COVID-19 associated coagulopathy: Mechanisms and host-directed treatment

. 2022 Jun ; 363 (6) : 465-475. [epub] 20211106

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34752741
Odkazy

PubMed 34752741
PubMed Central PMC8576106
DOI 10.1016/j.amjms.2021.10.012
PII: S0002-9629(21)00403-1
Knihovny.cz E-zdroje

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is associated with specific coagulopathy that frequently occurs during the different phases of coronavirus disease 2019 (COVID-19) and can result in thrombotic complications and/or death. This COVID-19-associated coagulopathy (CAC) exhibits some of the features associated with thrombotic microangiopathy, particularly complement-mediated hemolytic-uremic syndrome. In some cases, due to the anti-phospholipid antibodies, CAC resembles catastrophic anti-phospholipid syndrome. In other patients, it exhibits features of hemophagocytic syndrome. CAC is mainly identified by: increases in fibrinogen, D-dimers, and von Willebrand factor (released from activated endothelial cells), consumption of a disintegrin and metalloproteinase with thrombospondin type 1 motifs, member 13 (ADAMTS13), over activated and dysregulated complement, and elevated plasma cytokine levels. CAC manifests as both major cardiovascular and/or cerebrovascular events and dysfunctional microcirculation, which leads to multiple organ damage. It is not clear whether the mainstay of COVID-19 is complement overactivation, cytokine/chemokine activation, or a combination of these activities. Available data have suggested that non-critically ill hospitalized patients should be administered full-dose heparin. In critically ill, full dose heparin treatment is discouraged due to higher mortality rate. In addition to anti-coagulation, four different host-directed therapeutic pathways have recently emerged that influence CAC: (1) Anti-von Willebrand factor monoclonal antibodies; (2) activated complement C5a inhibitors; (3) recombinant ADAMTS13; and (4) Interleukin (IL)-1 and IL-6 antibodies. Moreover, neutralizing monoclonal antibodies against the virus surface protein have been tested. However, the role of antiplatelet treatment remains unclear for patients with COVID-19.

Zobrazit více v PubMed

Wu Z., McGoogan J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72 314 cases from the Chinese center for disease control and prevention. JAMA. 2020;323:1239–1242. PubMed

Tang N., Li D., Wang X., et al. Abnormal coagulation parameterers are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. PubMed PMC

Léonard-Lorant I., Delabranche X., Séverac F., et al. Acute Pulmonary embolism in patients with COVID-19 at CT angiography and relationship to d-dimer levels. Radiology. 2020;296(3):e189–e191. PubMed PMC

Poissy J., Goutay J., Caplan M., et al. Pulmonary embolism in patients with COVID-19:awareness of an increased prevalence. Circulation. 2020;142(2):184–186. PubMed

Levi M., Thachill J., Iba T., et al. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–e440. PubMed PMC

Varga Z., Flammer A.J., Steiger P., et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(2):1417–1418. PubMed PMC

Joynt G.M., Wu W.K. Understanding COVID-19: what does viral RNA load really mean? Lancet Infect Dis. 2020;20:635–636. PubMed PMC

Ferrario C.M., Jessup J., Chappell M.C., et al. Effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin-converting enzymy 2. Circulation. 2005;111(20):2605–2610. PubMed

Dong J.F., Moake J.L., Nolasco L., et al. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers in the endothelial surface under flowing conditions. Blood. 2002;100(12):4033–4039. PubMed

Giblin JP. Basal secretion of von Willebrand factor from human endothelial cells. Blood. 2008;112(4):957–964. PubMed

Lopes da Silva M, Cutler D. von Willebrand factor multimerization and the polarity of secretory pathways in endothelial cells. Blood. 2016;128(2):277–285. PubMed PMC

Von T.H.M. Willebrand factor and von Willebrand factor-cleaving metalloprotease aktivity in Escherichia coli 0157: H7-associated hemolytic uremic syndrome. Pediatr Res. 2001;49(5):653–659. PubMed

Fowler W.E., Fretto L.J., Hamilton K.K., et al. Substructure of human von Willebrand factor. J Clin Invest. 1985;76(4):1491–1500. PubMed PMC

Siedlecki C.A., Lestini B.J., Kottke-Marchant K.K., et al. Shear dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996;88(8):2939–2950. PubMed

Crawley J.T., De Groot R., Xiang Y., et al. Unravelling the scissile bond: how ADAMTS13 recognizes and cleaves von Willebrand factor. Blood. 2011;118(2):3212–3221. PubMed PMC

Cemetson KJ. A short history of platelet glycoprotein Ib complex. Thromb Haemost. 2007;98(1):63–68. PubMed

Canobio I., Balduinin C., Torti M. Signaling through the platelet glykoprotein Ib-V-IX. Cell Signal. 2004;16(12):1329–1344. PubMed

Goto S., Tamura N., Ishida H., et al. Dependence of platelet thrombus stability on sustained glycoprotein IIb/IIIa activation through adenosine 5‘-diphospate receptor stimulation and cyclic calcium signaling. J Am Coll Cardiol. 2006;47(1):155–162. PubMed

Denorme F., Manne B.K., Portier I., et al. COVID-19 patients exhibit reduced procoagulant platelet responses. J Thromb Haemost. 2020;18(11):3067–3073. PubMed PMC

Middleton E.A., He X.Y., Denorme F., et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–1179. PubMed PMC

Lax S.F., Skok K., Zechner P., et al. Pulmonary arterial thrombo- sis in COVID-19 with fatal outcome: results from a prospective, single-center, clinicopathologic case series. Ann Intern Med. 2020;173:350–361. PubMed PMC

Manne B.K., Denorme F., Middleton E.A., et al. Platelet gene expression and function in patients with COVID-19. Blood. 2020;136(11):1317–1329. PubMed PMC

Álvarez-Roman M.T., Butta Coll N., García barcenilla S., et al. Registry of patients with congenital bleeding disorders and COVID-19 in Madrid. Haemophilia. 2020;26(5):773–778. PubMed PMC

Dorgalaleh A., Dabbagh A., Tabibian S., et al. Patients with congenital bleeding disorders appear to be less severely affected by SRS-CoV-2: is inherited hypocoagulability overcoming acquired hypercoagulability of coronavirus disease 2019 (COVID-19)? Semin Thromb Hemost. 2020;46(7):853–855. PubMed PMC

Tam J.C.H., Bidgood S.R., McEwan W.A., et al. Intracellular sensing of complement C3 activates cell autonomous immunity. Science. 2014;345(6201) PubMed PMC

McEwan W.A., Tam J.C.H., Watkinson R.E., et al. Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nat Immunol. 2013;14:327–336. PubMed PMC

Morgan B.P. The complement system: an overview. Methods Mol Biol. 2000;150:1–13. PubMed

Conway E.M., Pryzdial E.L.G. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost. 2020;18(11):2812–2822. PubMed PMC

Calabrese LH. Cytokine storm and the prospects for immunotherapy with COVID-19. Cleve Clin J Med. 2020;87(7):389–393. PubMed

Seshan S.V., Franzke C.W., Redecha P., et al. Role of tissue factor in a mouse model of thrombotic mi- croangiopathy induced by antiphospholipid (aPL) antibodies. Blood. 2009;114(8):1675–1683. PubMed PMC

Del Conde I., Cruz M.A., Zhang H., et al. Platelet activation leads to activation and propagation of the com- plement system. J Exp Med. 2005;201(6):871–879. PubMed PMC

Huber-Lang M., Sarma J.V., Zetoune F.S., et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–687. PubMed

Cheng W., Hornung R., Xu K., et al. Complement C3 identified as a unique risk factor for disease severity among young COVID-19 patients in Wuhan, China. Sci Rep. 2021;11(1):7857. PubMed PMC

Fang S., Wang H., Lu l, et al. Decreased complement C3 level are associated with poor prognosis in patients with COVID-19: a retrospective cohort study. Int Immunopharmacol. 2020;89 PubMed PMC

Zhang K., Lu Y., Harley K.T., et al. Atypical hemolytic uremic syn- drome: a brief review. Hematol Rep. 2017;9(2):7053. PubMed PMC

Hill A., DeZern A.E., Kinoshita T., et al. Paroxysmal nocturnal haemoglobinuria. Nat Rev Dis Prim. 2017;3:17028. PubMed PMC

Hill A., Kelly R.J., Hillmen P. Thrombosis in paroxysmal nocturnal he- moglobinuria. Blood. 2013;121(25):4985–4996. PubMed

Pryzdial E.L., Sutherland M.R., Ruf W. The procoagulant envelope virus surface: contribution to enhanced infection. Thromb Res. 2014;133(Suppl 1):S15–S17. PubMed PMC

Sutherland M.R., Raynor C.M., Leenknegt H., et al. Coagulation initiated on herpesviruses. Proc Natl Acad Sci USA. 1997;94(25):13510–13514. PubMed PMC

Giannis D., Ziogas I.A., Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127 PubMed PMC

Li K., Wohlford-Lenane C., Perlman S., et al. Middle East respiratory syndrome coronavirus causes multiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. J Infect Dis. 2016;213(5):712–722. PubMed PMC

Gralinski L.E., Sheahan T.P., Morrison T.E., et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. MBio. 2018;9(5) e01753-18. PubMed PMC

Thachil J., Tang N., Gando S., et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18:1023–1026. PubMed PMC

Guan W.J., Ni Z.Y., Hu Y., et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;58:711–712. PubMed PMC

Huang C., Wang Y., Li X., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. PubMed PMC

Lachant D.J., Lachant N.A., Kouides P., et al. Chronic therapeutic anticoagulation is associated with decreased thrombotic complications in SARS-CoV-2 infection. J Thromb Haemost. 2020;18(10):2640–2645. PubMed PMC

Iba T., Levy J.H., Warkentin T.E., et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost. 2019;17(11):1989–1994. PubMed

Paranjpe I., Fuster V., Lala A., et al. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76(1):122–124. PubMed PMC

Lawler P.R., Goligher E.C., Berger J.S., et al. Therapeutic anticoagulation with heparin in noncritically ill patients with COVID-19. N Eng J Med. 2021;85:790–802. PubMed PMC

Goligher E.C., Bradbury C.A., McVerry B.J., et al. Therapeutic anticoagulation with heparin in critically ill patients with covid-19. N Engl J Med. 2021;385:777–789. PubMed PMC

Lopes R.D., de Barros E., Silva P.G.M., et al. Therapeutic versus prophylactic anticoagulation for patients admitted to hospital with COVID-19 and elevated d-dimer concentration (ACTION): an open lable, multicentre, randomized, controlled trial. Lancet. 2021;12(397):2253–2263. PubMed PMC

Nadkarni G.N., Lala A., Bagiella E., et al. Anticoagulation, bleeding, mortality, and pathology in hospitalized patients with COVID-19. J Am Coll Cardiol. 2020;76:1815–1826. PubMed PMC

Ayerbe L., Risco C., Ayis S. The association between treatment with heparin and survival in patients with COVID-19. J Thromb Thrombolysis. 2020;50:298–301. PubMed PMC

Lemos A.C.B., Santo D.A.E., Salvetti M.C., et al. Therapeutic versus prophylactic anticoagulation for severe COVID-19: a randomized phase II clinical trial (HESACOVID) Thromb Res. 2020;196:359–366. PubMed PMC

Godino C., Scotti A., Maugeri N., et al. Antithrombotic therapy in patients with COVID-19? Rationale and evidence. Int J Cardiol. 2021;324:261–266. PubMed PMC

Li X., Zheng Z., Li X., et al. Unfractionated heparin inhibits lipopolysaccharide- induced inflammatory response through blocking p38 MAPK and NF-κB activation on endothelial cell. Cytokine. 2012;(60):114–121. PubMed

Esko J.D., Lindahl U. Molecular diversity of heparan sulfate. J Clin Invest. 2001;(108):169–173. PubMed PMC

Mycroft-West CJ, Su D, Elli S, et al. The 2019 coronavirus (SARSCoV-2) surface protein (Spike) S1 receptor binding domain undergoes conformational change upon heparin binding. BioRxiv Preprint April 29, 2020. 10.1101/2020.02.29.971093. DOI

Du L., Kao R.Y., Zhou Y., et al. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity. Biochem Biophys Res Commun. 2007;(359):174–179. PubMed PMC

Arachchillage D.J., Remmington C., Rosenber A., et al. Anticoagulation with argatroban in patients with acute antithtombin deficiency in severe COVID-19. Br J Haematol. 2020;190(5):e286–e288. PubMed PMC

Asakura H., Ogawa H. Perspective on fibrinolytic therapy in COVID-19: the potential of inhalation therapy against suppressed-fibrinolytic-type DIC. J Intensive Care. 2020;18(8):71. PubMed PMC

Abdelaal Ahmed Mahmoud A., Mahmoud H.E., Mahran M.A., et al. Streptokinase versus unfractionated heparin nebulization in patients with severe acute respiratory distress syndrome (ARDS): a randomized controlled trial with observational controls. J Cardiothorac Vasc Anesth. 2020;34:436–443. PubMed

Le B., Schneider J.G., Boergeling Y., et al. Platelet activation and aggregation promote lung inflammation and influenza virus pathogenesis. Am J Respir Crit Care Med. 2015;191(7):804–819. PubMed

Mazur I., Wurzer W.J., Ehrhardt C., et al. Acetylsalicylic acid (ASA) blocks influenza virus propagation via its NF-kappaB-inhibiting aktivity. Cell Microbiol. 2007;9(7):1683–1694. PubMed

O'Brien M., Montenont E., Hu L., et al. Aspirin attenuates platelet activation and immune activation in HIV-1 infected subjects n Antiretroviral therapy: a pilot study. J Acquir Immune Defic Syndr. 2013;63(3):280–288. PubMed PMC

Banik J., Mezera V., Kohler C., et al. Antiplatelet therapy in patients with COVID-19: a retrospective observational study. Thromb Update. 2021;2:1–9. PubMed PMC

Malas M.B., Naazie I.N., Elsayed N., et al. Thromboembolism risk of COVID-19 is high and associated with a higher risk of mortality: a systematic review and meta-analysis. EclinicalMedicine. 2020;29 PubMed PMC

Gonazales-Fajardo J.A., Ansuategui M., Romero C., et al. Mortality of COVID-19 patients with vascular thrombotic complications. Med Clin. 2021;156(3):112–117. (Barc.) PubMed PMC

Klok F.A., Kruip M., van der Meer N.J.M., et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;191:145–147. PubMed PMC

Thomas W., Varley J., Johnston A., et al. Thrombotic complications of patients admitted to intensive care with COVID-19 at teaching hospital in the United Kingdom. Thromb Res. 2020;191:76–77. PubMed PMC

Helms J., Tacquard Ch, Severac F., et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a mlticenter prospective cohort study. Intensive Care Med. 2020;4:1–10. PubMed PMC

Tholin B., Ghanima W., Einvik G., et al. Incidence of thrombotic complications in hospitalised and non-hospitalised patients after COVID-19 diagnosis. Br J Haematol. 2021;191(3):542–546. PubMed PMC

Cui S., CHen S., Li X., et al. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. J Thromb Haemost. 2020;6:10. PubMed PMC

Greinacher A., Thiele T., Warkentin T.E., et al. Thrombotic thrombocytopenia after ChAd0x1 nCov-19 vaccination. N Engl J Med. 2021;384(22):2092–2101. PubMed PMC

Kallam A., Koepsell S.A. Gundabolu. Thrombotic thrombocytopenia after Ad26.COV2.S vaccination. N Engl J Med. 2021;384:1964–1965. PubMed PMC

Scully M., Singh D., Lown R., et al. Pathologic antiboides to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Eng J Med. 2021;384:2202–2211. PubMed PMC

Aziz M., Haghbin H., Sitta E.A., et al. Efficacy of tocilizumab I COVID-19: a systematic review and meta-analysis. J Med Virol. 2021;93:1620–1630. PubMed

Stone J.H., Frigault M.J., Sterling-Boyd N.J., et al. Efficacy of tocilizumab in patients hospitalized with COVID-19. N Engl J Med. 2020;383(24):2333–2344. PubMed PMC

Cavalli G., De Luca G., Campochiaro C., et al. Interleukin-1 blockade with high-dose anakinra in patients with COVID-19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol. 2020;2(6):e325–e331. PubMed PMC

Annane D., Heming N., Grimaldi-Bensouda L., et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: a proof of concept study. EclinicalMedicine. 2020;28 PubMed PMC

Elverdi T., Eskazan AE. Caplacizumab as an emerging treatment option for aquired thrombotic thrombocytopenic purpura. Drugs Des Dev Ther. 2019;13:1251–1258. PubMed PMC

Gottlieb R.L., Nirula A., Chen P., et al. Effect of bamlanivimab as monotherapy or in ombination with etesevimab on viral lod in patients with mild to moderate COVID-19:a randomized clinical trial. JAMA. 2021;325(7):632–644. PubMed PMC

Turecek P.L., Peck R.C., Rangarajan S., et al. Recombinant ADAMTS13 reduces abnormally up-regulated von Willebrand factor in plasma from patients with severe COVID-19. Thromb Res. 2021;201(18):100–112. PubMed PMC

Zumla A., Hui Azhar D.I., Memish Z.A., et al. Reducing mortality from 2019-nCoV: host-directed therapies should be an option. Lancet. 2020;(395):e35–e36. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...