cancer J. Clin.65, 401–421 (2015). 10.3322/caac.21293 PubMed DOI
Combes, J.-D. & Franceschi, S. Role of human papillomavirus in non-oropharyngeal head and neck cancers. Oral. Oncol.50, 370–379 (2014). 10.1016/j.oraloncology.2013.11.004 PubMed DOI
Mirghani, H., Amen, F., Moreau, F. & Lacau St Guily, J. Do high-risk human papillomaviruses cause oral cavity squamous cell carcinoma? Oral. Oncol.51, 229–236 (2015). 10.1016/j.oraloncology.2014.11.011 PubMed DOI
Consortium, O. Consortium launches genotyping effort. Cancer Discov.3, 1321–1322 (2013). PubMed
Mailman, M. D. et al. The NCBI dbGaP database of genotypes and phenotypes. Nat. Genet.39, 1181–1186 (2007). 10.1038/ng1007-1181 PubMed DOI PMC
Wrayner, N. (Accessed 09/20/2021). Strand. Wellcome Centre for Human Genetics. https://www.well.ox.ac.uk/~wrayner/strand/.
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet.81, 559–575 (2007). 10.1086/519795 PubMed DOI PMC
Patterson, N., Price, A. L. & Reich, D. Population Structure and Eigenanalysis. PLOS Genet.2, e190 (2006). 10.1371/journal.pgen.0020190 PubMed DOI PMC
Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet.38, 904–909 (2006). 10.1038/ng1847 PubMed DOI
Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet.48, 1284–1287 (2016). 10.1038/ng.3656 PubMed DOI PMC
Loh, P.-R. et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat. Genet.48, 1443–1448 (2016). 10.1038/ng.3679 PubMed DOI PMC
Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype imputation. Bioinformatics31, 782–784 (2015). 10.1093/bioinformatics/btu704 PubMed DOI PMC
Leffondré, K., Abrahamowicz, M., Xiao, Y. & Siemiatycki, J. Modelling smoking history using a comprehensive smoking index: application to lung cancer. Stat. Med.25, 4132–4146 (2006). 10.1002/sim.2680 PubMed DOI
Wootton, R. E. et al. Evidence for causal effects of lifetime smoking on risk for depression and schizophrenia: a Mendelian randomisation study. Psychol. Med.50, 2435 (2020). 10.1017/S0033291719002678 PubMed DOI PMC
Prentice, R. L., Vollmer, W. M. & Kalbfleisch, J. D. On the use of case series to identify disease risk factors. Biometrics4, 445-458 (1984). PubMed
Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife7, e34408 (2018). 10.7554/eLife.34408 PubMed DOI PMC
Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol.44, 512–525 (2015). 10.1093/ije/dyv080 PubMed DOI PMC
Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet. Epidemiol.40, 304–314 (2016). 10.1002/gepi.21965 PubMed DOI PMC
Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat. Genet.50, 693–698 (2018). 10.1038/s41588-018-0099-7 PubMed DOI PMC
Rees, J. M. B., Wood, A. M. & Burgess, S. Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat. Med.36, 4705–4718 (2017). 10.1002/sim.7492 PubMed DOI PMC
Burgess, S. & Thompson, S. G. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am. J. Epidemiol.181, 251–260 (2015). 10.1093/aje/kwu283 PubMed DOI PMC
Mariosa, D. et al. Body size at different ages and risk of 6 cancers: a Mendelian randomization and prospective cohort study. J. Natl Cancer Inst.114, 1296–1300 (2022). 10.1093/jnci/djac061 PubMed DOI PMC
Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for weak and pleiotropic instruments in two‐sample multivariable Mendelian randomization. Stat. Med.40, 5434–5452 (2021). 10.1002/sim.9133 PubMed DOI PMC
Kleiber, C. & Zeileis, A. Applied econometrics with R. (Springer Science & Business Media, 2008).
Thrakal, A. et al. mrhnscc/MRHNSCC: v1 (Version v1). Zenodo. 10.5281/zenodo.12558118 (2024).