N-of-1 Trials in Pediatric Oncology: From a Population-Based Approach to Personalized Medicine-A Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
No. CZ.02.1.01/0.0/0.0/16_013/0001826
CZECRIN_4 PACIENTY (No. CZ.02.1.01/0.0/0.0/16_013/0001826)
FNBr, 65269705
MH CZ - DRO (FNBr, 65269705)
MUNI/A/1701/2020
MUNI/A/1701/2020
(LM2018128)
Large Research infrastructure CZECRIN
PubMed
34771590
PubMed Central
PMC8582573
DOI
10.3390/cancers13215428
PII: cancers13215428
Knihovny.cz E-zdroje
- Klíčová slova
- N-of-1, design, pediatric oncology, personalized treatment, rare diseases, small samples, statistical analysis,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pediatric oncology is a critical area where the more efficient development of new treatments is urgently needed. The speed of approval of new drugs is still limited by regulatory requirements and a lack of innovative designs appropriate for trials in children. Childhood cancers meet the criteria of rare diseases. Personalized medicine brings it even closer to the horizon of individual cases. Thus, not all the traditional research tools, such as large-scale RCTs, are always suitable or even applicable, mainly due to limited sample sizes. Small samples and traditional versus subject-specific evidence are both distinctive issues in personalized pediatric oncology. Modern analytical approaches and adaptations of the paradigms of evidence are warranted. We have reviewed innovative trial designs and analytical methods developed for small populations, together with individualized approaches, given their applicability to pediatric oncology. We discuss traditional population-based and individualized perspectives of inferences and evidence, and explain the possibilities of using various methods in pediatric personalized oncology. We find that specific derivatives of the original N-of-1 trial design adapted for pediatric personalized oncology may represent an optimal analytical tool for this area of medicine. We conclude that no particular N-of-1 strategy can provide a solution. Rather, a whole range of approaches is needed to satisfy the new inferential and analytical paradigms of modern medicine. We reveal a new view of cancer as continuum model and discuss the "evidence puzzle".
Zobrazit více v PubMed
Sackett D.L. Randomized Trials in Individual Patients. Complement. Med. Res. 1996;3:140–147. doi: 10.1159/000210215. DOI
European Medicines Agency. Committee for Human Medicinal Products. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use Guideline for Good Clinical Practice E6 (R2) Step 5, EMA/CHMP/ICH/135/1995. [(accessed on 28 October 2021)];2016 December 1; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-6-R2-guideline-good-clinical-practice-step-5_en.pdf.
Murad M.H., Asi N., Alsawas M., Alahdab F. New Evidence Pyramid. Evid. Based Med. 2016;21:125–127. doi: 10.1136/ebmed-2016-110401. PubMed DOI PMC
Aguayo-Albasini J.L., Flores-Pastor B., Soria-Aledo V. GRADE System: Classification of Quality of Evidence and Strength of Recommendation. Cir. Esp. Engl. Ed. 2014;92:82–88. doi: 10.1016/j.ciresp.2013.08.002. PubMed DOI
National Health and Medical Research Council NHMRC Additional Levels of Evidence and Grades for Recommendations for Developers of Guidelines. Canberra. [(accessed on 28 October 2021)];2009 Available online: https://www.mja.com.au/sites/default/files/NHMRC.levels.of.evidence.2008-09.pdf.
Bothwell L.E., Greene J.A., Podolsky S.H., Jones D.S. Assessing the Gold Standard—Lessons from the History of RCTs. N. Engl. J. Med. 2016;374:2175–2181. doi: 10.1056/NEJMms1604593. PubMed DOI
Gatta G., Botta L., Rossi S., Aareleid T., Bielska-Lasota M., Clavel J., Dimitrova N., Jakab Z., Kaatsch P., Lacour B., et al. Childhood Cancer Survival in Europe 1999–2007: Results of EUROCARE-5—A Population-Based Study. Lancet Oncol. 2014;15:35–47. doi: 10.1016/S1470-2045(13)70548-5. PubMed DOI
Hilgers R. Design and Analysis of Clinical Trials for Small Rare Disease Populations. J. Rare Dis. Res. Treat. 2016;1:53–60. doi: 10.29245/2572-9411/2016/3.1054. DOI
Korn E.L., McShane L.M., Freidlin B. Statistical Challenges in the Evaluation of Treatments for Small Patient Populations. Sci. Transl. Med. 2013;5:sr3–sr178. doi: 10.1126/scitranslmed.3004018. PubMed DOI
Friede T., Posch M., Zohar S., Alberti C., Benda N., Comets E., Day S., Dmitrienko A., Graf A., Günhan B.K., et al. Recent Advances in Methodology for Clinical Trials in Small Populations: The InSPiRe Project. Orphanet J. Rare Dis. 2018;13:186. doi: 10.1186/s13023-018-0919-y. PubMed DOI PMC
Day S., Jonker A.H., Lau L.P.L., Hilgers R.-D., Irony I., Larsson K., Roes K.C., Stallard N. Recommendations for the Design of Small Population Clinical Trials. Orphanet J. Rare Dis. 2018;13:195. doi: 10.1186/s13023-018-0931-2. PubMed DOI PMC
Howard A.F., Goddard K., Rassekh S.R., Samargandi O.A., Hasan H. Clinical Significance in Pediatric Oncology Randomized Controlled Treatment Trials: A Systematic Review. Trials. 2018;19:539. doi: 10.1186/s13063-018-2925-8. PubMed DOI PMC
Joseph P.D., Craig J.C., Caldwell P.H.Y. Clinical Trials in Children: Clinical Trials in Children. Br. J. Clin. Pharmacol. 2015;79:357–369. doi: 10.1111/bcp.12305. PubMed DOI PMC
Hee S.W., Willis A., Tudur Smith C., Day S., Miller F., Madan J., Posch M., Zohar S., Stallard N. Does the Low Prevalence Affect the Sample Size of Interventional Clinical Trials of Rare Diseases? An Analysis of Data from the Aggregate Analysis of Clinicaltrials.Gov. Orphanet J. Rare Dis. 2017;12:44. doi: 10.1186/s13023-017-0597-1. PubMed DOI PMC
Vassal G., Rousseau R., Blanc P., Moreno L., Bode G., Schwoch S., Schrappe M., Skolnik J., Bergman L., Bradley-Garelik M.B., et al. Creating a Unique, Multi-Stakeholder Paediatric Oncology Platform to Improve Drug Development for Children and Adolescents with Cancer. Eur. J. Cancer. 2015;51:218–224. doi: 10.1016/j.ejca.2014.10.029. PubMed DOI
Moher D., Hopewell S., Schulz K.F., Montori V., Gøtzsche P.C., Devereaux P.J., Elbourne D., Egger M., Altman D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. Int. J. Surg. 2012;10:28–55. doi: 10.1016/j.ijsu.2011.10.001. PubMed DOI
Siepmann T., Spieth P.M., Kubasch A.S., Penzlin A.I., Illigens B.M.-W., Barlinn K. Randomized Controlled Trials—A Matter of Design. Neuropsychiatr. Dis. Treat. 2016;12:1341. doi: 10.2147/NDT.S101938. PubMed DOI PMC
Cragg J.J., Kramer J.L.K., Borisoff J.F., Patrick D.M., Ramer M.S. Ecological Fallacy as a Novel Risk Factor for Poor Translation in Neuroscience Research: A Systematic Review and Simulation Study. Eur. J. Clin. Investig. 2019;49:e13045. doi: 10.1111/eci.13045. PubMed DOI
Wang B., Wu P., Kwan B., Tu X.M., Feng C. Simpson’s Paradox: Examples. Shanghai Arch. Psychiatry. 2018;30:139–143. doi: 10.11919/j.issn.1002-0829.218026. PubMed DOI PMC
Longford N.T. Selection Bias and Treatment Heterogeneity in Clinical Trials. Stat. Med. 1999;18:1467–1474. doi: 10.1002/(SICI)1097-0258(19990630)18:12<1467::AID-SIM149>3.0.CO;2-H. PubMed DOI
Kravitz R.L., Duan N., Braslow J. Evidence-Based Medicine, Heterogeneity of Treatment Effects, and the Trouble with Averages. Milbank Q. 2004;82:661–687. doi: 10.1111/j.0887-378X.2004.00327.x. PubMed DOI PMC
Greenfield S., Kravitz R., Duan N., Kaplan S.H. Heterogeneity of Treatment Effects: Implications for Guidelines, Payment, and Quality Assessment. Am. J. Med. 2007;120:S3–S9. doi: 10.1016/j.amjmed.2007.02.002. PubMed DOI
Ashley E.A. The Precision Medicine Initiative: A New National Effort. JAMA. 2015;313:2119. doi: 10.1001/jama.2015.3595. PubMed DOI
Lindsey J.K., Lambert P. On the Appropriateness of Marginal Models for Repeated Measurements in Clinical Trials. Stat. Med. 1998;17:447–469. doi: 10.1002/(SICI)1097-0258(19980228)17:4<447::AID-SIM752>3.0.CO;2-G. PubMed DOI
Caldwell P.H., Murphy S.B., Butow P.N., Craig J.C. Clinical Trials in Children. Lancet. 2004;364:803–811. doi: 10.1016/S0140-6736(04)16942-0. PubMed DOI
Evans C.H., Ildstad S.T., Institute of Medicine (U.S.), editors. Small Clinical Trials: Issues and Challenges. National Academy Press; Washington, DC, USA: 2001. (Compass Series). PubMed
Meacham C.E., Morrison S.J. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501:328–337. doi: 10.1038/nature12624. PubMed DOI PMC
Averitt A.J., Weng C., Ryan P., Perotte A. Translating Evidence into Practice: Eligibility Criteria Fail to Eliminate Clinically Significant Differences between Real-World and Study Populations. NPJ Digit. Med. 2020;3:67. doi: 10.1038/s41746-020-0277-8. PubMed DOI PMC
Hajdu S.I. A Note from History: Landmarks in History of Cancer, Part 1. Cancer. 2011;117:1097–1102. doi: 10.1002/cncr.25553. PubMed DOI
Janiszewska M. The Microcosmos of Intratumor Heterogeneity: The Space-Time of Cancer Evolution. Oncogene. 2020;39:2031–2039. doi: 10.1038/s41388-019-1127-5. PubMed DOI PMC
Butler E., Ludwig K., Pacenta H.L., Klesse L.J., Watt T.C., Laetsch T.W. Recent Progress in the Treatment of Cancer in Children. CA. Cancer J. Clin. 2021;71:315–332. doi: 10.3322/caac.21665. PubMed DOI
Renfro L.A., Ji L., Piao J., Onar-Thomas A., Kairalla J.A., Alonzo T.A. Trial Design Challenges and Approaches for Precision Oncology in Rare Tumors: Experiences of the Children’s Oncology Group. JCO Precis. Oncol. 2019;3:1–13. doi: 10.1200/PO.19.00060. PubMed DOI PMC
Kennes L.N., Rosenberger W.F., Hilgers R.-D. Inference for Blocked Randomization under a Selection Bias Model: Inference under Selection Bias. Biometrics. 2015;71:979–984. doi: 10.1111/biom.12334. PubMed DOI
Lachin J.M. Properties of Simple Randomization in Clinical Trials. Control. Clin. Trials. 1988;9:312–326. doi: 10.1016/0197-2456(88)90046-3. PubMed DOI
Bell J.A.H., Forcina V., Mitchell L., Tam S., Wang K., Gupta A.A., Lewin J. Perceptions of and Decision Making about Clinical Trials in Adolescent and Young Adults with Cancer: A Qualitative Analysis. BMC Cancer. 2018;18:629. doi: 10.1186/s12885-018-4515-2. PubMed DOI PMC
Nikles J., Mitchell G.K., Schluter P., Good P., Hardy J., Rowett D., Shelby-James T., Vohra S., Currow D. Aggregating Single Patient (n-of-1) Trials in Populations Where Recruitment and Retention Was Difficult: The Case of Palliative Care. J. Clin. Epidemiol. 2011;64:471–480. doi: 10.1016/j.jclinepi.2010.05.009. PubMed DOI
Stallard N., Miller F., Day S., Hee S.W., Madan J., Zohar S., Posch M. Determination of the Optimal Sample Size for a Clinical Trial Accounting for the Population Size: Optimal Clinical Trial Sample Size Accounting for Population Size. Biom. J. 2017;59:609–625. doi: 10.1002/bimj.201500228. PubMed DOI PMC
Kýr M., Klement G.L., Zdrazilova-Dubska L., Demlova R., Valik D., Slaby O., Slavc I., Sterba J. Editorial: Precision/Personalized Pediatric Oncology and Immune Therapies: Rather Customize Than Randomize. Front. Oncol. 2020;10:377. doi: 10.3389/fonc.2020.00377. PubMed DOI PMC
Zhang J., Pilar M.R., Wang X., Liu J., Pang H., Brownson R.C., Colditz G.A., Liang W., He J. Endpoint Surrogacy in Oncology Phase 3 Randomised Controlled Trials. Br. J. Cancer. 2020;123:333–334. doi: 10.1038/s41416-020-0896-5. PubMed DOI PMC
Ellenberg S.S., Hamilton J.M. Surrogate Endpoints in Clinical Trials: Cancer. Stat. Med. 1989;8:405–413. doi: 10.1002/sim.4780080404. PubMed DOI
O’Leary M., Krailo M., Anderson J.R., Reaman G.H. Progress in Childhood Cancer: 50 Years of Research Collaboration, a Report from the Children’s Oncology Group. Semin. Oncol. 2008;35:484–493. doi: 10.1053/j.seminoncol.2008.07.008. PubMed DOI PMC
The SIOP Story: An Informal History of the International Society of Pediatric Oncology. Pediatr. Blood Cancer. 2016;63:S5–S42. doi: 10.1002/pbc.26170. PubMed DOI
Cornu C., Kassai B., Fisch R., Chiron C., Alberti C., Guerrini R., Rosati A., Pons G., Tiddens H., Chabaud S., et al. Experimental Designs for Small Randomised Clinical Trials: An Algorithm for Choice. Orphanet J. Rare Dis. 2013;8:48. doi: 10.1186/1750-1172-8-48. PubMed DOI PMC
Gagne J.J., Thompson L., O’Keefe K., Kesselheim A.S. Innovative Research Methods for Studying Treatments for Rare Diseases: Methodological Review. BMJ. 2014;349:g6802. doi: 10.1136/bmj.g6802. PubMed DOI PMC
Griggs R.C., Batshaw M., Dunkle M., Gopal-Srivastava R., Kaye E., Krischer J., Nguyen T., Paulus K., Merkel P.A. Clinical Research for Rare Disease: Opportunities, Challenges, and Solutions. Mol. Genet. Metab. 2009;96:20–26. doi: 10.1016/j.ymgme.2008.10.003. PubMed DOI PMC
Pediatric Rare Diseases—A Collaborative Approach for Drug Development Using Gaucher Disease as a Model Guidance for Industry, FDA-2017-N-6476. [(accessed on 28 October 2021)];2017 December; Available online: https://www.fda.gov/media/109465/download.
Mitroiu M., Oude Rengerink K., Pontes C., Sancho A., Vives R., Pesiou S., Fontanet J.M., Torres F., Nikolakopoulos S., Pateras K., et al. Applicability and Added Value of Novel Methods to Improve Drug Development in Rare Diseases. Orphanet J. Rare Dis. 2018;13:200. doi: 10.1186/s13023-018-0925-0. PubMed DOI PMC
Isakov L., Lo A.W., Montazerhodjat V. Is the FDA Too Conservative or Too Aggressive? A Bayesian Decision Analysis of Clinical Trial Design. J. Econom. 2019;211:117–136. doi: 10.1016/j.jeconom.2018.12.009. DOI
Jones B., Lewis J.A. The case for cross-over trials in phase III. Stat. Med. 1995;14:1025–1038. doi: 10.1002/sim.4780140921. PubMed DOI
Haslam A., Prasad V. When Is Crossover Desirable in Cancer Drug Trials and When Is It Problematic? Ann. Oncol. 2018;29:1079–1081. doi: 10.1093/annonc/mdy116. PubMed DOI PMC
Chow S.-C., Chang M. Adaptive Design Methods in Clinical Trials—A Review. Orphanet J. Rare Dis. 2008;3:11. doi: 10.1186/1750-1172-3-11. PubMed DOI PMC
Chow S.-C., Chang M., Pong A. Statistical Consideration of Adaptive Methods in Clinical Development. J. Biopharm. Stat. 2005;15:575–591. doi: 10.1081/BIP-200062277. PubMed DOI
Chang M., Chow S.-C., Pong A. Adaptive Design in Clinical Research: Issues, Opportunities, and Recommendations. J. Biopharm. Stat. 2006;16:299–309. doi: 10.1080/10543400600609718. PubMed DOI
Kelly L.E., Dyson M.P., Butcher N.J., Balshaw R., London A.J., Neilson C.J., Junker A., Mahmud S.M., Driedger S.M., Wang X. Considerations for Adaptive Design in Pediatric Clinical Trials: Study Protocol for a Systematic Review, Mixed-Methods Study, and Integrated Knowledge Translation Plan. Trials. 2018;19:572. doi: 10.1186/s13063-018-2934-7. PubMed DOI PMC
Lin J., Lin L.A. A General Overview of Adaptive Randomization Design for Clinical Trials. J. Biom. Biostat. 2016;7:294. doi: 10.4172/2155-6180.1000294. DOI
Curran P.J., Hussong A.M. Integrative Data Analysis: The Simultaneous Analysis of Multiple Data Sets. Psychol. Methods. 2009;14:81–100. doi: 10.1037/a0015914. PubMed DOI PMC
Matowe L.K., Leister C.A., Crivera C., Korth-Bradley J.M. Interrupted Time Series Analysis in Clinical Research. Ann. Pharmacother. 2003;37:1110–1116. doi: 10.1345/aph.1A109. PubMed DOI
Kyr M., Polaskova K., Kuttnerova Z., Merta T., Neradil J., Berkovcova J., Horky O., Jezova M., Veselska R., Klement G.L., et al. Individualization of Treatment Improves the Survival of Children with High-Risk Solid Tumors: Comparative Patient Series Analysis in a Real-Life Scenario. Front. Oncol. 2019;9:644. doi: 10.3389/fonc.2019.00644. PubMed DOI PMC
Magirr D., Jaki T., Koenig F., Posch M. Sample Size Reassessment and Hypothesis Testing in Adaptive Survival Trials. PLoS ONE. 2016;11:e0146465. doi: 10.1371/journal.pone.0146465. PubMed DOI PMC
Urach S., Posch M. Multi-arm Group Sequential Designs with a Simultaneous Stopping Rule. Stat. Med. 2016;35:5536–5550. doi: 10.1002/sim.7077. PubMed DOI PMC
Nikolakopoulos S., van der Tweel I., Roes K.C.B. Dynamic Borrowing through Empirical Power Priors That Control Type I Error: Dynamic Borrowing with Type I Error Control. Biometrics. 2018;74:874–880. doi: 10.1111/biom.12835. PubMed DOI
Sun H., Temeck J.W., Chambers W., Perkins G., Bonnel R., Murphy D. Extrapolation of Efficacy in Pediatric Drug Development and Evidence-Based Medicine: Progress and Lessons Learned. Ther. Innov. Regul. Sci. 2018;52:199–205. doi: 10.1177/2168479017725558. PubMed DOI PMC
Gamalo-Siebers M., Savic J., Basu C., Zhao X., Gopalakrishnan M., Gao A., Song G., Baygani S., Thompson L., Xia H.A., et al. Statistical Modeling for Bayesian Extrapolation of Adult Clinical Trial Information in Pediatric Drug Evaluation: Extrapolation in Pediatric Drug Evaluation through Bayesian Methods. Pharm. Stat. 2017;16:232–249. doi: 10.1002/pst.1807. PubMed DOI
Reflection Paper on Extrapolation of Efficacy and Safety in Paediatric Medicine Devel-Opment, EMA/199678/2016. Apr 1, 2016. [(accessed on 28 October 2021)]. Available online: https://www.ema.europa.eu/en/documents/regulatory-procedural-guideline/draft-reflection-paper-extrapolation-efficacy-safety-paediatric-medicine-development-first-version_en.pdf.
Von Hoff D.D., Stephenson J.J., Rosen P., Loesch D.M., Borad M.J., Anthony S., Jameson G., Brown S., Cantafio N., Richards D.A., et al. Pilot Study Using Molecular Profiling of Patients’ Tumors to Find Potential Targets and Select Treatments for Their Refractory Cancers. J. Clin. Oncol. 2010;28:4877–4883. doi: 10.1200/JCO.2009.26.5983. PubMed DOI
Mick R., Crowley J.J., Carroll R.J. Phase II Clinical Trial Design for Noncytotoxic Anticancer Agents for which Time to Disease Progression Is the Primary Endpoint. Control. Clin. Trials. 2000;21:343–359. doi: 10.1016/S0197-2456(00)00058-1. PubMed DOI
Gajjar A., Robinson G.W., Smith K.S., Lin T., Merchant T.E., Chintagumpala M., Mahajan A., Su J., Bouffet E., Bartels U., et al. Outcomes by Clinical and Molecular Features in Children With Medulloblastoma Treated With Risk-Adapted Therapy: Results of an International Phase III Trial (SJMB03) J. Clin. Oncol. 2021;39:822–835. doi: 10.1200/JCO.20.01372. PubMed DOI PMC
Zucker D.R., Ruthazer R., Schmid C.H. Individual (N-of-1) Trials Can Be Combined to Give Population Comparative Treatment Effect Estimates: Methodologic Considerations. J. Clin. Epidemiol. 2010;63:1312–1323. doi: 10.1016/j.jclinepi.2010.04.020. PubMed DOI PMC
Mirza R., Punja S., Vohra S., Guyatt G. The History and Development of N-of-1 Trials. J. R. Soc. Med. 2017;110:330–340. doi: 10.1177/0141076817721131. PubMed DOI PMC
Guyatt G., Sackett D., Taylor D.W., Ghong J., Roberts R., Pugsley S. Determining Optimal Therapy—Randomized Trials in Individual Patients. N. Engl. J. Med. 1986;314:889–892. doi: 10.1056/NEJM198604033141406. PubMed DOI
Tate R.L., Perdices M., Rosenkoetter U., Wakim D., Godbee K., Togher L., McDonald S. Revision of a Method Quality Rating Scale for Single-Case Experimental Designs and n -of-1 Trials: The 15-Item Risk of Bias in N -of-1 Trials (RoBiNT) Scale. Neuropsychol. Rehabil. 2013;23:619–638. doi: 10.1080/09602011.2013.824383. PubMed DOI
Kravitz R.L., Paterniti D.A., Hay M.C., Subramanian S., Dean D.E., Weisner T., Vohra S., Duan N. Marketing Therapeutic Precision: Potential Facilitators and Barriers to Adoption of n-of-1 Trials. Contemp. Clin. Trials. 2009;30:436–445. doi: 10.1016/j.cct.2009.04.001. PubMed DOI
Li J., Gao W., Punja S., Ma B., Vohra S., Duan N., Gabler N., Yang K., Kravitz R.L. Reporting Quality of N-of-1 Trials Published between 1985 and 2013: A Systematic Review. J. Clin. Epidemiol. 2016;76:57–64. doi: 10.1016/j.jclinepi.2015.11.016. PubMed DOI
Gabler N.B., Duan N., Vohra S., Kravitz R.L. N-of-1 Trials in the Medical Literature: A Systematic Review. Med. Care. 2011;49:761–768. doi: 10.1097/MLR.0b013e318215d90d. PubMed DOI
Punja S., Bukutu C., Shamseer L., Sampson M., Hartling L., Urichuk L., Vohra S. N-of-1 Trials Are a Tapestry of Heterogeneity. J. Clin. Epidemiol. 2016;76:47–56. doi: 10.1016/j.jclinepi.2016.03.023. PubMed DOI
Guyatt G., Sackett D., Adachi J., Roberts R., Chong J., Rosenbloom D., Keller J. A Clinician’s Guide for Conducting Randomized Trials in Individual Patients. CMAJ Can. Med. Assoc. J. 1988;139:497–503. PubMed PMC
Kent D.M., Steyerberg E., van Klaveren D. Personalized Evidence Based Medicine: Predictive Approaches to Heterogeneous Treatment Effects. BMJ. 2018;363:k4245. doi: 10.1136/bmj.k4245. PubMed DOI PMC
Kravitz R.L. N-of-1 Trials in Hypertension Are Feasible, but Are They Worthwhile? J. Gen. Intern. Med. 2019;34:781–782. doi: 10.1007/s11606-019-04938-3. PubMed DOI PMC
Fortin M. Randomized Controlled Trials: Do They Have External Validity for Patients With Multiple Comorbidities? Ann. Fam. Med. 2006;4:104–108. doi: 10.1370/afm.516. PubMed DOI PMC
Zucker D.R., Ruthazer R., Schmid C.H., Feuer J.M., Fischer P.A., Kieval R.I., Mogavero N., Rapoport R.J., Selker H.P., Stotsky S.A., et al. Lessons Learned Combining N-of-1 Trials to Assess Fibromyalgia Therapies. J. Rheumatol. 2006;33:2069–2077. PubMed
Lillie E.O., Patay B., Diamant J., Issell B., Topol E.J., Schork N.J. The N-of-1 Clinical Trial: The Ultimate Strategy for Individualizing Medicine? Pers. Med. 2011;8:161–173. doi: 10.2217/pme.11.7. PubMed DOI PMC
Sidman M. Normal Sources of Pathological Behavior. Science. 1960;132:61–68. doi: 10.1126/science.132.3419.61. PubMed DOI
Duan N., Kravitz R.L., Schmid C.H. Single-Patient (n-of-1) Trials: A Pragmatic Clinical Decision Methodology for Patient-Centered Comparative Effectiveness Research. J. Clin. Epidemiol. 2013;66:S21–S28. doi: 10.1016/j.jclinepi.2013.04.006. PubMed DOI PMC
Kronish I.M., Cheung Y.K., Shimbo D., Julian J., Gallagher B., Parsons F., Davidson K.W. Increasing the Precision of Hypertension Treatment Through Personalized Trials: A Pilot Study. J. Gen. Intern. Med. 2019;34:839–845. doi: 10.1007/s11606-019-04831-z. PubMed DOI PMC
Kravitz R.L., Duan N., The DEcIDE Methods Center N-of-1 Guidance, Panel . In: Design and Implementation of N-of-1 Trials: A User’s Guide. Duan N., Eslick I., Gabler N.B., Kaplan H.C., Kravitz R.L., Larson E.B., Pace W.D., Schmid C.H., Sim I., Vohra S., editors. Agency for Healthcare Research and Quality; Rockville, MD, USA: Feb, 2014. [(accessed on 28 October 2021)]. AHRQ Publication No. 13(14)-EHC122-EF. Available online: https://effectivehealthcare.ahrq.gov/sites/default/files/pdf/n-1-trials_research-2014-5.pdf.
Nathan P.C., Tomlinson G., Dupuis L.L., Greenberg M.L., Ota S., Bartels U., Feldman B.M. A Pilot Study of Ondansetron plus Metopimazine vs. Ondansetron Monotherapy in Children Receiving Highly Emetogenic Chemotherapy: A Bayesian Randomized Serial N-of-1 Trials Design. Support. Care Cancer. 2006;14:268–276. doi: 10.1007/s00520-005-0875-7. PubMed DOI
Tate R.L., Mcdonald S., Perdices M., Togher L., Schultz R., Savage S. Rating the Methodological Quality of Single-Subject Designs and n -of-1 Trials: Introducing the Single-Case Experimental Design (SCED) Scale. Neuropsychol. Rehabil. 2008;18:385–401. doi: 10.1080/09602010802009201. PubMed DOI
Vohra S., Shamseer L., Sampson M., Bukutu C., Schmid C.H., Tate R., Nikles J., Zucker D.R., Kravitz R., Guyatt G., et al. CONSORT Extension for Reporting N-of-1 Trials (CENT) 2015 Statement. BMJ. 2015;350:h1738. doi: 10.1136/bmj.h1738. PubMed DOI
Shamseer L., Sampson M., Bukutu C., Schmid C.H., Nikles J., Tate R., Johnston B.C., Zucker D., Shadish W.R., Kravitz R., et al. CONSORT Extension for Reporting N-of-1 Trials (CENT) 2015: Explanation and Elaboration. J. Clin. Epidemiol. 2016;76:18–46. doi: 10.1016/j.jclinepi.2015.05.018. PubMed DOI
Guyatt G.H., Heyting A., Jaeschke R., Keller J., Adachi J.D., Roberts R.S. N of 1 Randomized Trials for Investigating New Drugs. Control. Clin. Trials. 1990;11:88–100. doi: 10.1016/0197-2456(90)90003-K. PubMed DOI
European Medicines Agency. Committee for Human Medicinal Products Guideline on Clinical Trials in Small Populations, EMA/CHMP/EWP/83561/2005. [(accessed on 28 October 2021)];2006 July 27; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-clinical-trials-small-populations_en.pdf.
Scuffham P.A., Yelland M.J., Nikles J., Pietrzak E., Wilkinson D. Are N-of-1 Trials an Economically Viable Option to Improve Access to Selected High Cost Medications? The Australian Experience. Value Health. 2008;11:97–109. doi: 10.1111/j.1524-4733.2007.00218.x. PubMed DOI
Scuffham P.A., Nikles J., Mitchell G.K., Yelland M.J., Vine N., Poulos C.J., Pillans P.I., Bashford G., del Mar C., Schluter P.J., et al. Using N-of-1 Trials to Improve Patient Management and Save Costs. J. Gen. Intern. Med. 2010;25:906–913. doi: 10.1007/s11606-010-1352-7. PubMed DOI PMC
Henry D., Taylor C. Pharmacoeconomics of Cancer Therapies: Considerations with the Introduction of Biosimilars. Semin. Oncol. 2014;41:S13–S20. doi: 10.1053/j.seminoncol.2014.03.009. PubMed DOI