Plant Material as a Novel Tool in Designing and Formulating Modern Biostimulants-Analysis of Botanical Extract from Linum usitatissimum L
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
DNK/SP/465641/2020
'Excellent science' program of the Ministry of Education and Science
PubMed
34772188
PubMed Central
PMC8588437
DOI
10.3390/ma14216661
PII: ma14216661
Knihovny.cz E-resources
- Keywords
- amino acids, bioproduct, economy, extract, fatty acids, flax, plant material, surface tension,
- Publication type
- Journal Article MeSH
Nowadays, researchers are looking into next-generation biostimulants that can be designed as a dedicated agronomic tool based on plant materials. The aim of the present study was to develop a novel biostimulating product, based on plant material in the form of linseed aqueous extracts. The scope of the research included the physicochemical characterization of the product and identification of its biostimulating potential. The study has confirmed that the plant biostimulant derived from L. usitatissimum can be used as a viable agronomic tool for growing soybean. The designed and produced biostimulant is rich in bioactive compounds, including amino acids, free fatty acids, carbohydrates, and micro- and macroelements. The tested biostimulant showed significantly lower values of surface tension in relation to water and a commercial biostimulant. The soybean crops responded to the application of the preparation by improvements in agronomic and morphological levels. The linseed macerates were effective in terms of soybean yields and profitability. Our findings serve as preliminary evidence for the viability of designing and developing novel biostimulants derived from plant materials. This comprehensive approach to designing and formulating novel bioproducts necessitates more extensive and targeted research to fully explain the mechanisms behind the improvements observed in the soybean cultivation.
See more in PubMed
Chrysargyris A., Charalambous S., Xylia P., Litskas V., Stavrinides M., Tzortzakis N. Assessing the Biostimulant Effects of a Novel Plant-Based Formulation on Tomato Crop. Sustainability. 2020;12:8432. doi: 10.3390/su12208432. DOI
Francesca S., Cirillo V., Raimondi G., Maggio A., Barone A., Rigano M.M. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants. 2021;10:783. doi: 10.3390/plants10040783. PubMed DOI PMC
Szparaga A., Kocira S., Kapusta I. Identification of a Biostimulating Potential of an Organic Biomaterial Based on the Botanical Extract from Arctium lappa L. Roots. Materials. 2021;14:4920. doi: 10.3390/ma14174920. PubMed DOI PMC
Szparaga A., Kocira S., Kapusta I., Zaguła G. Prototyping extracts from Artemisia absinthium L. for their biostimulating properties yield-enhancing, and farmer income-increasing properties. Ind. Crop. Prod. 2021;160:113125. doi: 10.1038/s41598-020-74959-0. DOI
Jakubowski T. Effects of microwave radiation on the germination of Solanum tuberosum L. tubers. Bangladesh J. Bot. 2016;45:1255–1257.
Jakubowski T. The reaction of garden cress (Lepidium sativum L.) to microwave radiation; Proceedings of the 2018 Applications of Electromagnetics in Modern Techniques and Medicine (PTZE); Racławice, Poland. 9–12 September 2018; pp. 81–84. DOI
Posmyk M.M., Szafrańska K. Biostimulators: A new trend towards solving an old problem. Front. Plant Sci. 2016;7:748. doi: 10.3389/fpls.2016.00748. PubMed DOI PMC
Koo A.J. Metabolism of the plant hormone jasmonate: A sentinel for tissue damage and master regulator of stress response. Phytochem. Rev. 2018;17:51–80. doi: 10.1007/s11101-017-9510-8. DOI
Du Jardin P., Xu L., Geelen D. Agricultural Functions and Action Mechanisms of Plant Biostimulants (PBs): An Introduction. In: Geelen D., Xu L., editors. The Chemical Biology of Plant Biostimulants. 1st ed. Wiley; Hoboken, NJ, USA: 2020. pp. 3–30.
Michałek W., Kocira A., Findura P., Szparaga A., Kocira S. The influence of biostimulant Asahi SL on the photosynthetic activity of selected cultivars of Phaseolus vulgaris L. Rocz. Ochr. Sr. 2018;20:1286–1301.
Szparaga A., Kuboń M., Kocira S., Czerwińska E., Pawłowska A., Hara P., Kobus Z., Kwaśniewski D. Towards sustainable agriculture—Agronomic and economic effects of biostimulant use in common bean cultivation. Sustainability. 2019;11:4575. doi: 10.3390/su11174575. DOI
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019. [(accessed on 6 September 2021)]. Available online: https://eur-lex.europa.eu/eli/reg/2019/1009/oj.
Szparaga A., Kocira S. Generalized logistic functions in modelling emergence of Brassica napus L. PLoS ONE. 2018;13:e0201980. doi: 10.1371/journal.pone.0201980. PubMed DOI PMC
Szparaga A., Kocira S., Findura P., Kapusta I., Zaguła G., Świeca M. Uncovering the multi-level response of Glycine max L. to the application of allelopathic biostimulant from Levisticum officinale Koch. Sci. Rep. 2021;11:15360. doi: 10.1038/s41598-021-94774-5. PubMed DOI PMC
Zulfiqar F., Casadesús A., Brockman H., Munné-Bosch S. An overview of plantbased natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020;295:110194. doi: 10.1016/j.plantsci.2019.110194. PubMed DOI
Mrid R.B., Benmrid B., Hafsa J., Boukcim H., Sobeh M., Yasri A. Secondary metabolites as biostimulant and bioprotectant agents: A review. Sci. Total Environ. 2021;777:146204. doi: 10.1016/j.scitotenv.2021.146204. DOI
Shale T., Stirk W., van Staden J. Screening of medicinal plants used in Lesotho for antibacterial and anti-inflammatory activity. J. Ethnopharmacol. 1999;67:347–354. doi: 10.1016/S0378-8741(99)00035-5. PubMed DOI
Al-Bayati F.A. Antibacterial Activity of Linum usitatissimum L. Seeds and Active Compound Detection. Rafidain J. Sci. 2007;18:27–36. doi: 10.33899/rjs.2007.42565. DOI
Rady M.M., Varma B.C., Howladar S.M. Common bean (Phaseolus vulgaris L.) seedlings overcome NaCl stress as a result of presoaking in Moringa oleifera leaf extract. Sci. Hortic. 2013;162:63–70. doi: 10.1016/j.scienta.2013.07.046. DOI
Semida W.M., Rady M.M. Presoaking application of propolis and maize grain extracts alleviates salinity stress in common bean (Phaseolus vulgaris L.) Sci. Hortic. 2014;68:210–217. doi: 10.1016/j.scienta.2014.01.042. DOI
Rady M.M., Mohamed G.F. Modulation of salt stress effects on the growth, physiochemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015;193:105–113. doi: 10.1016/j.scienta.2015.07.003. DOI
Rady M.M., Desoky E.S.M., Elrys A.S., Boghdady M.S. Can licorice root extract be used as an effective natural biostimulant for salt-stressed common bean plants? S. Afr. J. Bot. 2019;121:294–305. doi: 10.1016/j.sajb.2018.11.019. DOI
Desoky E.M., Merwad A.M., Rady M.M. Natural biostimulants improve saline soil characteristics and salt stressed-sorghum performance. Commun. Soil Sci. Plant Anal. 2018;49:967–983. doi: 10.1080/00103624.2018.1448861. DOI
Rehman H.U., Alharby H.F., Alzahrani Y., Rady M.M. Magnesium and organic biostimulant integrative application induces physiological and biochemical changes in sunflower plants and its harvested progeny on sandy soil. Plant Physiol. Biochem. 2018;126:97–105. doi: 10.1016/j.plaphy.2018.02.031. PubMed DOI
Taha R.S., Alharby H.F., Bamagoos A.A., Medani R.A., Rady M.M. Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; a natural biostimulant by regulation of plant performance and antioxidant defense system. S. Afr. J. Bot. 2020;128:42–53. doi: 10.1016/j.sajb.2019.09.014. DOI
Rouphael Y., Giordano M., Cardarelli M., Cozzolino E., Mori M., Kyriacou M.C., Bonini P., Colla G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy. 2018;8:126. doi: 10.3390/agronomy8070126. DOI
Hussein N.M., Hussein M.I., Gadel H.S.H., Hammad M.A. Effect of two plant extracts and four aromatic oils on Tuta absoluta population and productivity of tomato cultivar gold stone. J. Plant Prot. Pathol. 2015;6:969–985. doi: 10.21608/jppp.2015.74529. DOI
Hayat S., Ahmad H., Ali M., Hayat K., Khan M.A., Cheng Z. Cheng Aqueous garlic extract as a plant biostimulant enhances physiology, improves crop quality and metabolite abundance, and primes the defense responses of receiver plants. Appl. Sci. 2018;8:1505. doi: 10.3390/app8091505. DOI
Cheema Z.A., Farooq M., Khaliq A. Application of allelopathy in crop production: Success story from Pakistan. In: Cheema Z., Farooq M., Wahid A., editors. Allelopathy. Springer; Berlin/Heidelberg, Germany: 2012. pp. 113–143. DOI
Farooq M., Bajwa A.A., Cheema S.A., Cheema Z.A. Application of allelopathy in crop production. Int. J. Agric. Biol. 2013;15:1367–1378.
Kamran M., Ali Q., Cheema Z.A. Foliar application of crop water extract improves the performance of maize. Plant Environ. 2021;1:138–151.
Vasey-Genser M., Morris D.H. Introduction: History of the cultivation and uses of flaxseed. In: Muir A.D., Westcott N.D., editors. Flax, the Genus Linum. 1st ed. CRC Press; London, UK: 2015. DOI
Anjum F.M., Hussain S. Flaxseed (Linseed), a valuable grain: A review. Food Aust. 2007;59:597–601.
Goyal A., Sharma V., Upadhay N., Gill S., Sihag M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014;51:1633–1653. doi: 10.1007/s13197-013-1247-9. PubMed DOI PMC
Oomah B.D., Kenaschuk E.O., Mazza G. Tocopherols in flaxseed. J. Agric. Food Chem. 1997;45:2076–2080. doi: 10.1021/jf960735g. DOI
Makkar C., Singh J., Parkash C. Modulatory role of vermicompost and vermiwash on growth, yield and nutritional profiling of Linum usitatissimum L. (Linseed): A field study. Environ. Sci. Pollut. Res. 2019;26:3006–3018. doi: 10.1007/s11356-018-3845-6. PubMed DOI
Jhala J.A., Hall L.M. Flax (Linum usitatissimum L.): Current Uses and Future Applications. Aust. J. Basic Appl. Sci. 2010;4:4304–4312.
Czerwińska E., Szparaga A. The vitality and healthiness of oil seeds treated by plant extracts. Acta Sci. Pol. Tech. Agrar. 2015;14:47–59.
Czerwińska E., Szparaga A., Deszcz E. Estimation of effect of dressing in plant extracts on germination capacity of beetroots seeds. Zesz. Nauk. Uniw. Przyr. Wroc.-Rol. 2015;611:7–20.
Kocira S., Hara P., Szparaga A., Czerwińska E., Beloev H., Findura P., Bajus P. Evaluation of the Effectiveness of the Use of Biopreparations as Seed Dressings. Agriculture. 2020;10:90. doi: 10.3390/agriculture10040090. DOI
Szparaga A., Czerwińska E., Piskier T. The effect of treating the seeds of Brassica oleracea L. with aqueous extracts on the germination capacity and seed healthiness. J. Res. Appl. Agric. Eng. 2017;62:162–167.
Kocira S., Czerwińska E., Szparaga A. Analysis of the Ecological Method of Treatment in the Aspect of Increasing the Vitality and Healthiness of Spring Barley Grains Hordeum vulgare L. Rocz. Ochr. Sr. 2018;20:1746–1763.
Macias F.A., Marin D., Oliveros-Bastidas A., Varela R.M., Simonet A.M., Carrera C., Molinillo J.M.G. Allelopathy as a new strategy for sustainable ecosystems development. Biol. Sci. Space. 2003;17:18–23. doi: 10.2187/bss.17.18. PubMed DOI
Li Z.H., Wang Q., Ruan X., Pan C.D., Jiang D.A. Phenolics and plant allelopathy. Molecules. 2010;15:8933–8952. doi: 10.3390/molecules15128933. PubMed DOI PMC
Han X., Cheng Z.H., Meng H.W., Yang X.L., Ahmad I. Allelopathic effect of decomposed garlic (Allium Sativum L.) stalk on lettuce (L. Sativa Var. Crispa L.) Pak. J. Bot. 2013;45:225–233.
Bhadoria P.B.S. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2011;1:7–20. doi: 10.9734/AJEA/2011/002. DOI
Jabran K., Mahajan G., Sardana V., Chauhan B.S. Allelopathy for weed control in agricultural systems. Crop. Prot. 2015;72:57–65. doi: 10.1016/j.cropro.2015.03.004. DOI
Pedrol N., González L., Reigosa M.J. Allelopathy and abiotic stress. In: Reigosa M.J., Pedrol N., González L., editors. Allelopathy: A Physiological Process with Ecological Implications. Springer; Dordrecht, The Netherlands: 2006. pp. 171–209.
Hara P., Szparaga A., Czerwinska E. Ecological Methods Used to Control Fungi that Cause Diseases of the Crop Plant. Rocz. Ochr. Sr. 2018;20:1764–1775.
Le Mire G., Nguyen M.L., Fassotte B., du Jardin P., Verheggen F., Delaplace P., Jijakli H. Implementing plant biostimulants and biocontrol strategies in the agroecological management of cultivated ecosystems, A review. Biotechnol. Agron. Soc. Environ. 2016;20:299–313.
Kocira S., Szparaga A., Hara P., Treder K., Findura P., Bartoš P., Filip M. Biochemical and economical effect of application biostimulants containing seaweed extracts and amino acids as an element of agroecological management of bean cultivation. Sci. Rep. 2020;10:17759. doi: 10.1038/s41598-020-74959-0. PubMed DOI PMC
Szparaga A., Kocira S., Kocira A., Czerwińska E., Świeca M., Lorencowicz E., Kornas R., Koszel M., Oniszczuk T. Modification of growth, yield, and the nutraceutical and antioxidative potential of soybean through the use of synthetic biostimulants. Front. Plant Sci. 2018;9:1401. doi: 10.3389/fpls.2018.01401. PubMed DOI PMC
Biegański J. Herbal Medicine-Our Herbs and Treatment. Jamiołkowski i Evert Sp. z o.o.; Łódź, Poland: 1950.
Zaguła G., Bajcar M., Saletnik B., Czernicka M., Puchalski C., Kapusta I., Oszmiański J. Comparison of the Effectiveness of Water-Based Extraction of Substances from Dry Tea Leaves with the Use of Magnetic Field Assisted Extraction Techniques. Molecules. 2017;22:1656. doi: 10.3390/molecules22101656. PubMed DOI PMC
Pereira da Costa M., Conte-Junior C.A. Chromatographic Methods for the Determination of Carbohydrates and Organic Acids in Foods of Animal Origin. Compr. Rev. Food Sci. Food Saf. 2015;14:586–600. doi: 10.1111/1541-4337.12148. DOI
Zhang H., Wang Z., Liu O. Development and validation of a GC–FID method for quantitative analysis of oleic acid and related fatty acids. J. Pharm. Anal. 2015;5:223–230. doi: 10.1016/j.jpha.2015.01.005. PubMed DOI PMC
European Committee for Standardization . Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. European Committee for Standardization; Geneva, Switzerland: 2017. ISO 6579-1:2017. PubMed
European Committee for Standardization . Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl beta-D-Glucuronide. European Committee for Standardization; Geneva, Switzerland: 2001. ISO 16649-2:2001.
Stauffer C.D. The Measurements of Surface Tension by the Pendant Drop Technique. J. Phys. Chem. 1965;69:1933–1938. doi: 10.1021/j100890a024. DOI
Hansen F.K., Rødsrud G. Surface tension by pendant drop: I. A fast standard instrument using computer image analysis. J. Colloid Interface Sci. 1991;141:1–9. doi: 10.1016/0021-9797(91)90296-K. DOI
Song B., Springer J. Determination of Interfacial Tension from the Profile of a Pendant Drop Using Computer-Aided Image Processing: 1. Theoretical. J. Colloid Interface Sci. 1996;184:64–76. PubMed
Kalantarian A., Saad S.M.I., Neumann A.W. Accuracy of surface tension measurement from drop shapes: The role of image analysis. Adv. Colloid Interface Sci. 2013;199–200:15–22. doi: 10.1016/j.cis.2013.07.004. PubMed DOI
Kocira S., Szparaga A., Kuboń M., Czerwińska E., Piskier T. Morphological and Biochemical Responses of Glycine max (L.) Merr. to the Use of Seaweed Extract. Agronomy. 2019;9:93. doi: 10.3390/agronomy9020093. DOI
Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 Laying Down Rules on the Making Available on the Market of EU Fertilising Products. [(accessed on 6 September 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009.
Paleckiene R., Sviklas A., Šlinkšiene R. Physicochemical properties of a microelement fertilizer with amino acids. Russ. J. Appl. Chem. 2007;80:352–357. doi: 10.1134/S1070427207030020. DOI
Popko M., Michalak I., Wilk R., Gramza M., Chojnacka K., Górecki H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules. 2018;23:470. doi: 10.3390/molecules23020470. PubMed DOI PMC
Jakiene E. The effect of the microelement fertilizers and biological preparation Terra Sorb Foliar on spring rape crop. Žemes Ukio Moksl. 2013;20:75–83. doi: 10.6001/zemesukiomokslai.v20i2.2687. DOI
Nunes-Nesi A., Fernie A.R., Stitt M. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions. Mol. Plant. 2010;3:973–996. doi: 10.1093/mp/ssq049. PubMed DOI
Tegeder M. Transporters for amino acids in plant cells: Some functions and many unknowns. Curr. Opin. Plant Biol. 2012;15:315–321. doi: 10.1016/j.pbi.2012.02.001. PubMed DOI
Tegeder M., Hammes U.Z. The way out and in: Phloem loading and unloading of amino acids. Curr. Opin. Plant Biol. 2018;43:16–21. doi: 10.1016/j.pbi.2017.12.002. PubMed DOI
Tegeder M., Ward J.M. Molecular evolution of plant AAP and LHT amino acid transporters. Front. Plant Sci. 2012;3:21. doi: 10.3389/fpls.2012.00021. PubMed DOI PMC
Bettoni M.M., Mogor A.F., Pauletti V., Goicoechea N., Aranjuelo I., Garmendia I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Comp. Anal. 2016;51:37–44. doi: 10.1016/j.jfca.2016.06.008. DOI
Ertani A., Francioso O., Tugnoli V., Righi V., Nardi S. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. J. Agric. Food Chem. 2011;59:11940–11948. doi: 10.1021/jf202473e. PubMed DOI
Shahabivand S., Padash A., Aghaee A., Nasiri Y., Rezaei P.F. Plant biostimulants (Funneliformis mosseae and humic substances) rather than chemical fertilizer improved biochemical responses in peppermint. Plant Physiol. 2018;8:2333–2344. doi: 10.22034/ijpp.2018.539109. DOI
Briglia N., Petrozza A., Hoeberichts F.A., Verhoef N., Povero G. Investigating the Impact of Biostimulants on the Row Crops Corn and Soybean Using High-Efficiency Phenotyping and Next Generation Sequencing. Agronomy. 2019;9:761. doi: 10.3390/agronomy9110761. DOI
Barone V., Bertoldo G., Magro F., Broccanello C., Puglisi I., Baglieri A., Cagnin M., Concheri G., Squartini A., Pizzeghello D., et al. Molecular and Morphological Changes Induced by Leonardite-based Biostimulant in Beta vulgaris L. Plants. 2019;8:181. doi: 10.3390/plants8060181. PubMed DOI PMC
Godlewska A., and Ciepiela G. Carbohydrate and lignin contents in perennial ryegrass (Lolium perenne L.) treated with sea bamboo (Ecklonia maxima) extract against the background of nitrogen fertilisation regime. Appl. Ecol. Environ. Res. 2020;18:6087–6097. doi: 10.15666/aeer/1805_60876097. DOI
Godlewska K., Pacyga P., Michalak I., Biesiada A., Szumny A., Pachura N., Piszcz U. Field-Scale Evaluation of Botanical Extracts Effect on the Yield, Chemical Composition and Antioxidant Activity of Celeriac (Apium graveolens L. Var. rapaceum). Molecules. 2020;25:4212. doi: 10.3390/molecules25184212. PubMed DOI PMC
Godlewska K., Pacyga P., Michalak I., Biesiada A., Szumny A., Pachura N., Piszcz U. Effect of Botanical Extracts on the Growth and Nutritional Quality of Field-Grown White Head Cabbage (Brassica oleracea var. capitata) Molecules. 2021;26:1992. doi: 10.3390/molecules26071992. PubMed DOI PMC
Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., Rouphael Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017;8:2202. doi: 10.3389/fpls.2017.02202. PubMed DOI PMC
Ertani A., Schiavon M., Muscolo A., Nardi S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil. 2013;364:145–158. doi: 10.1007/s11104-012-1335-z. DOI
Ertani A., Schiavon M., Nardi S. Transcriptome-wide identification of differentially expressed genes in Solanum lycopersicon L. in response to an Alfalfa-protein hydrolysate using microarrays. Front. Plant Sci. 2018;8:1159. doi: 10.3389/fpls.2017.01159. PubMed DOI PMC
Sestili F., Rouphael Y., Cardarelli M., Pucci A., Bonini P., Canaguier R., Colla G. Protein hydrolysate stimulates growth and N uptake in tomato coupled with N-dependent gene expression involved in N assimilation. Front Plant Sci. 2018;9:1233. doi: 10.3389/fpls.2018.01233. PubMed DOI PMC
Seyed Sharifi R. Application of biofertilizers and zinc increases yield, nodulation and unsaturated fatty acids of soybean. Zemdirbyste. 2016;103:251–258. doi: 10.13080/z-a.2016.103.032. DOI
Thenua O.V.S., Kuldeep S., Vivek R., Jasbir S. Effect of sulphur and zinc application on growth and productivity of soybean [Glycine max. (L.) Merrill] in northern plain zone of India. Ann. Agric. Res. New Ser. 2014;35:183–187.
Sarkar D., Mandal B., Kundu M.C. Increasing use efficiency of boron fertilisers by rescheduling the time and methods of application for crops in India. Plant Soil. 2007;301:77–85. doi: 10.1007/s11104-007-9423-1. DOI
He M., Qin C.X., Wang X., and Ding N.Z. Plant unsaturated fatty acids: Biosynthesis and regulation. Front. Plant Sci. 2020;11:1–13. doi: 10.3389/fpls.2020.00390. PubMed DOI PMC
Godlewska A., Ciepiela G.A. Italian Ryegrass (Lolium multiflorum Lam.) Fiber Fraction Content and Dry Matter Digestibility Following Biostimulant Application against the Background of Varied Nitrogen Regime. Agronomy. 2021;11:39. doi: 10.3390/agronomy11010039. DOI
Yu Y., Zhu H., Ozkan H.E., Derksen R.C., Krause C.R. Evaporation and deposition coverage area of droplets containing insecticides and spray additives on hydrophilic, hydrophobic, and crabapple leaf surfaces. Trans. ASAE. 2009;52:39–49. doi: 10.13031/2013.25939. DOI
Xu L., Zhu H., Ozkan H.E., Bagley W.E., Krause C.R. Droplet evaporation and spread on waxy and hairy leaves associated with type and concentration of adjuvants. Pest Manag. Sci. 2011;67:842–851. doi: 10.1002/ps.2122. PubMed DOI
He Y., Xiao S., Wu J., Fang H. Influence of multiple factors on the wettability and surface free energy of leaf surface. Appl. Sci. 2019;9:593. doi: 10.3390/app9030593. DOI
Subr A., Parafiniuk S., Milanowski M., Krawczuk A., Kachel M. Study of deposited spray quality of spraying agents with different physical properties. Plant Arch. 2020;20:6109–6114.