Rising temperature modulates pH niches of fen species
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34748262
DOI
10.1111/gcb.15980
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity loss, bryophytes and vascular plants, climate change, competition, continental-scale vegetation data, distribution, mire, shifts in realized niche,
- MeSH
- Bryophyta * MeSH
- ekosystém MeSH
- klimatické změny MeSH
- koncentrace vodíkových iontů MeSH
- rašeliníky * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Rising temperatures may endanger fragile ecosystems because their character and key species show different habitat affinities under different climates. This assumption has only been tested in limited geographical scales. In fens, one of the most endangered ecosystems in Europe, broader pH niches have been reported from cold areas and are expected for colder past periods. We used the largest European-scale vegetation database from fens to test the hypothesis that pH interacts with macroclimate temperature in forming realized niches of fen moss and vascular plant species. We calibrated the data set (29,885 plots after heterogeneity-constrained resampling) with temperature, using two macroclimate variables, and with the adjusted pH, a variable combining pH and calcium richness. We modelled temperature, pH and water level niches for one hundred species best characterizing European fens using generalized additive models and tested the interaction between pH and temperature. Fifty-five fen species showed a statistically significant interaction between pH and temperature (adj p ˂ .01). Forty-six of them (84%) showed a positive interaction manifested by a shift or restriction of their niche to higher pH in warmer locations. Nine vascular plants and no moss showed the opposite interaction. Mosses showed significantly greater interaction. We conclude that climate significantly modulates edaphic niches of fen plants, especially bryophytes. This result explains previously reported regional changes in realized pH niches, a current habitat-dependent decline of endangered taxa, and distribution changes in the past. A warmer climate makes growing seasons longer and warmer, increases productivity, and may lower the water level. These effects prolong the duration and intensity of interspecific competition, support highly competitive Sphagnum mosses, and, as such, force niches of specialized fen species towards narrower high-pH ranges. Recent anthropogenic landscape changes pose a severe threat to many fen species and call for mitigation measures to lower competition pressure in their refugia.
Climpact Data Science Nova Sophia Regus Nova Sophia Antipolis Cedex France
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Environmental and Biological Sciences University of Eastern Finland Joensuu Finland
Department of Paleoecology Institute of Botany The Czech Academy of Sciences Brno Czech Republic
Faculty of Agricultural and Environmental Sciences Rostock University Rostock Germany
Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Laboratory of General Geobotany Komarov Botanical Institute R A S St Petersburg Russia
Laboratory of Geobotany Institute of Biology of the University of Latvia Rīga Latvia
Plant Science and Biodiversity Center Slovak Academy of Sciences Bratislava Slovakia
Research Unit of Biodiversity University of Oviedo Mieres Spain
Zobrazit více v PubMed
Aerts, R., Verhoeven, J. T. A., & Whigham, D. F. (1999). Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology, 80, 2170-2181. https://doi.org/10.2307/176901
Agresti, A. (2006). An introduction to categorical data analysis (2nd ed.). Wiley, Wiley Series in Probability and Statistics.
Aletsee, L. (1967). Begriffliche und floristische Grundlagen zu einer pflanzengeographischen Analyse der europäischen Regenwassermoorstandorte. Beiträge zur Biologie der Pflanzen, 43, 117-283.
Bengtsson, F., Rydin, H., Baltzer, J. L., Bragazza, L., Bu, Z. J., Caporn, S. J., & Granath, G. (2021). Environmental drivers of Sphagnum growth in peatlands across the Holarctic region. Journal of Ecology, 109(1), 417-431. https://doi.org/10.1111/1365-2745.13499
Bragazza, L., Siffi, C., Iacumin, P., & Gerdol, R. (2007). Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology and Biochemistry, 39, 257-267. https://doi.org/10.1016/j.soilbio.2006.07.014
Breeuwer, A., Heijmans, M., Robroek, B. J., Limpens, J., & Berendse, F. (2008). The effect of increased temperature and nitrogen deposition on decomposition in bogs. Oikos, 117(8), 1258-1268. https://doi.org/10.1111/j.0030-1299.2008.16518.x
Breeuwer, A., Robroek, B. J., Limpens, J., Heijmans, M. M., Schouten, M. G., & Berendse, F. (2009). Decreased summer water table depth affects peatland vegetation. Basic and Applied Ecology, 10(4), 330-339. https://doi.org/10.1016/j.baae.2008.05.005
Bu, Z. J., Zheng, X. X., Rydin, H., Moore, T., & Ma, J. (2013). Facilitation vs. competition: Does interspecific interaction affect drought responses in Sphagnum? Basic and Applied Ecology, 14(7), 574-584. https://doi.org/10.1016/j.baae.2013.08.002
Cantonati, M., Poikane, S., Pringle, C. M., Stevens, L. E., Turak, E., Heino, J., Richardson, J. S., Bolpagni, R., Borrini, A., Cid, N., Čtvrtlíková, M., Galassi, D. M. P., Hájek, M., Hawes, I., Levkov, Z., Naselli-Flores, L., Saber, A. A., Cicco, M. D., Fiasca, B., … Znachor, P. (2020). Characteristics, main impacts, and stewardship of natural and artificial freshwater environments: Consequences for biodiversity conservation. Water, 12(1), 260. https://doi.org/10.3390/w12010260
Chauvier, Y., Thuiller, W., Brun, P., Lavergne, S., Descombes, P., Karger, D. N., Renaud, J., & Zimmermann, N. E. (2021). Influence of climate, soil, and land cover on plant species distribution in the European Alps. Ecological Monographs, 91(2). https://doi.org/10.1002/ecm.1433
Chytrý, M., Hennekens, S. M., Jiménez-Alfaro, B., Knollová, I., Dengler, J., Jansen, F., Landucci, F., Schaminée, J. H. J., Aćić, S., Agrillo, E., Ambarlı, D., Angelini, P., Apostolova, I., Attorre, F., Berg, C., Bergmeier, E., Biurrun, I., Botta-Dukát, Z., Brisse, H., … Yamalov, S. (2016). European Vegetation Archive (E.V.A.): An integrated database of European vegetation plots. Applied Vegetation Science, 19(1), 173-180. https://doi.org/10.1111/avsc.12191
Chytrý, M., Tichý, L., Hennekens, S. M., Knollová, I., Janssen, J. A. M., Rodwell, J. S., Peterka, T., Marcenò, C., Landucci, F., Danihelka, J., Hájek, M., Dengler, J., Novák, P., Zukal, D., Jiménez-Alfaro, B., Mucina, L., Abdulhak, S., Aćić, S., Agrillo, E., … Schaminée, J. H. J. (2020). EUNIS habitat classification: Expert system, characteristic species combinations and distribution maps of European habitats. Applied Vegetation Science, 23(4), 648-675. https://doi.org/10.1111/avsc.12519
Costa, D. S., Gerschlauer, F., Kiese, R., Fischer, M., Kleyer, M., & Hemp, A. (2018). Plant niche breadths along environmental gradients and their relationship to plant functional traits. Diversity and Distributions, 24, 1869-1882. https://doi.org/10.1111/ddi.12815
Coudun, C., & Gégout, J. C. (2005). Ecological behaviour of herbaceous forest species along a pH gradient: A comparison between oceanic and semicontinental regions in northern France. Global Ecology and Biogeography, 14, 263-270. https://doi.org/10.1111/j.1466-822X.2005.00144.x
Coudun, C., & Gégout, J. C. (2006). The derivation of species response curves with Gaussian logistic regression is sensitive to sampling intensity and curve characteristics. Ecological Modelling, 199, 164-175. https://doi.org/10.1016/j.ecolmodel.2006.05.024
Crawford, R. M. (2008). Cold climate plants in a warmer world. Plant Ecology & Diversity, 1(2), 285-297. https://doi.org/10.1080/17550870802407332
Denelle, P., Violle, C., & Munoz, F. (2020). Generalist plants are more competitive and more functionally similar to each other than specialist plants: Insights from network analyses. Journal of Biogeography, 47(9), 1922-1933. https://doi.org/10.1111/jbi.13848
Dierßen, K. (1996). Vegetation Nordeuropas. Verlag Eugen Ulmer.
Dierßen, K., & Dierßen, B. (2001). Moore. Ökosysteme Mitteleuropas aus geobotanischer Sicht. Ulmer.
Dítě, D., Hájek, M., Svitková, I., Košuthová, A., Šoltés, R., & Kliment, J. (2018). Glacial-relict symptoms in the Western Carpathian flora. Folia Geobotanica, 53(3), 277-300. https://doi.org/10.1007/s12224-018-9321-8
Djukic, I., Kepfer-Rojas, S., Schmidt, I. K., Larsen, K. S., Beier, C., Berg, B., Verheyen, K., Caliman, A., Paquette, A., Gutiérrez-Girón, A., Humber, A., Valdecantos, A., Petraglia, A., Alexander, H., Augustaitis, A., Saillard, A., Fernández, A. C. R., Sousa, A. I., Lillebø, A. I., … Tóth, Z. (2018). Early stage litter decomposition across biomes. Science of the Total Environment, 628, 1369-1394. https://doi.org/10.1016/j.scitotenv.2018.01.012
Dorrepaal, E., Aerts, R., Cornelissen, J. H. C., Van Logtestijn, R. S. P., & Callaghan, T. V. (2006). Sphagnum modifies climate-change impacts on subarctic vascular bog plants. Functional Ecology, 20(1), 31-41. https://doi.org/10.1111/j.1365-2435.2006.01076.x
Drzymulska, D., & Jadwiszczak, P. (2020). Towards the reconstruction of subfossil vegetation: An unexpected plant record in Early Holocene sediments of a mire in NE Poland. Boreal Environment Research, 25, 171-183
Essl, F., Dullinger, S., Moser, D., Rabitsch, W., & Kleinbauer, I. (2012). Vulnerability of mires under climate change: Implications for nature conservation and climate change adaptation. Biodiversity and Conservation, 21(3), 655-669. https://doi.org/10.1007/s10531-011-0206-x
Friberg, N., Dybkjaer, J. B., Olafsson, J. S., Gislason, G. M., Larsen, S. E., & Lauridsen, T. L. (2009). Relationships between structure and function in streams contrasting in temperature. Freshwater Biology, 54(10), 2051-2068. https://doi.org/10.1111/j.1365-2427.2009.02234.x
Fridley, J. D., Lynn, J. S., Grime, J. P., & Askew, A. P. (2016). Longer growing seasons shift grassland vegetation towards more-productive species. Nature Climate Change, 6(9), 865-868. https://doi.org/10.1038/nclimate3032
Gignac, L. D., Gauthier, R., Rochefort, L., & Bubier, J. (2004). Distribution and habitat niches of 37 peatland Cyperaceae species across a broad geographic range in Canada. Canadian Journal of Botany, 82(9), 1292-1313. https://doi.org/10.1139/b04-081
Gignac, L. D., Vitt, D. H., Zoltai, S. C., & Bayley, S. E. (1991). Bryophyte response surfaces along climatic, chemical, and physical gradients in peatlands of western Canada. Nova Hedwigia, 53(1-2), 27-71.
Gong, J., Wang, K., Kellomäki, S., Zhang, C., Martikainen, P. J., & Shurpali, N. (2012). Modelling water table changes in boreal peatlands of Finland under changing climate conditions. Ecological Modelling, 244, 65-78. https://doi.org/10.1016/j.ecolmodel.2012.06.031
Górecki, K., Rastogi, A., Stróżecki, M., Gąbka, M., Lamentowicz, M., Łuców, D., Kayzer, D., & Juszczak, R. (2021). Water table depth, experimental warming, and reduced precipitation impact on litter decomposition in a temperate Sphagnum-peatland. Science of the Total Environment, 771, 145452. https://doi.org/10.1016/j.scitotenv.2021.145452
Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barančok, P., Benito Alonso, J. L., Coldea, G., Dick, J., Erschbamer, B., Fernández Calzado, M. R., Kazakis, G., Krajči, J., Larsson, P., Mallaun, M., Michelsen, O., Moiseev, D., Moiseev, P., Molau, U., Merzouki, A., … Grabherr, G. (2012). Continent-wide response of mountain vegetation to climate change. Nature Climate Change, 2(2), 111-115. https://doi.org/10.1038/nclimate1329
Graham, J., Farr, G., Hedenäs, L., Devez, A., & Watts, M. J. (2019). Using water chemistry to define ecological preferences within the moss genus Scorpidium, from Wales. UK. Journal of Bryology, 41(3), 197-204. https://doi.org/10.1080/03736687.2019.1603416
Granath, G., Strengbom, J., & Rydin, H. (2010). Rapid ecosystem shifts in peatlands: Linking plant physiology and succession. Ecology, 91(10), 3047-3056. https://doi.org/10.1890/09-2267.1
Hájek, M., Dítě, D., Horsáková, V., Mikulášková, E., Peterka, T., Navrátilová, J., Jiménez-Alfaro, B., Hájková, P., Tichý, L., & Horsák, M. (2020). Towards the pan-European bioindication system: Assessing and testing updated hydrological indicator values for vascular plants and bryophytes in mires. Ecological Indicators, 116, 106527. https://doi.org/10.1016/j.ecolind.2020.106527
Hájek, M., Horsák, M., Tichý, L., Hájková, P., Dítě, D., & Jamrichová, E. (2011). Testing a relict distributional pattern of fen plant and terrestrial snail species at the Holocene scale: A null model approach. Journal of Biogeography, 38(4), 742-755. https://doi.org/10.1111/j.1365-2699.2010.02424.x
Hájek, M., Horsáková, V., Hájková, P., Coufal, R., Dítě, D., Němec, T., & Horsák, M. (2020). Habitat extremity and conservation management stabilise endangered calcareous fens in a changing world. Science of the Total Environment, 719, 134693. https://doi.org/10.1016/j.scitotenv.2019.134693
Hájek, M., Jiménez-Alfaro, B., Hájek, O., Brancaleoni, L., Cantonati, M., Carbognani, M., Dedić, A., Dítě, D., Gerdol, R., Hájková, P., Horsáková, V., Jansen, F., Kamberović, J., Kapfer, J., Kolari, T. H. M., Lamentowicz, M., Lazarević, P., Mašić, E., Moeslund, J. E., … Horsák, M. (2021). A European map of groundwater pH and calcium. Earth System Science Data, 13(3), 1089-1105. https://doi.org/10.5194/essd-13-1089-2021
Hájek, M., Jiroušek, M., Navrátilová, J., Horodyská, E., Peterka, T., Plesková, Z., & Hájek, T. (2015). Changes in the moss layer in Czech fens indicate early succession triggered by nutrient enrichment. Preslia, 87(3), 279-301.
Hájek, M., Těšitel, J., Tahvanainen, T., Peterka, T., Jansen, F., Pérez-Haase, A., & Mikulášková, E. (2021). Data, script, full methods and full results for: Rising temperature modulates pH niches of fen species (2.0). Zenodo. https://doi.org/10.5281/zenodo.4915753
Hájková, P., Hájek, M., Apostolova, I., Zelený, D., & Dítě, D. (2008). Shifts in the ecological behaviour of plant species between two distant regions: Evidence from the base richness gradient in mires. Journal of Biogeography, 35(2), 282-294. https://doi.org/10.1111/j.1365-2699.2007.01793.x
Hájková, P., Štechová, T., Šoltés, R., Šmerdová, E., Plesková, Z., Dítě, D., Bradáčová, J., Mútňanová, M., Singh, P., & Hájek, M. (2018). Using a new database of plant macrofossils of the Czech and Slovak Republics to compare past and present distribution of hypothetically relict fen mosses. Preslia, 90(4), 367-386. https://doi.org/10.23855/preslia.2018.367
He, X., He, K. S., & Hyvönen, J. (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49-60. https://doi.org/10.1016/j.ppees.2016.02.005
Hedenäs, L., & Bisang, I. (2012). Drepanocladus trifarius - an example of unsuspected niche widths among mosses. Nordic Journal of Botany, 30(6), 747-753. https://doi.org/10.1111/j.1756-1051.2012.01526.x
Hill, M. O., Bell, N., Bruggeman-Nannenga, M. A., Brugués, M., Cano, M. J., Enroth, J., Flatberg, K. I., Frahm, J.-P., Gallego, M. T., Garilleti, R., Guerra, J., Hedenäs, L., Holyoak, D. T., Ignatov, M. S., Lara, F., Mazimpaka, V., Muñoz, J., & Söderström, L. (2006). An annotated checklist of the mosses of Europe and Macaronesia. Journal of Bryology, 28(3), 198-267. https://doi.org/10.1179/174328206X119998
Horsáková, V., Hájek, M., Hájková, P., Dítě, D., & Horsák, M. (2018). Principal factors controlling the species richness of European fens differ between habitat specialists and matrix-derived species. Diversity and Distributions, 24(6), 742-754. https://doi.org/10.1111/ddi.12718
Hughes, P. D. M. (2000). A reappraisal of the mechanisms leading to ombrotrophy in British raised mires. Ecology Letters, 3(1), 7-9. https://doi.org/10.1046/j.1461-0248.2000.00118.x
Ise, T., Dunn, A. L., Wofsy, S. C., & Moorcroft, P. R. (2008). High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geoscience, 1(11), 763-766. https://doi.org/10.1038/ngeo331
Jamin, A., Peintinger, M., Gimmi, U., Holderegger, R., & Bergamini, A. (2020). Evidence for a possible extinction debt in Swiss wetland specialist plants. Ecology and Evolution, 10(3), 1264-1277. https://doi.org/10.1002/ece3.5980
Janssen, J. A. M., Rodwell, J. S., García-Criado, M., Gubbay, S., Haynes, T., Nieto, A., & Valachovič, M. (2016). European red list of habitats, part 2. Terrestrial and freshwater habitats. European Commission. https://doi.org/10.2779/091372
Jeppesen, E., Moss, B., Bennion, H., Carvalho, L., DeMeester, L., Feuchtmayr, H., & Verhoeven, J. T. (2010). Interaction of climate change and eutrophication. In M. Kernan, R. W. Battarbee, & B. Moss (Eds.), Climate change impacts on freshwater ecosystems (pp. 119-151). Blackwell Publishing Ltd.
Jiménez-Alfaro, B., Garcia-Calvo, L., Garcia, P., & Acebes, J. L. (2016). Anticipating extinctions of glacial relict populations in mountain refugia. Biological Conservation, 201, 243-251. https://doi.org/10.1016/j.biocon.2016.07.015
Johnson, M. G., Granath, G., Tahvanainen, T., Pouliot, R., Stenøien, H. K., Rochefort, L., & Shaw, A. J. (2015). Evolution of niche preference in Sphagnum peat mosses. Evolution, 69, 90-103. https://doi.org/10.1111/evo.12547
Joosten, H., F. Tanneberger, & A. Moen (Eds.). (2017). Mires and peatlands of Europe: Status, distribution and conservation. Schweizerbart Science Publishers.
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., & Kessler, M. (2017). Climatologies at high resolution for the Earth land surface areas. Scientific Data, 4(1), 1-20. https://doi.org/10.1038/sdata.2017.122
Kolari, T. H. M., Korpelainen, P., Kumpula, T., & Tahvanainen, T. (2021). Acceleration of vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change. Ecology and Evolution, 11(12), 7602-7621. https://doi.org/10.1002/ece3.7592
Kooijman, A. M. (2012). Poor rich fen mosses’: Atmospheric N-deposition and P-eutrophication in base-rich fens. Lindbergia, 35, 42-52.
Kooijman, A. M., & Bakker, C. (1995). Species replacement in the bryophyte layer in mires: The role of water type, nutrient supply and interspecific interactions. Journal of Ecology, 83, 1-8. https://doi.org/10.2307/2261145
Kooijman, A., & Hedenäs, L. (2009). Changes in nutrient availability from calcareous to acid wetland habitats with closely related brown moss species: Increase instead of decrease in N and P. Plant and Soil, 324, 267-278. https://doi.org/10.1007/s11104-009-9954-8
Kooijman, A. M., & Westhoff, V. (1995). Variation in habitat factors and species composition of Scorpidium scorpioides communities in NW-Europe. Vegetatio, 117(2), 133-150. https://doi.org/10.1007/BF00045505
Küttim, M., Küttim, L., Ilomets, M., & Laine, A. M. (2020). Controls of Sphagnum growth and the role of winter. Ecological Research, 35(1), 219-234. https://doi.org/10.1111/1440-1703.12074
Küttim, M., Laine, A. M., Küttim, L., Ilomets, M., & Robroek, B. J. (2019). Winter climate change increases physiological stress in calcareous fen bryophytes. Science of theTotal Environment, 695, 133867. https://doi.org/10.1016/j.scitotenv.2019.133867
Lawrey, J. D. (1981). Evidence for competitive release in simplified saxicolous lichen communities. American Journal of Botany, 68, 1066-1073. https://doi.org/10.1002/j.1537-2197.1981.tb06390.x
Lengyel, A., Chytrý, M., & Tichý, L. (2011). Heterogeneity-constrained random resampling of phytosociological databases. Journal of Vegetation Science, 22, 175-183. https://doi.org/10.1111/j.1654-1103.2010.01225.x
Leuschner, C., & Ellenberg, H. (2017). Mires. In C. Leuschner, & H. Ellenberg (Eds.), Ecology of central European non-forest vegetation: Coastal to alpine, natural to man-made habitats (pp. 117-187). Springer. https://doi.org/10.1007/978-3-319-43048-5
Ma, J. Z., Chen, X., Mallik, A. U., Bu, Z. J., Zhang, M. M., Wang, S. Z., & Sundberg, S. (2020). Environmental together with interspecific interactions determine bryophyte distribution in a protected mire of Northeast China. Frontiers in Earth Science, 8, 32. https://doi.org/10.3389/feart.2020.00032
Michel, A., Brauchli, T., Lehning, M., Schaefli, B., & Huwald, H. (2020). Stream temperature and discharge evolution in Switzerland over the last 50 years: Annual and seasonal behaviour. Hydrology and Earth System Sciences, 24(1), 115-142. https://doi.org/10.5194/hess-24-115-2020
Mucina, L., Bültmann, H., Dierßen, K., Theurillat, J.-P., Raus, T., Čarni, A., Šumberová, K., Willner, W., Dengler, J., García, R. G., Chytrý, M., Hájek, M., Di Pietro, R., Iakushenko, D., Pallas, J., Daniëls, F. J. A., Bergmeier, E., Santos Guerra, A., Ermakov, N., … Tichý, L. (2016). Vegetation of Europe: hierarchical floristic classification system of vascular plant, bryophyte, lichen, and algal communities. Applied Vegetation Science, 19, 3-264. https://doi.org/10.1111/avsc.12257
Mulligan, R. C., & Gignac, L. D. (2002). Bryophyte community structure in a boreal poor fen II: Interspecific competition among five mosses. Canadian Journal of Botany, 80, 330-339. https://doi.org/10.1139/b02-014
Niu, S., Xing, X., Zhang, Z., Xia, J., Zhou, X., Song, B., Li, L., & Wan, S. (2011). Water-use efficiency in response to climate change: From leaf to ecosystem in a temperate steppe. Global Change Biology, 17(2), 1073-1082. https://doi.org/10.1111/j.1365-2486.2010.02280.x
Odgaard, B. V. (1988). Glacial relicts - and the moss Meesia triquetra in Central and Western Europe. Lindbergia, 14, 73-78.
Olsen, S. L., Töpper, J. P., Skarpaas, O., Vandvik, V., & Klanderud, K. (2016). From facilitation to competition: Temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Global Change Biology, 22(5), 1915-1926. https://doi.org/10.1111/gcb.13241
Pakalne, M. (1994). Mire vegetation in the coastal lowland of Latvia. Colloques Phytosociologiques, 23, 487-509.
Paulissen, M. P., Schaminée, J. H., During, H. J., Wieger Wamelink, G. W., & Verhoeven, J. T. (2014). Expansion of acidophytic late-successional bryophytes in Dutch fens between 1940 and 2000. Journal of Vegetation Science, 25, 525-533. https://doi.org/10.1111/jvs.12089
Paulissen, M. P., Van Der Ven, P. J., Dees, A. J., & Bobbink, R. (2004). Differential effects of nitrate and ammonium on three fen bryophyte species in relation to pollutant nitrogen input. New Phytologist, 164, 451-458. https://doi.org/10.1111/j.1469-8137.2004.01196.x
Pérez-Haase, A., & Ninot, J. M. (2017). Hydrological heterogeneity rather than water chemistry explains the high plant diversity and uniqueness of a Pyrenean mixed mire. Folia Geobotanica, 52(2), 143-160. https://doi.org/10.1007/s12224-017-9291-2
Peterka, T., Hájek, M., Jiroušek, M., Jiménez-Alfaro, B., Aunina, L., Bergamini, A., & Chytrý, M. (2017). Formalised classification of European fen vegetation at the alliance level. Applied Vegetation Science, 20(1), 124-142. https://doi.org/10.1111/avsc.12271
Peterka, T., Hájková, P., Mikulášková, E., Aunina, L., Dítě, D., Pawlikowski, P., & Hájek, M. (2020). Vegetation affinity of the moss species Meesia triquetra, Paludella squarrosa, Pseudocalliergon trifarium and Scorpidium scorpioides across European regions. Nova Hedwigia, Beihefte, 150, 133-158. https://doi.org/10.1127/nova-suppl/2020/133
Peterka, T., Syrovátka, V., Dítě, D., Hájková, P., Hrubanová, M., Jiroušek, M., Plesková, Z., Singh, P., Šímová, A., Šmerdová, E., & Hájek, M. (2020). Is variable plot size a serious constraint in broad-scale vegetation studies? A case study on fens. Journal of Vegetation Science, 31, 594-605. https://doi.org/10.1111/jvs.12885
Plesková, Z., Jiroušek, M., Peterka, T., Hájek, T., Dítě, D., Hájková, P., Navrátilová, J., Šímová, A., Syrovátka, V., & Hájek, M. (2016). Testing inter-regional variation in pH niches of fen mosses. Journal of Vegetation Science, 27(2), 352-364. https://doi.org/10.1111/jvs.12348
Pouliot, R., Rochefort, L., Karofeld, E., & Mercier, C. (2011). Initiation of Sphagnum moss hummocks in bogs and the presence of vascular plants: Is there a link? Acta Oecologica, 37(4), 346-354. https://doi.org/10.1016/j.actao.2011.04.001
Prinzing, A., Durka, W., Klotz, S., & Brandl, R. (2002). Geographic variability of ecological niches of plant species: Are competition and stress relevant? Ecography, 25, 721-729. https://doi.org/10.1034/j.1600-0587.2002.250608.x
Proctor, M. C., McHaffie, H. S., Legg, C. J., & Amphlett, A. (2009). Evidence from water chemistry as a criterion of ombrotrophy in the mire complexes of Abernethy Forest. Scotland. Journal of Vegetation Science, 20(1), 160-169. https://doi.org/10.1111/j.1654-1103.2009.05643.x
R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
Reinecke, J., Wulf, M., Baeten, L., Brunet, J., Decocq, G., De Frenne, P., Diekmann, M., Graae, B. J., Heinken, T., Hermy, M., Jamoneau, A., Lenoir, J., Plue, J., Orczewska, A., Van Calster, H., Verheyen, K., & Naaf, T. (2016). Acido-and neutrophilic temperate forest plants display distinct shifts in ecological pH niche across north-western Europe. Ecography, 39, 1164-1175. https://doi.org/10.1111/ecog.02051
Robroek, B. J., Jassey, V. E., Payne, R. J., Martí, M., Bragazza, L., Bleeker, A., Buttler, A., Caporn, S. J. M., Dise, N. B., Kattge, J., Ząjac, K., Svensson, B. H., Van Ruijven, J., & Verhoeven, J. T. (2017). Taxonomic and functional turnover are decoupled in European peat bogs. Nature Communications, 8, 1-9. https://doi.org/10.1038/s41467-017-01350-5
Ross, L. C., Speed, J. D., Øien, D. I., Grygoruk, M., Hassel, K., Lyngstad, A., & Moen, A. (2019). Can mowing restore boreal rich-fen vegetation in the face of climate change? PLoS One, 14(2), e0211272. https://doi.org/10.1371/journal.pone.0211272
Rozbrojová, Z., & Hájek, M. (2008). Changes in nutrient limitation of spring fen vegetation along environmental gradients in the West Carpathians. Journal of Vegetation Science, 19, 613-620. https://doi.org/10.3170/2008-8-18416
Ruosteenoja, K., Markkanen, T., Venäläinen, A., Räisänen, P., & Peltola, H. (2018). Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century. Climate Dynamics, 50(3), 1177-1192. https://doi.org/10.1007/s00382-017-3671-4
Ruosteenoja, K., Räisänen, J., Venäläinen, A., & Kämäräinen, M. (2016). Projections for the duration and degree days of the thermal growing season in Europe derived from CMIP5 model output. International Journal of Climatology, 36, 3039-3055. https://doi.org/10.1002/joc.4535
Rydin, H. (1986). Competition and niche separation in Sphagnum. Canadian Journal of Botany, 64, 1817-1824. https://doi.org/10.1139/b86-240
Schwarzer, C., & Joshi, J. (2019). Ecotypic differentiation, hybridisation and clonality facilitate the persistence of a cold-adapted sedge in European bogs. Biological Journal of the Linnean Society, 128(4), 909-925. https://doi.org/10.1093/biolinnean/blz141
Singh, P., Ekrtová, E., Holá, E., Štechová, T., Grill, S., & Hájek, M. (2021). Restoration of rare bryophytes in degraded rich fens: The effect of sod-and-moss removal. Journal for Nature Conservation, 59, 125928. https://doi.org/10.1016/j.jnc.2020.125928
Singh, P., Těšitel, J., Plesková, Z., Peterka, T., Hájková, P., Dítě, D., Pawlikowski, P., & Hájek, M. (2019). The ratio between bryophyte functional groups impacts vascular plants in rich fens. Applied Vegetation Science, 22(4), 494-507. https://doi.org/10.1111/avsc.12454
Soliveres, S., Lehmann, A., Boch, S., Altermatt, F., Carrara, F., Crowther, T. W., Delgado-Baquerizo, M., Kempel, A., Maynard, D. S., Rillig, M. C., Singh, B. K., Trivedi, P., & Allan, E. (2018). Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 106, 852-864. https://doi.org/10.1111/1365-2745.12959
Soomers, H., Karssenberg, D., Verhoeven, J. T., Verweij, P. A., & Wassen, M. J. (2013). The effect of habitat fragmentation and abiotic factors on fen plant occurrence. Biodiversity and Conservation, 22(2), 405-424. https://doi.org/10.1007/s10531-012-0420-1
Sperle, T., & Bruelheide, H. (2021). Climate change aggravates bog species extinctions in the Black Forest (Germany). Diversity and Distributions, 27, 282-295. https://doi.org/10.1111/ddi.13184
Spitale, D. (2009). Switch between competition and facilitation within a seasonal scale at colony level in bryophytes. Oecologia, 160, 471-482. https://doi.org/10.1007/s00442-009-1324-y
Spitale, D. (2021). A warning call from mires of the Southern Alps (Italy): Impacts which are changing the bryophyte composition. Journal for Nature Conservation, 61, 125994. https://doi.org/10.1016/j.jnc.2021.125994
Štechová, T., Hájek, M., Hájková, P., & Navrátilová, J. (2008). Comparison of habitat requirements of the mosses Hamatocaulis vernicosus, Scorpidium cossonii and Warnstorfia exannulata in different parts of temperate Europe. Preslia, 80, 399-410.
Tichý, L., Hájek, M., & Zelený, D. (2010). Imputation of environmental variables for vegetation plots based on compositional similarity. Journal of Vegetation Science, 21, 88-95. https://doi.org/10.1111/j.1654-1103.2009.01126.x
Udd, D., Sundberg, S., & Rydin, H. (2016). Multi-species competition experiments with peatland bryophytes. Journal of Vegetation Science, 27(1), 165-175. https://doi.org/10.1111/jvs.12322
Väliranta, M., Salojärvi, N., Vuorsalo, A., Juutinen, S., Korhola, A., Luoto, M., & Tuittila, E. S. (2017). Holocene fen-bog transitions, current status in Finland and future perspectives. The Holocene, 27(5), 752-764. https://doi.org/10.1177/0959683616670471
van Breemen, N. (1995). How Sphagnum bogs down other plants. Trends in Ecology & Evolution, 10(7), 270-275. https://doi.org/10.1016/0169-5347(95)90007-1
van Diggelen, R., Middleton, B., Bakker, J., Grootjans, A., & Wassen, M. (2006). Fens and floodplains of the temperate zone: Present status, threats, conservation and restoration. Applied Vegetation Science, 9(2), 157-162. https://doi.org/10.1111/j.1654-109X.2006.tb00664.x
Vicherová, E., Glinwood, R., Hájek, T., Šmilauer, P., & Ninkovic, V. (2020). Bryophytes can recognise their neighbours through volatile organic compounds. Scientific Reports, 10, 7405. https://doi.org/10.1038/s41598-020-64108-y
Vicherová, E., Hájek, M., & Hájek, T. (2015). Calcium intolerance of fen mosses: physiological evidence, effects of nutrient availability and successional drivers. Perspectives in Plant Ecology, Evolution and Systematics, 17, 347-359. https://doi.org/10.1016/j.ppees.2015.06.005
Vicherová, E., Hájek, M., Šmilauer, P., & Hájek, T. (2017). Sphagnum establishment in alkaline fens: Importance of weather and water chemistry. Science of the Total Environment, 580, 1429-1438. https://doi.org/10.1016/j.scitotenv.2016.12.109
Wagner, V., Chytrý, M., Zelený, D., von Wehrden, H., Brinkert, A., Danihelka, J., & Wesche, K. (2017). Regional differences in soil pH niche among dry grassland plants in Eurasia. Oikos, 126, 660-670. https://doi.org/10.6084/m9.figshare.3860124
Walter, H., & Walter, E. (1953). Einige allgemeine Ergebnisse unserer Forschungsreise nach Südwestafrika 1952/1953: das Gesetz der relativen Standortskonstanz; das Wesen der Pflanzengemeinschaften. Berichte der Deutschen Botanischen Gessellschaft, 66, 227-235.
Waughman, G. J. (1980). Chemical aspects of the ecology of some south German peatlands. Journal of Ecology, 68, 1025-1046. https://doi.org/10.2307/2259473
Wheeler, D. B. (1999). Water and plants in freshwater wetlands. In A. J. Baird, & R. L. Wilby (Eds.), Eco-hydrology: Plants and water in terrestrial and aquatic environments (pp. 127-180). Routledge.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag.
Wood, S. N. (2017). Generalised additive models: An introduction with R (2nd ed.). Chapman and Hall/C.R.C.