Strigolactones: New players in the nitrogen-phosphorus signalling interplay

. 2022 Feb ; 45 (2) : 512-527. [epub] 20211203

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34719040

Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.

Zobrazit více v PubMed

Al-Babili, S., & Bouwmeester, H. J. (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annual Review of Plant Biology, 66, 161-186.

Albornoz, F., Gebauer, M., Ponce, C., & Cabeza, R. A. (2018). LeNRT1.1 improves nitrate uptake in grafted tomato plants under high nitrogen demand. International Journal of Molecular Sciences, 19, 3921.

Andreo-Jiménez, B., Ruyter-Spira, C., Bouwmeester, H. J., López-Ráez, J. A., Andreo-Jimenez, B., Ruyter-Spira, C., … Lopez-Raez, J. A. (2015). Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below-ground. Plant and Soil, 394, 1-19.

Bari, R., Pant, B. D., Stitt, M., & Scheible, W. R. (2006). PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141, 988-999.

Bonneau, L., Huguet, S., Wipf, D., Pauly, N., & Truong, H. N. (2013). Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula. New Phytologist, 199, 188-202.

Bustos, R., Castrillo, G., Linhares, F., Puga, M. I., Rubio, V., Pérez-Pérez, J., … Paz-Ares, J. (2010). A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. PLoS Genetics, 6, e1001102.

Campos, P., Borie, F., Cornejo, P., López-Ráez, J. A., López-García, Á., & Seguel, A. (2018). Phosphorus acquisition efficiency related to root traits: Is mycorrhizal symbiosis a key factor to wheat and barley cropping? Frontiers in Plant Science, 9, 752.

Crist, E., Mora, C., & Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356, 260-264.

Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M. & Robledo, C. W. (2013). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

Elahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461-474.

Foo, E., & Reid, J. B. (2013). Strigolactones: New physiological roles for an ancient signal. Journal of Plant Growth Regulation, 32, 429-442.

Franco-Zorrilla, J. M., Valli, A., Todesco, M., Mateos, I., Puga, M. I., Rubio-Somoza, I., … Paz-Ares, J. (2007). Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics, 39, 1033-1037.

Gamir, J., Torres-Vera, R., Rial, C., Berrio, E., de Souza Campos, P. M., Varela, R. M., … López-Ráez, J. A. (2020). Exogenous strigolactones impact metabolic profiles and phosphate starvation signalling in roots. Plant Cell and Environment, 43, 1655-1668.

Ham, B. K. K., Chen, J., Yan, Y., & Lucas, W. J. J. (2018). Insights into plant phosphate sensing and signaling. Current Opinion in Biotechnology, 49, 1-9.

Hewitt, E. J. (1966). Sand and water culture methods used in the study of plant nutrition. Technical communication no. 22. Commonwealth Agriculture Bureau.

Ho, C.-H., Lin, S.-H., Hu, H.-C., & Tsay, Y.-F. (2009). CHL1 functions as a nitrate sensor in plants. Cell, 138, 1184-1194.

Hu, B., & Chu, C. (2020). Nitrogen-phosphorus interplay: Old story with molecular tale. New Phytologist, 225, 1455-1460.

Kiba, T., Inaba, J., Kudo, T., Ueda, N., Konishi, M., Mitsuda, N., … Sakakibara, H. (2018). Repression of nitrogen starvation responses by members of the arabidopsis GARP-type transcription factor NIGT1/HRS1 subfamily. Plant Cell, 30, 925-945.

Kohlen, W., Charnikhova, T., Lammers, M., Pollina, T., Tóth, P., Haider, I., … López-Ráez, J. A. (2012). The tomato carotenoid cleavage dioxygenase8 (SlCCD8) regulates rhizosphere signaling, plant architecture and affects reproductive development through strigolactone biosynthesis. New Phytologist, 196, 535-547.

Lin, S. I., Chiang, S. F., Lin, W. Y., Chen, J. W., Tseng, C. Y., Wu, P. C., & Chiou, T. J. (2008). Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology, 147, 732-746.

Liu, C. M., Muchhal, U. S., & Raghothama, K. G. (1997). Differential expression of TPS11, a phosphate starvation-induced gene in tomato. Plant Molecular Biology, 33, 867-874.

Liu, T. Y., Huang, T. K., Tseng, C. Y., Lai, Y. S., Lin, S. I., Lin, W. Y., … Chioua, T. J. (2012). PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell, 24, 2168-2183.

Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2_DDCt method. Methods, 25, 402-408.

López-Ráez, J. A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen, W., De Vos, R., … Bouwmeester, H. (2008). Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist, 178, 863-874.

López-Ráez, J. A., Shirasu, K., & Foo, E. (2017). Strigolactones in plant interactions with beneficial and detrimental organisms: The yin and Yang. Trends in Plant Science, 22, 527-537.

Maeda, Y., Konishi, M., Kiba, T., Sakuraba, Y., Sawaki, N., Kurai, T., … Yanagisawa, S. (2018). A NIGT1-centred transcriptional cascade regulates nitrate signalling and incorporates phosphorus starvation signals in Arabidopsis. Nature Communications, 9, 1376.

Maghiaoui, A., Gojon, A., & Bach, L. (2021). NRT1.1-centered nitrate signaling in plants. Journal of Experimental Botany, 71, 6226-6237.

Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of pesticides on environment. In K. Hakeem, M. Akhtar, & S. Abdullah (Eds.), Plant, soil and microbes (pp. 253-269). Switzerland: Springer.

Majeed, A. (2018). Application of agrochemicals in agriculture: Benefits, risks and responsibility of stakeholders. Journal of Food Science and Toxicology, 2, 1-3.

Medici, A., Marshall-Colon, A., Ronzier, E., Szponarski, W., Wang, R., Gojon, A., … Krouk, G. (2015). AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nature Communications, 6, 6274.

Medici, A., Szponarski, W., Dangeville, P., Safi, A., Dissanayake, I. M., Saenchai, C., … Krouk, G. (2019). Identification of molecular integrators shows that nitrogen actively controls the phosphate starvation response in plants. Plant Cell, 31, 1171-1184.

Nagy, F., Karandashov, V., Chague, W., Kalinkevich, K., Tamasloukht, M., Xu, G. H., … Bucher, M. (2005). The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal, 42, 236-250.

Nair, K. P. (2019). Soil fertility and nutrient management. In K. P. Nair (Ed.), Intelligent soil management for sustainable agriculture (pp. 165-189). Switzerland: Springer.

Nasr, E. M., Inoue, K., Nguyen, K. H., Chu, H. D., Watanabe, Y., Kanatani, A., … Tran, L.-S. P. (2021). Phosphate or nitrate imbalance induces stronger molecular responses than combined nutrient deprivation in roots and leaves of chickpea plants. Plant Cell and Environment, 44, 574-597.

O'Brien, J. A., Vega, A., Bouguyon, E., Krouk, G., Gojon, A., Coruzzi, G., & Gutiérrez, R. A. (2016). Nitrate transport, sensing, and responses in plants. Molecular Plant, 9, 837-856.

Ohkubo, Y., Tanaka, M., Tabata, R., Ogawa-Ohnishi, M., & Matsubayashi, Y. (2017). Shoot-to-root mobile polypeptides involved in systemic regulation of nitrogen acquisition. Nature Plants, 3, 17029.

Oldroyd, G. E. D., & Leyser, O. (2020). A plant's diet, surviving in a variable nutrient environment. Science, 368, 1-7.

Pant, B. D., Buhtz, A., Kehr, J., & Scheible, W. R. (2008). MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant Journal, 53, 731-738.

Peláez-Vico, M. A., Bernabéu-Roda, L., Kohlen, W., Soto, M. J., & López-Ráez, J. A. (2016). Strigolactones in the rhizobium-legume symbiosis: Stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Science, 245, 119-127.

Puga, M. I., Rojas-Triana, M., de Lorenzo, L., Leyva, A., Rubio, V., & Paz-Ares, J. (2017). Novel signals in the regulation of pi starvation responses in plants: Facts and promises. Current Opinion in Plant Biology, 39, 40-49.

Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42, 129-150.

Raghothama, K. G. (2000). Phosphate transport and signaling. Current Opinion in Plant Biology, 3, 182-187.

Rial, C., Varela, R. M., Molinillo, J. M., López-Ráez, J. A., & Macías, F. A. (2019). A new UHPLC-MS/MS method for the direct determination of strigolactones in root exudates and extracts. Phytochemical Analysis, 30, 110-116.

Santoro, V., Schiavon, M., Visentin, I., Constán-Aguilar, C., Cardinale, F., & Celi, L. (2021). Strigolactones affect phosphorus acquisition strategies in tomato plants. Plant Cell and Environment In press, 44, 3628-3642.

Savci, S. (2012). An agricultural pollutant: Chemical fertilizer. International Journal of Environmental Science and Development, 3, 77-80.

Sun, H., Tao, J., Huang, S., Cheng, S., Xie, X., Yoneyama, K., … Xu, G. (2014). Strigolactones are involved in phosphate- and nitrate-deficiency-induced root development and auxin transport in rice. Journal of Experimental Botany, 65, 6735-6746.

Tabata, R., Sumida, K., Yoshii, T., Ohyama, K., Shinohara, H., & Matsubayashi, Y. (2014). Perception of root-derived peptides by shoot LRR-RKs mediates systemic N-demand signaling. Science, 346, 343-346.

Ueda, Y., & Yanagisawa, S. (2019). Perception, transduction, and integration of nitrogen and phosphorus nutritional signals in the transcriptional regulatory network in plants. Journal of Experimental Botany, 70, 3709-3717.

Wang, W., Hu, B., Yuan, D., Liu, Y., Che, R., Hu, Y., … Chu, C. (2018). Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell, 30, 638-651.

Wang, X., Wang, H.-F., Chen, Y., Sun, M.-M., Wang, Y., & Chen, Y.-F. (2020). The transcription factor NIGT1.2 modulates both phosphate uptake and nitrate influx during phosphate starvation in arabidopsis and maize. Plant Cell, 32, 3519-3534.

Waters, M. T., Gutjahr, C., Bennett, T., & Nelson, D. C. (2017). Strigolactone signaling and evolution. Annual Review of Plant Biology, 68, 291-322.

Yoneyama, K., Mori, N., Sato, T., Yoda, A., Xie, X., Okamoto, M., … Nomura, T. (2018). Conversion of carlactone to carlactonoic acid is a conserved function of MAX1 homologs in strigolactone biosynthesis. New Phytologist, 218, 1522-1533.

Yoneyama, K., Xie, X., Kim, H., Il, K. T., Nomura, T., Sekimoto, H., … Yoneyama, K. (2012). How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235, 1197-1207.

Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., & Yoneyama, K. (2007). Nitrogen deficiency as well as phosphorous deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta, 227, 125-132.

Yoneyama, K., Yoneyama, K., Takeuchi, Y., & Sekimoto, H. (2007). Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta, 225, 1031-1038.

Zhang, J., He, N., Liu, C., Xu, L., Chen, Z., Li, Y., … Reich, P. B. (2020). Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments. Global Change Biology, 26, 2534-2543.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace