Variability in the Responses of Hepatitis B Virus D-Subgenotypes to Antiviral Therapy: Designing Pan-D-Subgenotypic Reverse Transcriptase Inhibitors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34730399
PubMed Central
PMC8791253
DOI
10.1128/jvi.01800-21
Knihovny.cz E-zdroje
- Klíčová slova
- antiviral activity, entecavir, hepatitis B virus D-subgenotypes, high throughput virtual screening, phosphonate prodrug, tenofovir,
- MeSH
- antivirové látky chemie farmakologie terapeutické užití MeSH
- chronická hepatitida B farmakoterapie virologie MeSH
- genotyp MeSH
- guanin analogy a deriváty chemie farmakologie terapeutické užití MeSH
- inhibitory reverzní transkriptasy chemie farmakologie terapeutické užití MeSH
- lidé MeSH
- mutace MeSH
- organofosfonáty chemie farmakologie MeSH
- prekurzory léčiv MeSH
- proteinové domény MeSH
- racionální návrh léčiv * MeSH
- reverzní transkriptasa chemie genetika MeSH
- tenofovir chemie farmakologie terapeutické užití MeSH
- virová léková rezistence účinky léků genetika MeSH
- virová nálož účinky léků MeSH
- virus hepatitidy B účinky léků enzymologie genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- entecavir MeSH Prohlížeč
- guanin MeSH
- inhibitory reverzní transkriptasy MeSH
- organofosfonáty MeSH
- prekurzory léčiv MeSH
- reverzní transkriptasa MeSH
- tenofovir MeSH
Nucleos(t)ide analogues entecavir (ETV) and tenofovir disoproxil fumarate (TDF) are recommended as first-line monotherapies for chronic hepatitis B (CHB). Multiple HBV genotypes/subgenotypes have been described, but their impact on treatment response remains largely elusive. We investigated the effectiveness of ETV/TDF on HBV/D-subgenotypes, D1/D2/D3/D5, studied the structural/functional differences in subgenotype-specific reverse transcriptase (RT) domains of viral polymerase, and identified novel molecules with robust inhibitory activity on various D-subgenotypes. Transfection of Huh7 cells with full-length D1/D2/D3/D5 and in vitro TDF/ETV susceptibility assays demonstrated that D1/D2 had greater susceptibility to TDF/ETV while D3/D5 exhibited poorer response. Additionally, HBV load was substantially reduced in TDF-treated CHB patients carrying D1/D2 but minimally reduced in D3/D5-infected patients. Comparison of RT sequences of D-subgenotypes led to identification of unique subgenotype-specific residues, and molecular modeling/docking/simulation studies depicted differential bindings of TDF/ETV to the active site of their respective RTs. Replacement of signature residues in D3/D5 HBV clones with corresponding amino acids seen in D1/D2 improved their susceptibility to TDF/ETV. Using high throughput virtual screening, we identified N(9)-[3-fluoro-2-(phosphonomethoxy)propyl] (FPMP) derivatives of purine bases, including N6-substituted (S)-FPMP derivative of 2,6-diaminopurine (DAP) (OB-123-VK), as potential binders of RT of different D-subgenotypes. We synthesized (S)-FPMPG prodrugs (FK-381-FEE/FK-381-SEE/FK-382) and tested their effectiveness along with OB-123-VK. Both OB-123-VK and FK-381-FEE exerted similar antiviral activities against all D-subgenotypes, although FK-381-FEE was more potent. Our study highlighted the natural variation in therapeutic response of D1/D2/D3/D5 and emphasized the need for HBV subgenotype determination before treatment. Novel molecules described here could benefit future design/discovery of pan-D-subgenotypic inhibitors. IMPORTANCE Current treatment of chronic hepatitis B relies heavily on nucleotide/nucleoside analogs in particular, tenofovir disoproxil fumarate (TDF) and entecavir (ETV) to keep HBV replication under control and prevent end-stage liver diseases. However, it was unclear whether the therapeutic effects of TDF/ETV differ among patients infected with different HBV genotypes and subgenotypes. HBV genotype D is the most widespread of all HBV genotypes and multiple D-subgenotypes have been described. We here report that different subgenotypes of HBV genotype-D exhibit variable response toward TDF and ETV and this could be attributed to naturally occurring amino acid changes in the reverse transcriptase domain of the subgenotype-specific polymerase. Further, we identified novel molecules and also synthesized prodrugs that are equally effective on different D-subgenotypes and could facilitate management of HBV/D-infected patients irrespective of D-subgenotype.
Zobrazit více v PubMed
Revill PA, Tu T, Netter HJ, Yuen LKW, Locarnini SA, Littlejohn M. 2020. The evolution and clinical impact of hepatitis B virus genome diversity. Nat Rev Gastroenterol Hepatol 17:618–634. doi:10.1038/s41575-020-0296-6. PubMed DOI
Khatun M, Mondal RK, Pal S, Baidya A, Bishnu D, Banerjee P, Santra AK, Dhali GK, Banerjee S, Chowdhury A, Datta S. 2018. Distinctiveness in virological features and pathogenic potentials of subgenotypes D1, D2, D3, and D5 of Hepatitis B virus. Sci Rep 8:8055. doi:10.1038/s41598-018-26414-4. PubMed DOI PMC
Thijssen M, Trovao NS, Mina T, Maes P, Pourkarim MR. 2020. Novel hepatitis B virus subgenotype A8 and quasi-subgenotype D12 in African-Belgian chronic carriers. Int J Infect Dis 93:98–101. doi:10.1016/j.ijid.2020.01.048. PubMed DOI
Liu Y, Feng Y, Li Y, Ma J, Jia Y, Yue W, Feng YM. 2020. Characterization of a novel hepatitis B virus subgenotype B10 among chronic hepatitis B patients in Yunnan, China. Infect Genet Evol 83:104322. doi:10.1016/j.meegid.2020.104322. PubMed DOI
Feng Y, Ran J, Feng YM, Miao J, Zhao Y, Jia Y, Li Z, Yue W, Xia X. 2020. Genetic diversity of hepatitis B virus in Yunnan, China: identification of novel subgenotype C17, an intergenotypic B/I recombinant, and B/C recombinants. J Gen Virol 101:972–981. doi:10.1099/jgv.0.001147. PubMed DOI
Mojsiejczuk L, Torres C, Flichman D, Campos RH. 2020. Long-term evolution of hepatitis B virus genotype F: strong association between viral diversification and the prehistoric settlement of Central and South America. J Viral Hepat 27:620–630. doi:10.1111/jvh.13273. PubMed DOI
Banerjee P, Chakraborty A, Mondal RK, Khatun M, Datta S, Das K, Pandit P, Mukherjee S, Banerjee S, Ghosh S, Chakrabarti S, Chowdhury A, Datta S. 2017. HBV quasispecies composition in Lamivudine-failed chronic hepatitis B patients and its influence on virological response to Tenofovir-based rescue therapy. Sci Rep 7:44742. doi:10.1038/srep44742. PubMed DOI PMC
Lampertico P, Chan HL, Janssen HL, Strasser SI, Schindler R, Berg T. 2016. Review article: long-term safety of nucleoside and nucleotide analogues in HBV-monoinfected patients. Aliment Pharmacol Ther 44:16–34. doi:10.1111/apt.13659. PubMed DOI
Raimondi S, Maisonneuve P, Bruno S, Mondelli MU. 2010. Is response to antiviral treatment influenced by hepatitis B virus genotype? J Hepatol 52:441–449. doi:10.1016/j.jhep.2009.12.014. PubMed DOI
Palumbo E. 2007. Hepatitis B genotypes and response to antiviral therapy: a review. Am J Ther 14:306–309. doi:10.1097/01.pap.0000249927.67907.eb. PubMed DOI
Shen S, Liang X, Hamed K, Tanaka Y, Omagari K, Fan R, Xie Q, Tan D, Zhou B, Jia JD, Hou J, Sun J. 2018. Effect of hepatitis B virus subgenotype on antiviral response in nucleoside-treated hepatitis B envelope antigen-positive patients. Hepatol Res 48:134–143. doi:10.1111/hepr.12907. PubMed DOI
Li X, Wang L, Zhong Y, Wong VW, Xu Z, Liu Y, Li Q, Xin S, Zhao J, Xu D. 2010. Hepatitis B virus (HBV) subgenotypes C2 and B2 differ in lamivudine- and adefovir-resistance-associated mutational patterns in HBV-infected Chinese patients. J Clin Microbiol 48:4363–4369. doi:10.1128/JCM.01518-10. PubMed DOI PMC
Akuta N, Suzuki F, Kobayashi M, Tsubota A, Suzuki Y, Hosaka T, Someya T, Kobayashi M, Saitoh S, Arase Y, Ikeda K, Kumada H. 2003. The influence of hepatitis B virus genotype on the development of lamivudine resistance during long-term treatment. J Hepatol 38:315–321. doi:10.1016/S0168-8278(02)00410-5. PubMed DOI
Choi WJ, Kim HS, Suh HJ, Cho YS, Won SY, Park BK, Cheon HH, Lee CK. 2016. Adefovir plus entecavir therapy in chronic hepatitis B patients with treatment failure to lamivudine-entecavir sequential therapy: outcome at 2 years. J Virol Antiviral Res 5:1.
Baszczyňski O, Jansa P, Dračínský M, Klepetářová B, Holý A, Votruba I, de Clercq E, Balzarini J, Janeba Z. 2011. Synthesis and antiviral activity of N9-[3-fluoro-2-(phosphonomethoxy)propyl] analogues derived from N6-substituted adenines and 2,6-diaminopurines. Bioorg Med Chem 19:2114–2124. doi:10.1016/j.bmc.2011.02.050. PubMed DOI
Schinkmanova M, Votruba I, Holy A. 2006. N6-methyl-AMP aminohydrolase activates N6-substituted purine acyclic nucleoside phosphonates. Biochem Pharmacol 71:1370–1376. doi:10.1016/j.bcp.2006.01.013. PubMed DOI
Balzarini J, Holy A, Jindrich J, Naesens L, Snoeck R, Schols D, De Clercq E. 1993. Differential antiherpesvirus and antiretrovirus effects of the (S) and (R) enantiomers of acyclic nucleoside phosphonates: potent and selective in vitro and in vivo antiretrovirus activities of (R)-9–(2-phosphonomethoxypropyl)-2,6-diaminopurine. Antimicrob Agents Chemother 37:332–338. doi:10.1128/AAC.37.2.332. PubMed DOI PMC
Daluge SM, Good SS, Faletto MB, Miller WH, St Clair MH, Boone LR, Tisdale M, Parry NR, Reardon JE, Dornsife RE, Averett DR, Krenitsky TA. 1997. 1592U89, a novel carbocyclic nucleoside analog with potent, selective anti-human immunodeficiency virus activity. Antimicrob Agents Chemother 41:1082–1093. doi:10.1128/AAC.41.5.1082. PubMed DOI PMC
Eder E, Henschler D, Neudecker T. 1982. Mutagenic properties of allylic and alpha, beta-unsaturated compounds: consideration of alkylating mechanisms. Xenobiotica 12:831–848. doi:10.3109/00498258209038955. PubMed DOI
Hervey PS, Perry CM. 2000. Abacavir: a review of its clinical potential in patients with HIV infection. Drugs 60:447–479. doi:10.2165/00003495-200060020-00015. PubMed DOI
Jansa P, Baszczyňski O, Dračínský M, Votruba I, Zídek Z, Bahador G, Stepan G, Cihlar T, Mackman R, Holý A, Janeba Z. 2011. A novel and efficient one-pot synthesis of symmetrical diamide (bis-amidate) prodrugs of acyclic nucleoside phosphonates and evaluation of their biological activities. Eur J Med Chem 46:3748–3754. doi:10.1016/j.ejmech.2011.05.040. PubMed DOI
Liu R, Curry S, McMonagle P, Yeh WW, Ludmerer SW, Jumes PA, Marshall WL, Kong S, Ingravallo P, Black S, Pak I, DiNubile MJ, Howe AY. 2015. Susceptibilities of genotype 1a, 1b, and 3 hepatitis C virus variants to the NS5A inhibitor elbasvir. Antimicrob Agents Chemother 59:6922–6929. doi:10.1128/AAC.01390-15. PubMed DOI PMC
Kantor R, Katzenstein D. 2003. Polymorphism in HIV-1 non-subtype B protease and reverse transcriptase and its potential impact on drug susceptibility and drug resistance evolution. AIDS Rev 5:25–35. PubMed
Qin B, Zhang B, Zhang X, He T, Xu W, Fu L, Tu C. 2013. Substitution rtq267h of hepatitis B virus increases the weight of replication and Lamivudine resistance. Hepat Mon 13:e12160. doi:10.5812/hepatmon.12160. PubMed DOI PMC
Chauhan R, Singh AK, Rooge S, Varshney A, Kumar M, Sarin SK. 2016. Analysis of hepatitis B virus genotype changes in patients with chronic hepatitis B infection on tenofovir therapy. J Med Virol 88:1364–1375. doi:10.1002/jmv.24489. PubMed DOI
Gunther S, Li BC, Miska S, Kruger DH, Meisel H, Will H. 1995. A novel method for efficient amplification of whole hepatitis B virus genomes permits rapid functional analysis and reveals deletion mutants in immunosuppressed patients. J Virol 69:5437–5444. doi:10.1128/JVI.69.9.5437-5444.1995. PubMed DOI PMC
Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics 54:5.6.1–5.6.37. PubMed PMC
Huang H, Chopra R, Verdine GL, Harrison SC. 1998. Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675. doi:10.1126/science.282.5394.1669. PubMed DOI
Lovell SC, Davis IW, Arendall WB, III, de Bakker PI, Word JM, Prisant MG, Richardson JS, Richardson DC. 2003. Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins 50:437–450. doi:10.1002/prot.10286. PubMed DOI
Eisenberg D, Luthy R, Bowie JU. 1997. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404. doi:10.1016/s0076-6879(97)77022-8. PubMed DOI
Colovos C, Yeates TO. 1993. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519. doi:10.1002/pro.5560020916. PubMed DOI PMC
Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD, Salmon JK, Shan Y, Shaw DE. 2006. Scalable algorithms for molecular dynamics simulations on commodity clusters, p 43. In Proceedings of the ACM/IEEE Conference on Supercomputing (SC06), Tampa, Florida.
Jorgensen WL, Maxwell DS, Tirado-Rives J. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi:10.1021/ja9621760. DOI
Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. 2001. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105:6474–6487. doi:10.1021/jp003919d. DOI
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. 1983. Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. doi:10.1063/1.445869. DOI
Nosé S. 1984. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81:511–519. doi:10.1063/1.447334. DOI
Martyna GJ, Tobias DJ, Klein ML. 1994. Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189. doi:10.1063/1.467468. DOI
Tuckerman M, Berne BJ, Martyna GJ. 1992. Reversible multiple time scale molecular dynamics. J Chem Phys 97:1990–2001. doi:10.1063/1.463137. DOI
Jones G, Willett P, Glen RC, Leach AR, Taylor R. 1997. Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897. PubMed DOI
Stewart JJP. MOPAC2016. 2016. Stewart Computational Chemistry, Colorado Springs, CO, USA. (http://OpenMOPAC.net).
Devaurs D, Bouard L, Vaisset M, Zanon C, Al-Bluwi I, Iehl R, Simeon T, Cortes J. 2013. MoMA-LigPath: a web server to simulate protein-ligand unbinding. Nucleic Acids Res 41:W297–302. doi:10.1093/nar/gkt380. PubMed DOI PMC
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH. 2016. PubChem Substance and Compound databases. Nucleic Acids Res 44:D1202–13. doi:10.1093/nar/gkv951. PubMed DOI PMC
Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. 2018. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082. doi:10.1093/nar/gkx1037. PubMed DOI PMC