Which bacterial toxins are worthy of validation as markers in colorectal cancer screening? A critical review
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34747413
DOI
10.5507/bp.2021.054
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteroides fragilis toxin, colibactin, colorectal cancer, cycle inhibiting factor, cytolethal distending toxin, cytotoxic necrotizing factor, enterotixin,
- MeSH
- bakteriální toxiny * MeSH
- časná detekce nádoru MeSH
- kolorektální nádory * diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- okultní krev MeSH
- plošný screening MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- bakteriální toxiny * MeSH
Appropriate screening of early asymptomatic cases can reduce the disease burden and mortality rate of sporadic colorectal cancer (CRC) significantly. Currently, fecal occult blood testing (FOBT) is able to detect up to 80% of asymptomatic cases in the population aged 50+. Therefore, there is still a demand for new screening tests that would complement FOBT, mainly by detecting at least a part of the FOBT-negative CRC and adenoma cases, or possibly by identifying person at increased risk of sporadic CRC in order to offer them tailored follow-up. Among the potential markers studied, our knowledge has advanced at most in toxigenic gram-negative bacteria. In this review, we assess their potential critically and recommend those best suited for prospective evaluation of their true ability to increase the sensitivity of FOBT when combined during general population screening. In our opinion, colibactin and Bacteroides fragilis toxin are the best candidates, possibly complemented by the cytotoxic necrotizing factor (CNF).
Zobrazit více v PubMed
Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F. Global Cancer Observatory: Cancer Today. [cited 2021 July 15] Available from: https://gco.iarc.fr/today/about.
Zavoral, Miroslav, Stepan Suchanek, Ondrej Majek, Premysl Fric, Petra Minarikova, Marek Minarik, Bohumil Seifert, and Ladislav Dusek. Colorectal Cancer Screening: 20 Years of Development and Recent Progress. World J Gastroenterol 2014;20(14):3825-34. DOI
Klugarová J, Klugar M, Mužík J, Jarkovský J, Líčeník R, Búřilová P, Dolanová D, Hunčovský M, Dušek L, Svobodová I, Krejčí D, Pokorná A. Use of epidemiological analyses in development of colorectal cancer clinical practice guidelines in the Czech Republic. Int J Evid Based Healthc 2019;17 Suppl 1:S57-S61. PubMed DOI
Raginel T, Puvinel J, Ferrand O, Bouvier V, Levillain R, Ruiz A, Lantieri O, Launoy G, Guittet L. A population-based comparison of immunochemical fecal occult blood tests for colorectal cancer screening. Gastroenterology 2013;144(5):918-25. PubMed DOI
Huang Y, Li Q, Ge W, Cai S, Zhang S, Zheng S. Predictive power of quantitative and qualitative fecal immunochemical tests for hemoglobin in population screening for colorectal neoplasm. Eur J Cancer Prev 2014;23(1):27-34. PubMed DOI
Zavoral M, Vojtěchová G, Májek O, Ngo O, Grega T, Seifert B, Dušek L, Suchánek Š. Population colorectal cancer screening in the Czech Republic. Cas lek cesk 2016;155(1):7-12. PubMed
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021;21(7):723-38. PubMed DOI
Nougayrede J-P. Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells. Science 2006;313(5788):848-51. PubMed DOI
Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A 2010;107(25):11537-42. PubMed DOI
Li Z-R, Li J, Cai W, Lai JYH, McKinnie SMK, Zhang W-P, Moore BS, Zhang W, Qian P-Y. Macrocyclic colibactin induces DNA double-strand breaks via copper-mediated oxidative cleavage. Nat Chem 2019;11(10):880-9. PubMed DOI
Dziubańska-Kusibab PJ, Berger H, Battistini F, Bouwman BAM, Iftekhar A, Katainen R, Cajuso T, Crosetto N, Orozco M, Aaltonen LA, Meyer TF. Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020;26(7):1063-9. PubMed DOI
Xue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019;365(6457):eaax2685. PubMed DOI
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, Engelward BP, Garrett WS, Balbo S, Balskus EP. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019;363(6428):eaar7785. DOI
Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, Paganelli FL, Geurts MH, Beumer J, Mizutani T, Miao Y, van der Linden R, van der Elst S; Genomics England Research Consortium, Garcia KC, Top J, Willems RJL, Giannakis M, Bonnet R, Quirke P, Meyerson M, Cuppen E, van Boxtel R, Clevers H. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020;580(7802):269-73. PubMed DOI
Arthur JC. Microbiota and colorectal cancer: colibactin makes its mark. Nat Rev Gastroenterol Hepatol 2020;17(6):317-18. DOI
Eklöf V, Löfgren-Burström A, Zingmark C, Edin S, Larsson P, Karling P, Alexeyev O, Rutegård J, Wikberg ML, Palmqvist R. Cancer-associated fecal microbial markers in colorectal cancer detection. Int J Cancer 2017;141(12):2528-36. PubMed DOI
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 2014;5(5):675-80. PubMed DOI
Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, Bringer M-A, Darfeuille-Michaud A. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol 2014;20(21):6560-72. PubMed DOI
Shimpoh T, Hirata Y, Ihara S, Suzuki N, Kinoshita H, Hayakawa Y, Ota Y, Narita A, Yoshida S, Yamada A, Koike K. Prevalence of pks-positive Escherichia coli in Japanese patients with or without colorectal cancer. Gut Pathog 2017;9(1):35. PubMed DOI
Gagnière J, Bonnin V, Jarrousse AS, Cardamone E, Agus A, Uhrhammer N, Sauvanet P, Déchelotte P, Barnich N, Bonnet R, Pezet D, Bonnet M. Interactions between microsatellite instability and human gut colonization by Escherichia coli in colorectal cancer. Clin Sci 2017;131(6):471-85. DOI
Payros D, Secher T, Boury M, Brehin C, Ménard S, Salvadorcartier C, Cuevas-Ramos G, Watrin C, Marcq I, Nougayrède JP, Dubois D, Bedu A, Garnier F, Clermont O, Denamur E, Plaisancié P, Theodorou V, Fioramonti J, Olier M, Oswald E. Maternally acquired genotoxic Escherichia coli alters offspring's intestinal homeostasis. Gut Microbes 2014;5(3):313-25. PubMed DOI
Secher T, Brehin C, Oswald E. Early settlers: Which E. coli strains do you not want at birth? Am J Physiol - Gastrointest Liver Physiol 2016;311(1):G123-9. PubMed DOI
Baerga-Ortiz A, Robledo IE, Gómez-Moreno R. Direct Detection and Quantification of Bacterial Genes Associated with Inflammation in DNA Isolated from Stool Ramón. Adv Microbiol 2014;4(164):1065-75. PubMed DOI
AL-Janabi AAHS. Effects of Smoking and Body Weight on the Presence of E. coli Harbouring Colibactin Genes in Patients with Colorectal Polyps. Eurasian J Med Oncol 2020;4(1):60-64 DOI
Feng Y, Mannion A, Madden CM, Swennes AG, Townes C, Byrd C, Marini RP, Fox JG. Cytotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor (CNF) colonize laboratory macaques. Gut Pathog 2017;9(1):1-15. PubMed DOI
Kurnick SA, Mannion AJ, Feng Y, Madden CM, Chamberlain P, Fox JG. Genotoxic Escherichia coli Strains Encoding Colibactin, Cytolethal Distending Toxin, and Cytotoxic Necrotizing Factor in Laboratory Rats. Comp Med 2019;69(2):103-13. PubMed DOI
Fabian NJ, Mannion AJ, Feng Y, Madden CM, Fox JG. Intestinal colonization of genotoxic Escherichia coli strains encoding colibactin and cytotoxic necrotizing factor in small mammal pets. Vet Microbiol 2020;240(March 2019):108506. PubMed DOI
McCarthy AJ, Martin P, Cloup E, Stabler RA, Oswald E, Taylor PW. The genotoxin colibactin is a determinant of virulence in Escherichia coli K1 experimental neonatal systemic infection. Infect Immun 2015;83(9):3704-11. PubMed DOI
Yoshikawa Y, Tsunematsu Y, Matsuzaki N, Hirayama Y, Higashiguchi F, Sato M, Iwashita Y, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Characterization of colibactin-producing Escherichia coli isolated from japanese patients with colorectal cancer. Jpn J Infect Dis 2020;73(6):437-42. PubMed DOI
Putze J, Hennequin C, Nougayrède J-P, Zhang W, Homburg S, Karch H, Bringer M-A, Fayolle C, Carniel E, Rabsch W, Oelschlaeger TA, Oswald E, Forestier C, Hacker J, Dobrindt U. Genetic structure and distribution of the colibactin genomic island among members of the family Enterobacteriaceae. Infect Immun 2009;77(11):4696-703. PubMed DOI
Arthur JC, Gharaibeh RZ, Marcus M, Perez-Chanona E, Uronis JM, McCafferty J, Fodor AA, Jobin C. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat Commun 2015;344(6188):1173-8.
Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Déchelotte P, Bonnet R, Pezet D, Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res 2014;20(4):859-67. PubMed DOI
Massip C, Branchu P, Bossuet-Greif N, Chagneau C V, Gaillard D, Martin P, Boury M, Sécher T, Dubois D, Nougayrède JP, Oswald E. Deciphering the interplay between the genotoxic and probiotic activities of Escherichia coli Nissle 1917. PLoS Pathog 2019;15(9):1-24. PubMed DOI
Li R, Helbig L, Fu J, Bian X, Herrmann J, Baumann M, Stewart AF, Müller R, Li A, Zips D, Zhang Y. Expressing cytotoxic compounds in Escherichia coli Nissle 1917 for tumor-targeting therapy. Res Microbiol 2019;170(2):74-9. PubMed DOI
Wassenaar, Trudy M. E. coli and Colorectal Cancer: A Complex Relationship That Deserves a Critical Mindset. Crit Rev Microbiol 2018;44(5):619-32. PubMed DOI
Johnson WM, Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Campylobacter spp. Microb Pathog 1988;4(2):115-26. PubMed DOI
Johnson WM, Lior H. A new heat-labile cytolethal distending toxin (CLDT) produced by Escherichia coli isolates from clinical material. Microb Pathog 1988;4(2):103-13. PubMed DOI
Scott DA, Kaper JB. Cloning and sequencing of the genes encoding Escherichia coli cytolethal distending toxin. Infect Immun 1994;62(1):244-51. PubMed DOI
Pérès SY, Marchès O, Daigle F, Nougayrède JP, Hérault F, Tasca C, De Rycke J, Oswald E. A new cytolethal distending toxin (CDT) from Escherichia coli producing CNF2 blocks HeLa cell division in G2/M phase. Mol Microbiol 1997;24(5):1095-107. PubMed DOI
Pickett CL, Cottle DL, Pesci EC, Bikah G. Cloning, sequencing, and expression of the Escherichia coli cytolethal distending toxin genes. Infect Immun 1994;62(3):1046-51. PubMed DOI
Hassane DC, Lee RB, Pickett CL. Campylobacter jejuni cytolethal distending toxin promotes DNA repair responses in normal human cells. Infect Immun 2003;71(1):541-5. PubMed DOI
Frisan T, Cortes-Bratti X, Thelestam M. Cytolethal distending toxins and activation of DNA damage-dependent checkpoint responses. Int J Med Microbiol 2001;291(6-7):495-9. PubMed DOI
Nešić D, Hsu Y, Stebbins CE. Assembly and function of a bacterial genotoxin. Nature 2004;429(6990):429-33. DOI
Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin-mediated cell cycle arrest. Mol Microbiol 2000;37(4):952-63. PubMed DOI
Li LQ, Sharipo A, Chaves-Olarte E, Masucci MG, Levitsky V, Thelestam M, Frisan T. The Haemophilus ducreyi cytolethal distending toxin activates sensors of DNA damage and repair complexes in proliferating and non-proliferating cells. Cell Microbiol 2002;4(2):87-99. PubMed DOI
Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G. From single-strand breaks to double-strand breaks during S-phase: A new mode of action of the Escherichia coli Cytolethal Distending Toxin. Cell Microbiol 2013;15(1):1-15. PubMed DOI
Whitehouse CA, Balbo PB, Pesci EC, Cottle DL, Mirabito PM, Pickett CL. Campylobacter jejuni cytolethal distending toxin causes a G2-phase cell cycle block. Infect Immun 1998;66(5):1934-40. PubMed DOI
Fahrer J, Huelsenbeck J, Jaurich H, Dörsam B, Frisan T, Eich M, Roos WP, Kaina B, Fritz G. Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair (Amst) 2014;18(1):31-43. PubMed DOI
Shiloh Y. ATM and ATR: Networking cellular responses to DNA damage. Curr Opin Genet Dev 2001;11(1):71-7. PubMed DOI
Guidi R, Guerra L, Levi L, Stenerlöw B, Fox JG, Josenhans C, Masucci MG, Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol 2013;15(1):98-113. PubMed DOI
Graillot V, Dormoy I, Dupuy J, Shay JW, Huc L, Mirey G, Vignard J. Genotoxicity of Cytolethal Distending Toxin (CDT) on isogenic human colorectal cell lines: Potential promoting effects for colorectal carcinogenesis. Front Cell Infect Microbiol 2016;6:1-13. PubMed DOI
He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, Pons B, Mirey G, Vignard J, Hendrixson DR, Jobin C. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut 2019;68(2):289-300. PubMed DOI
Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, Pezet D, Bonnet R. High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One 2013;8(2):e56964. PubMed DOI
Caprioli A, Falbo V, Roda LG, Ruggeri FM, Zona C. Partial Purification and Characterization of an Escherichia coli Toxic Factor That Induces Morphological Cell Alterations. Infect Immun 1983;39(3):1300-6. PubMed DOI
Falzano L, Fiorentini P, Boquet P, Donelli G. Interaction of Escherichia coli cytotoxic necrotizing factor type 1 (cnf1) with cultured cells. J Chem Inf Model 2019;53(9):1689-99.
Fiorentini C, Arancia G, Caprioli A, Falbo V, Ruggeri FM, Donelli G. Cytoskeletal changes induced in HEp-2 cells by the cytotoxic necrotizing factor of Escherichia coli. Toxicon 1988;26(11):1047-56. PubMed DOI
Schweer J, Kulkarni D, Kochut A, Pezoldt J, Pisano F, Pils MC, Genth H, Huehn J, Dersch P. The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFY) Enhances Inflammation and Yop Delivery during Infection by Activation of Rho GTPases. PLoS Pathog 2013;9(11):e1003746. PubMed DOI
Fiorentini C, Fabbri A, Flatau G, Donelli G, Matarrese P, Lemichez E, Falzano L, Boquet P. Escherichia coli cytotoxic necrotizing factor 1 (CNF1), a toxin that activates the Rho GTPase. J Biol Chem 1997;272(31):19532-7. DOI
Fiorentini C, Matarrese P, Straface E, Falzano L, Donelli G, Boquet P, Malorni W. Rho-dependent cell spreading activated by E.coli cytotoxic necrotizing factor 1 hinders apoptosis in epithelial cells. Cell Death Differ 1998;5(11):921-9. PubMed DOI
Lemichez E, Flatau G, Bruzzone M, Boquet P, Gauthier M. Molecular localization of the Escherichia coli cytotoxic necrotizing factor CNF1 cell-binding and catalytic domains. Mol Microbiol 1997;24(5):1061-70. PubMed DOI
Knust Z, Blumenthal B, Aktories K, Schmidt G. Cleavage of Escherichia coli cytotoxic necrotizing factor 1 is required for full biologic activity. Infect Immun 2009;77(5):1835-41. PubMed DOI
Gerhard R, Schmidt G, Hofmann F, Aktories K. Activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor 1 increases intestinal permeability in Caco-2 cells. Infect Immun 1998;66(11):5125-31. PubMed DOI
Schmidt G, Sehr P, Wilm M, Selzer J, Mann M, Aktories K. Gin 63 of Rho is deamidated by Escherichia coli cytotoxic necrotizing factor-1. Nature 1997;387(6634):725-9. PubMed DOI
May M, Kolbe T, Wang T, Schmidt G, Genth H. Increased Cell-Matrix Adhesion upon Constitutive Activation of Rho Proteins by Cytotoxic Necrotizing Factors from E. coli and Y. pseudotuberculosis. J Signal Transduct 2012;20121-10. DOI
Flatau G, Lemichez E, Gauthier M, Chardin P, Paris S, Fiorentini C, Boquet P. Toxin-induced activation of the G protein p21 Rho by deamidation of glutamine. Nature 1997;387(6634):729-33. PubMed DOI
Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Prevalence and pathologic effects of colibactin and cytotoxic necrotizing factor-1 (Cnf 1) in Escherichia coli: Experimental and bioinformatics analyses. Gut Pathog 2019;11(1):1-18. PubMed DOI
Hinenoya A, Naigita A, Ninomiya K, Asakura M, Shima K, Seto K, Tsukamoto T, Ramamurthy T, Faruque SM, Yamasaki S. Prevalence and characteristics of cytolethal distending toxin-producing Escherichia coli from children with diarrhea in Japan. Microbiol Immunol 2009;53(4):206-15. PubMed DOI
Bonacorsi SPP, Clermont O, Tinsley C, Le Gall I, Beaudoin JC, Elion J, Nassif X, Bingen E. Identification of regions of the Escherichia coli chromosome specific for neonatal meningitis-associated strains. Infect Immun 2000;68(4):2096-101. PubMed DOI
Falbo V, Famiglietti M, Caprioli A. Gene block encoding production of cytotoxic necrotizing factor 1 and hemolysin in Escherichia coli isolates from extraintestinal infections. Infect Immun 1992;60(6):2182-7. PubMed DOI
Oswald E, Sugai M, Labigne A, Wu HC, Fiorentini C, Boquet P, O'Brien AD. Cytotoxic necrotizing factor type 2 produced by virulent Escherichia coli modifies the small GTP-binding proteins Rho involved in assembly of actin stress fibers. Proc Natl Acad Sci U S A 1994;91(9):3814-8. PubMed DOI
De Rycke J, Gonzalez EA, Blanco J, Oswald E, Blanco M, Boivin R. Evidence for two types of cytotoxic necrotizing factor in human and animal clinical isolates of Escherichia coli. J Clin Microbiol 1990;28(4):694-9. PubMed DOI
Zhang Z, Aung KM, Uhlin BE, Wai SN. Reversible senescence of human colon cancer cells after blockage of mitosis/cytokinesis caused by the CNF1 cyclomodulin from Escherichia coli. Sci Rep 2018;8(1):1-11. PubMed DOI
Hilali F, Ruimy R, Saulnier P, Barnabé C, Lebouguénec C, Tibayrenc M, Andremont A. Prevalence of virulence genes and clonality in Escherichia coli strains that cause bacteremia in cancer patients. Infect Immun 2000;68(7):3983-9. PubMed DOI
Nougayrède JP, Marchès O, Boury M, Mainil J, Charlier G, Pohl P, De Rycke J, Milon A, Oswald E. The long-term cytoskeletal rearrangement induced by rabbit enteropathogenic Escherichia coli is Esp dependent but intimin independent. Mol Microbiol 1999;31(1):19-30. PubMed DOI
Marchès O, Ledger TN, Boury M, Ohara M, Tu X, Goffaux F, Mainil J, Rosenshine I, Sugai M, De Rycke J, Oswald E. Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called Cif, which blocks cell cycle G2/M transition. Mol Microbiol 2003;50(5):1553-67. PubMed DOI
Nougayrède JP, Boury M, Tasca C, Marchès O, Milon A, Oswald E, De Rycke J. Type III secretion-dependent cell cycle block caused in HeLa cells by enteropathogenic Escherichia coli O103. Infect Immun 2001;69(11):6785-95. PubMed DOI
Samba-louaka A, Nougayrède JP, Watrin C, Jubelin G, Oswald E, Taieb F. Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21waf1 and p27kip1. Cell Microbiol 2008;10(12):2496-508. PubMed DOI
Hsu Y, Jubelin G, Taieb F, Nougayrède J-P, Oswald E, Stebbins CE. Structure of the Cyclomodulin Cif from Pathogenic Escherichia coli. J Mol Biol 2008;384(2):465-77. DOI
Samba-Louaka A, Nougayrède JP, Watrin C, Oswald E, Taieb F. The enteropathogenic Escherichia coli effector Cif induces delayed apoptosis in epithelial cells. Infect Immun 2009;77(12):5471-7. PubMed DOI
Salvarani S, Tramuta C, Nebbia P, Robino P. Occurrence and functionality of cycle inhibiting factor, cytotoxic necrotising factors and cytolethal distending toxins in Escherichia coli isolated from calves and dogs in Italy. Res Vet Sci 2012;92(3):372-7. PubMed DOI
Liu S, Wan J, Kong Y, Zhang Y, Wan L, Zhang Z. Inhibition of CRL-NEDD8 pathway as a new approach to enhance ATRA-induced differentiation of acute promyelocytic leukemia cells. Int J Med Sci 2018;15(7):674-81. DOI
Toro TB, Toth JI, Petroski MD. The cyclomodulin cycle inhibiting factor (CIF) alters cullin neddylation dynamics. J Biol Chem 2013;288(21):14716-26. PubMed DOI
Liu L, Ni J, Zhang J, He X. Construction and characterization of regulated cycle inhibiting factors induced upon Tet-On system in human colon cancer cell lines. Anticancer Drugs 2018;29(9):854-60. PubMed DOI
Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 2006;12(8):782-6. PubMed DOI
Myers LL, Firehammer BD, Shoop DS, Border MM. Bacteroides fragilis: A possible cause of acute diarrheal disease in newborn lambs. Infect Immun 1984;44(2):241-4. PubMed DOI
Mundy LM, Sears CL. Detection of toxin production by Bacteroides fragilis: Assay development and screening of extraintestinal clinical isolates. Clin Infect Dis 1996;23(2):269-76. PubMed DOI
Weikel CS, Grieco FD, Reuben J, Myers LL, Sack RB. Human colonic epithelial cells, HT29/C1, treated with crude Bacteroides fragilis enterotoxin dramatically alter their morphology. Infect Immun 1991;60(2):321-7. PubMed DOI
Wu S, Shin J, Zhang G, Cohen M, Franco A, Sears CL. The Bacteroides fragilis toxin binds to a specific intestinal epithelial cell receptor. Infect Immun 2006;74(9):5382-90. PubMed DOI
Wu S, Lim KC, Huang J, Saidi RF, Sears CL. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A 1998;95(25):14979-84. PubMed DOI
Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 2003;124(2):392-400. PubMed DOI
Chung L, Orberg ET, Geis AL, Chan JL, Fu K, Shields CEDS, Dejea CM, Fathi P, Chen J, Finard BB, Tam AJ, McAllister FM, Fan H, Wu X, Ganguly S, Lebid A, Metz P, Van Meerbeke SW, Huso DL, Wick EC, Pardoll DM, Wan F, Wu S, Sears CL, Housseau F. Bacteroides fragilis Toxin Coordinates a Pro-carcinogenic Inflammatory Cascade via Targeting of Colonic Epithelial Cells. Cell Host and Microbe 2018;23(2):203-214.e5. PubMed DOI
Allen J, Hao S, Sears CL, Timp W. Epigenetic changes induced by Bacteroides fragilis toxin. Infect Immun 2019;87(6):1-12. PubMed DOI
Moncrief JS, Obiso R, Barroso LA, Kling JJ, Wright RL, Van Tassell RL, Lyerly DM, Wilkins TD. The enterotoxin of Bacteroides fragilis is a metalloprotease. Infect Immun 1995;63(1):175-81. PubMed DOI
Moncrief JS, Duncan AJ, Wright RL, Barroso LA, Wilkins TD. Molecular characterization of the fragilysin pathogenicity islet of enterotoxigenic Bacteroides fragilis. Infect Immun 1998;66(4):1735-9. PubMed DOI
Franco AA, Mundy LM, Trucksis M, Wu S, Kaper JB, Sears CL. Cloning and characterization of the Bacteroides fragilis metalloprotease toxin gene. Infect Immun 1997;65(3):1007-13. PubMed DOI
Chung GT, Franco AA, Wu S, Rhie GE, Cheng R, Oh HB, Sears CL. Identification of a third metalloprotease toxin gene in extraintestinal isolates of Bacteroides fragilis. Infect Immun 1999;67(9):4945-9. PubMed DOI
Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, Anders RA, Giardiello FM, Wick EC, Wang H, Wu S, Pardoll DM, Housseau F, Sears CL. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 2018;359(6375):592-7. PubMed DOI
Haghi F, Goli E, Mirzaei B, Zeighami H. The association between fecal enterotoxigenic B. fragilis with colorectal cancer. BMC Cancer 2019;19(1):879. PubMed DOI
Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, Platz EA, Pardoll DM, Sears CL. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis 2015;60(2):208-15. PubMed DOI
Viljoen KS, Dakshinamurthy A, Goldberg P, Blackburn JM. Quantitative Profiling of Colorectal Cancer-Associated Bacteria Reveals Associations between Fusobacterium spp., Enterotoxigenic Bacteroides fragilis (ETBF) and Clinicopathological Features of Colorectal Cancer. PLoS One 2015;10(3):e0119462. PubMed DOI
Wu S, Dreyfus LA, Tzianabos AO, Hayashi C, Sears CL. Diversity of the metalloprotease toxin produced by enterotoxigenic Bacteroides fragilis. Infect Immun 2002;70(5):2463-71. PubMed DOI
Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Front Cell Infect Microbiol 2020;9:449. PubMed DOI
Aitchison A, Frizelle FA, Keenan JI. PCR detection of the Bacteroides fragilis enterotoxin gene relies on robust primer design. J Clin Microbiol 2016;54(1):239-40. PubMed DOI