Yeast stress granules at a glance

. 2022 Apr ; 39 (4) : 247-261. [epub] 20211130

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34791685

The formation of stress granules (SGs), membrane-less organelles that are composed of mainly messenger ribonucleoprotein assemblies, is the result of a conserved evolutionary strategy to cellular stress. During their formation, which is triggered by robust environmental stress, SGs sequester translationally inactive mRNA molecules, which are either forwarded for further processing elsewhere or stored during a period of stress within SGs. Removal of mRNA molecules from active translation and their sequestration in SGs allows preferential translation of stress response transcripts. By affecting the specificity of mRNA translation, mRNA localization and stability, SGs are involved in the overall cellular reprogramming during periods of environmental stress and viral infection. Over the past two decades, we have learned which processes drive SGs assembly, how their composition varies under stress, and how they co-exist with other subcellular organelles. Yeast as a model has been instrumental in our understanding of SG biology. Despite the specific differences between the SGs of yeast and mammals, yeast have been shown to be a valuable tool to the study of SGs in translation-related stress response. This review summarizes the data surrounding SGs that are formed under different stress conditions in Saccharomyces cerevisiae and other yeast species. It offers a comprehensive and up-to-date view on these still somewhat mysterious entities.

Zobrazit více v PubMed

Almeida, J. R. M., Modig, T., Petersson, A., Hähn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. Journal of Chemical Technology and Biotechnology, 82, 340-349. https://doi.org/10.1002/jctb.1676

Anderson, P., & Kedersha, N. (2002). Stressful initiations. Journal of Cell Science, 115, 3227-3234. https://doi.org/10.1242/jcs.115.16.3227

Anderson, P., & Kedersha, N. (2006). RNA granules. The Journal of Cell Biology, 172, 803-808. https://doi.org/10.1083/jcb.200512082

Anderson, P., & Kedersha, N. (2008). Stress granules: The Tao of RNA triage. Trends in Biochemical Sciences, 33, 141-150. https://doi.org/10.1016/j.tibs.2007.12.003

Anderson, P., & Kedersha, N. (2009). Stress granules. Current Biology, 19, R397-R398. https://doi.org/10.1016/j.cub.2009.03.013

Anderson, P., Kedersha, N., & Ivanov, P. (2015). Stress granules, P-bodies and cancer. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1849, 861-870. https://doi.org/10.1016/j.bbagrm.2014.11.009

Arimoto, K., Fukuda, H., Imajoh-Ohmi, S., Saito, H., & Takekawa, M. (2008). Formation of stress granules inhibits apoptosis by suppressing stress-responsive MAPK pathways. Nature Cell Biology, 10, 1324-1332. https://doi.org/10.1038/ncb1791

Arribere, J. A., Doudna, J. A., & Gilbert, W. V. (2011). Reconsidering movement of eukaryotic mRNAs between polysomes and P bodies. Molecular Cell, 44, 745-758. https://doi.org/10.1016/j.molcel.2011.09.019

Ashe, M. P., De Long, S. K., & Sachs, A. B. (2000). Glucose depletion rapidly inhibits translation initiation in yeast. Molecular Biology of the Cell, 11, 833-848. https://doi.org/10.1091/mbc.11.3.833

Balagopal, V., Fluch, L., & Nissan, T. (2012). Ways and means of eukaryotic mRNA decay. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1819, 593-603. https://doi.org/10.1016/j.bbagrm.2012.01.001

Brengues, M., & Parker, R. (2007). Accumulation of polyadenylated mRNA, Pab1p, eIF4E, and eIF4G with P-bodies in Saccharomyces cerevisiae. Molecular Biology of the Cell, 18, 2592-2602. https://doi.org/10.1091/mbc.e06-12-1149

Bresson, S., Shchepachev, V., Spanos, C., Turowski, T. W., Rappsilber, J., & Tollervey, D. (2020). Stress-induced translation inhibition through rapid displacement of scanning initiation factors. Molecular Cell, 80, 470-484. https://doi.org/10.1016/j.molcel.2020.09.021

Buchan, J. R., Kolaitis, R. M., Taylor, J. P., & Parker, R. (2013). Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell, 153, 1461-1474. https://doi.org/10.1016/j.cell.2013.05.037

Buchan, J. R., Muhlrad, D., & Parker, R. (2008). P bodies promote stress granule assembly in Saccharomyces cerevisiae. The Journal of Cell Biology, 183, 441-455. https://doi.org/10.1083/jcb.200807043

Buchan, J. R., Yoon, J. H., & Parker, R. (2011). Stress-specific composition, assembly and kinetics of stress granules in Saccharomyces cerevisiae. Journal of Cell Science, 124, 228-239. https://doi.org/10.1242/jcs.078444

Castelli, L. M., Lui, J., Campbell, S. G., Rowe, W., Zeef, L. A. H., Holmes, L. E. A., Hoyle, N. P., Bone, J., Selley, J. N., Sims, P. F. G., & Ashe, M. P. (2011). Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Molecular Biology of the Cell, 22, 3379-3393. https://doi.org/10.1091/mbc.e11-02-0153

Cherkasov, V., Grousl, T., Theer, P., Vainshtein, Y., Gläßer, C., Mongis, C., Kramer, G., Stoecklin, G., Knop, M., Mogk, A., & Bukau, B. (2015). Systemic control of protein synthesis through sequestration of translation and ribosome biogenesis factors during severe heat stress. FEBS Letters, 589, 3654-3664. https://doi.org/10.1016/j.febslet.2015.10.010

Cherkasov, V., Hofmann, S., Druffel-Augustin, S., Mogk, A., Tyedmers, J., Stoecklin, G., & Bukau, B. (2013). Coordination of translational control and protein homeostasis during severe heat stress. Current Biology, 23, 2452-2462. https://doi.org/10.1016/j.cub.2013.09.058

Cowart, L. A., Gandy, J. L., Tholanikunnel, B., & Hannun, Y. A. (2010). Sphingolipids mediate formation of mRNA processing bodies during the heat-stress response of Saccharomyces cerevisiae. The Biochemical Journal, 431, 31-38. https://doi.org/10.1042/BJ20100307

Dang, Y., Kedersha, N., Low, W. K., Romo, D., Gorospe, M., Kaufman, R., Anderson, P., & Liu, J. O. (2006). Eukaryotic initiation factor 2α-independent pathway of stress granule induction by the natural product pateamine A. The Journal of Biological Chemistry, 281, 32870-32878. https://doi.org/10.1074/jbc.M606149200

Decker, C. J., Teixeira, D., & Parker, R. (2007). Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. The Journal of Cell Biology, 179, 437-449. https://doi.org/10.1083/jcb.200704147

Dunand-Sauthier, I., Walker, C., Narasimhan, J., Pearce, A., Wek, R., & Humphrey, T. (2002). Sum1, a component of the fission yeast eIF3 translation initiation complex, is rapidly relocalized during environmental stress and interacts with components of the 26S proteasome. Molecular Biology of the Cell, 13, 1626-1640. https://doi.org/10.1091/mbc.01-06-0301

Eshleman, N., Liu, G., McGrath, K., Parker, R., & Buchan, J. R. (2016). Defects in THO/TREX-2 function cause accumulation of novel cytoplasmic mRNP granules that can be cleared by autophagy. RNA, 22, 1200-1214. https://doi.org/10.1261/rna.057224.116

Farny, N. G., Kedersha, N. L., & Silver, P. A. (2009). Metazoan stress granule assembly is mediated by P-eIF2α-dependent and -independent mechanisms. RNA, 15, 1814-1821. https://doi.org/10.1261/rna.1684009

Gaillard, H., & Aguilera, A. (2008). A novel class of mRNA-containing cytoplasmic granules are produced in response to UV-irradiation. Molecular Biology of the Cell, 19, 4980-4992. https://doi.org/10.1091/mbc.e08-02-0193

Gilks, N., Kedersha, N., Ayodele, M., Shen, L., Stoecklin, G., Dember, L. M., & Anderson, P. (2004). Stress granule assembly is mediated by prion-like aggregation of TIA-1. Molecular Biology of the Cell, 15, 5383-5398. https://doi.org/10.1091/mbc.e04-08-0715

Grousl, T., Ivanov, P., Frýdlová, I., Vašicová, P., Janda, F., Vojtová, J., Malínská, K., Malcová, I., Nováková, L., Janošková, D., Valášek, L., & Hašek, J. (2009). Robust heat shock induces eIF2-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. Journal of Cell Science, 122, 2078-2088. https://doi.org/10.1242/jcs.045104

Grousl, T., Ivanov, P., Malcova, I., Pompach, P., Frydlova, I., Slaba, R., Senohrabkova, L., Novakova, L., & Hasek, J. (2013). Heat shock-induced accumulation of translation elongation and termination factors precedes assembly of stress granules in S. cerevisiae. PLoS ONE, 8, e57083.

Guzikowski, A. R., Chen, Y. S., & Zid, B. M. (2019). Stress-induced mRNP granules: Form and function of processing bodies and stress granules. Wiley Interdisciplinary Reviews: RNA, 10, e1524. https://doi.org/10.1002/wrna.1524

Hansen, E. H., Møller, B. L., Kock, G. R., Bünner, C. M., Kristensen, C., Jensen, O. R., Okkels, F. T., Olsen, C. E., Motawia, M. S., & Hansen, J. (2009). De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae). Applied and Environmental Microbiology, 75, 2765-2774. https://doi.org/10.1128/AEM.02681-08

Higa, M., Kita, A., Hagihara, K., Kitai, Y., Doi, A., Nagasoko, R., Satoh, R., & Sugiura, R. (2015). Spatial control of calcineurin in response to heat shock in fission yeast. Genes to Cells, 20, 95-107. https://doi.org/10.1111/gtc.12203

Hill, S. M., Hanzén, S., & Nyström, T. (2017). Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Reports, 18, 377-391. https://doi.org/10.15252/embr.201643458

Hill, S. M., Hao, X., Grönvall, J., Spikings-Nordby, S., Widlund, P. O., Amen, T., Jörhov, A., Josefson, R., Kaganovich, D., Liu, B., & Nyström, T. (2016). Asymmetric inheritance of aggregated proteins and age reset in yeast are regulated by Vac17-dependent vacuolar functions. Cell Reports, 16, 826-838. https://doi.org/10.1016/j.celrep.2016.06.016

Hilliker, A., Gao, Z., Jankowsky, E., & Parker, R. (2011). The DEAD-box protein Ded1 modulates translation by the formation and resolution of an eIF4F-mRNA complex. Molecular Cell, 43, 962-972. https://doi.org/10.1016/j.molcel.2011.08.008

Hofmann, S., Cherkasova, V., Bankhead, P., Bukau, B., & Stoecklin, G. (2012). Translation suppression promotes stress granule formation and cell survival in response to cold shock. Molecular Biology of the Cell, 23, 3786-3800. https://doi.org/10.1091/mbc.e12-04-0296

Hofmann, S., Kedersha, N., Anderson, P., & Ivanov, P. (2021). Molecular mechanisms of stress granule assembly and disassembly. Biochimica et Biophysica Acta, Molecular Cell Research, 1868, 118876. https://doi.org/10.1016/j.bbamcr.2020.118876

Hoyle, N. P., Castelli, L. M., Campbell, S. G., Holmes, L. E. A., & Ashe, M. P. (2007). Stress-dependent relocalization of translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-bodies. The Journal of Cell Biology, 179, 65-74. https://doi.org/10.1083/jcb.200707010

Hsiao, W.-Y., Wang, Y.-T., & Wang, S.-W. (2020). Fission yeast Puf2, a Pumilio and FBF family RNA-binding protein, links stress granules to processing bodies. Molecular and Cellular Biology, 40, e00589-19. https://doi.org/10.1128/MCB.00589-19

Huang, H. T., Maruyama, J., & Kitamoto, K. (2013). Aspergillus oryzae AoSO is a novel component of stress granules upon heat stress in filamentous fungi. PloS One, 8(8), e72209. https://doi.org/10.1371/journal.pone.0072209

Iserman, C., Desroches Altamirano, C., Jegers, C., Friedrich, U., Zarin, T., Fritsch, A. W., Mittasch, M., Domingues, A., Hersemann, L., Jahnel, M., Richter, D., Guenther, U. P., Hentze, M. W., Moses, A. M., Hyman, A. A., Kramer, G., Kreysing, M., Franzmann, T. M., & Alberti, S. (2020). Condensation of Ded1p promotes a translational switch from housekeeping to stress protein production. Cell, 181, 818-831.

Ivanov, P., Kedersha, N., & Anderson, P. (2019). Stress granules and processing bodies in translational control. Cold Spring Harbor Perspectives in Biology, 11, a032813. https://doi.org/10.1101/cshperspect.a032813

Iwaki, A., & Izawa, S. (2012). Acidic stress induces the formation of P-bodies, but not stress granules, with mild attenuation of bulk translation in Saccharomyces cerevisiae. The Biochemical Journal, 446, 225-233. https://doi.org/10.1042/BJ20120583

Iwaki, A., Kawai, T., Yamamoto, Y., & Izawa, S. (2013). Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 79, 1661-1667. https://doi.org/10.1128/AEM.02797-12

Iwaki, A., Ohnuki, S., Suga, Y., Izawa, S., & Ohya, Y. (2013). Vanillin inhibits translation and induces messenger ribonucleoprotein (mRNP) granule formation in Saccharomyces cerevisiae: Application and validation of high-content, image-based profiling. PLoS ONE, 8, e61748. https://doi.org/10.1371/journal.pone.0061748

Jain, S., Wheeler, J. R., Walters, R. W., Agrawal, A., Barsic, A., & Parker, R. (2016). ATPase-modulated stress granules contain a diverse proteome and substructure. Cell, 164, 487-498. https://doi.org/10.1016/j.cell.2015.12.038

Jones, B. L., VanLoozen, J., Kim, M. H., Miles, S. J., Dunham, C. M., Williams, L. D., & Snell, T. W. (2013). Stress granules form in Brachionus manjavacas (Rotifera) in response to a variety of stressors. Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology, 166(2), 375-384. https://doi.org/10.1016/j.cbpa.2013.07.009

Jud, M. C., Czerwinski, M. J., Wood, M. P., Young, R. A., Gallo, C. M., Bickel, J. S., Petty, E. L., Mason, J. M., Little, B. A., Padilla, P. A., & Schisa, J. A. (2008). Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Developmental Biology, 318(1), 38-51. https://doi.org/10.1016/j.ydbio.2008.02.059

Jung, J. H., & Kim, J. (2011). Accumulation of P-bodies in Candida albicans under different stress and filamentous growth conditions. Fungal Genetics and Biology, 48, 1116-1123. https://doi.org/10.1016/j.fgb.2011.10.003

Kaganovich, D., Kopito, R., & Frydman, J. (2008). Misfolded proteins partition between two distinct quality control compartments. Nature, 454, 1088-1095. https://doi.org/10.1038/nature07195

Kato, K., Yamamoto, Y., & Izawa, S. (2011). Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast, 28, 339-347. https://doi.org/10.1002/yea.1842

Kedersha, N., & Anderson, P. (2009). Chapter 4 regulation of translation by stress granules and processing bodies. Progress in Molecular Biology and Translational Science, 90, 155-185. https://doi.org/10.1016/S1877-1173(09)90004-7

Kedersha, N., Chen, S., Gilks, N., Li, W., Miller, I. J., Stahl, J., & Anderson, P. (2002). Evidence that ternary complex (eIF2-GTP-tRNAiMet)-deficient preinitiation complexes are core constituents of mammalian stress granules. Molecular Biology of the Cell, 13, 195-210. https://doi.org/10.1091/mbc.01-05-0221

Kedersha, N., Cho, M. R., Li, W., Yacono, P. W., Chen, S., Gilks, N., Golan, D. E., & Anderson, P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. The Journal of Cell Biology, 151, 1257-1268. https://doi.org/10.1083/jcb.151.6.1257

Kedersha, N., Stoecklin, G., Ayodele, M., Yacono, P., Lykke-Andersen, J., Fitzler, M. J., Scheuner, D., Kaufman, R. J., Golan, D. E., & Anderson, P. (2005). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. The Journal of Cell Biology, 169, 871-884. https://doi.org/10.1083/jcb.200502088

Kedersha, N. L., Gupta, M., Li, W., Miller, I., & Anderson, P. (1999). RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. The Journal of Cell Biology, 147, 1431-1442. https://doi.org/10.1083/jcb.147.7.1431

Khong, A., Matheny, T., Jain, S., Mitchell, S. F., Wheeler, J. R., & Parker, R. (2017). The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Molecular Cell, 68, 808-820. https://doi.org/10.1016/j.molcel.2017.10.015

Kilchert, C., Weidner, J., Prescianotto-Baschong, C., & Spang, A. (2010). Defects in the secretory pathway and high Ca2+ induce multiple P-bodies. Molecular Biology of the Cell, 21, 2624-2638. https://doi.org/10.1091/mbc.e10-02-0099

Kimball, S. R., Horetsky, R. L., Ron, D., Jefferson, L. S., & Harding, H. P. (2003). Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. American Journal of Physiology-Cell Physiology, 284, C273-C284. https://doi.org/10.1152/ajpcell.00314.2002

Kozlova, N. V., Pichon, C., & Rahmouni, A. R. (2020). mRNA with mammalian codon bias accumulates in yeast mutants with constitutive stress granules. International Journal of Molecular Sciences, 21, 1234. https://doi.org/10.3390/ijms21041234

Kozubowski, L., Aboobakar, E. F., Cardenas, M. E., & Heitman, J. (2011). Calcineurin colocalizes with P-bodies and stress granules during thermal stress in cryptococcus neoformans. Eukaryotic Cell, 10, 1396-1402. https://doi.org/10.1128/EC.05087-11

Kramer, S., Queiroz, R., Ellis, L., Webb, H., Hoheisel, J. D., Clayton, C., & Carrington, M. (2008). Heat shock causes a decrease in polysomes and the appearance of stress granules in trypanosomes independently of eIF2α phosphorylation at Thr169. Journal of Cell Science, 121(Pt 18), 3002-3014. https://doi.org/10.1242/jcs.031823

Malinovska, L., Kroschwald, S., Munder, M. C., Richter, D., & Alberti, S. (2012). Molecular chaperones and stress-inducible protein-sorting factors coordinate the spatiotemporal distribution of protein aggregates. Molecular Biology of the Cell, 23, 3041-3056. https://doi.org/10.1091/mbc.e12-03-0194

Mazroui, R., Sukarieh, R., Bordeleau, M. E., Kaufman, R. J., Northcote, P., Tanaka, J., Gallouzi, I., & Pelletier, J. (2006). Inhibition of ribosome recruitment induces stress granule formation independently of eukaryotic initiation factor 2α phosphorylation. Molecular Biology of the Cell, 17, 4212-4219. https://doi.org/10.1091/mbc.e06-04-0318

Miller, S. B. M., Ho, C.-T., Winkler, J., Khokhrina, M., Neuner, A., Mohamed, M. Y. H., Guilbride, D. L., Richter, K., Lisby, M., Schiebel, E., Mogk, A., & Bukau, B. (2015). Compartment-specific aggregases direct distinct nuclear and cytoplasmic aggregate deposition. The EMBO Journal, 34, 778-797. https://doi.org/10.15252/embj.201489524

Miller, S. B. M., Mogk, A., & Bukau, B. (2015). Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. Journal of Molecular Biology, 427, 1564-1574. https://doi.org/10.1016/j.jmb.2015.02.006

Mitchell, S. F., Jain, S., She, M., & Parker, R. (2013). Global analysis of yeast mRNPs. Nature Structural & Molecular Biology, 20, 127-133. https://doi.org/10.1038/nsmb.2468

Mogk, A., & Bukau, B. (2017). Role of sHsps in organizing cytosolic protein aggregation and disaggregation. Cell Stress & Chaperones, 22, 493-502. https://doi.org/10.1007/s12192-017-0762-4

Morano, K. A., Grant, C. M., & Moye-Rowley, W. S. (2012). The response to heat shock and oxidative stress in saccharomyces cerevisiae. Genetics, 190, 1157-1195. https://doi.org/10.1534/genetics.111.128033

Morita, T., Satoh, R., Umeda, N., Kita, A., & Sugiura, R. (2012). The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. Biochemical and Biophysical Research Communications, 417, 399-403. https://doi.org/10.1016/j.bbrc.2011.11.127

Nilsson, D., & Sunnerhagen, P. (2011). Cellular stress induces cytoplasmic RNA granules in fission yeast. RNA, 17, 120-133. https://doi.org/10.1007/978-1-59745-248-9

Nonhoff, U., Ralser, M., Welzel, F., Piccini, I., Balzereit, D., Yaspo, M.-L., Lehrach, H., & Krobitsch, S. (2006). Ataxin-2 interacts with the DEAD/H-Box RNA helicase DDX6 and interferes with P-bodies and stress granules. Molecular Biology of the Cell, 18, 1385-1396. https://doi.org/10.1091/mbc.e06-12-1120

Nover, L., Scharf, K. D., & Neumann, D. (1983). Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Molecular and Cellular Biology, 3, 1648-1655. https://doi.org/10.1128/mcb.3.9.1648-1655.1983

Nover, L., Scharf, K. D., & Neumann, D. (1989). Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Molecular and Cellular Biology, 9, 1298-1308. https://doi.org/10.1128/MCB.9.3.1298

Ogrodnik, M., Salmonowicz, H., Brown, R., Turkowska, J., Sredniawa, W., Pattabiraman, S., Amen, T., Abraham, A. C., Eichler, N., Lyakhovetsky, R., & Kaganovich, D. (2014). Dynamic JUNQ inclusion bodies are asymmetrically inherited in mammalian cell lines through the asymmetric partitioning of vimentin. Proceedings of the National Academy of Sciences, 111, 8049-8054. https://doi.org/10.1073/pnas.1324035111

O'Meara, T. R., O'Meara, M. J., Polvi, E. J., Pourhaghighi, M. R., Liston, S. D., Lin, Z. Y., Veri, A. O., Emili, A., Gingras, A. C., & Cowen, L. E. (2019). Global proteomic analyses define an environmentally contingent Hsp90 interactome and reveal chaperone-dependent regulation of stress granule proteins and the R2TP complex in a fungal pathogen. PLoS Biology, 17, e3000358. https://doi.org/10.1371/journal.pbio.3000358

Panas, M. D., Ivanov, P., & Anderson, P. (2016). Mechanistic insights into mammalian stress granule dynamics. The Journal of Cell Biology, 215, 313-323. https://doi.org/10.1083/jcb.201609081

Park, H. S., Chow, E. W. L., Fu, C., Soderblom, E. J., Moseley, M. A., Heitman, J., & Cardenas, M. E. (2016). Calcineurin targets involved in stress survival and fungal virulence. PLoS Pathogens, 12, e1005873. https://doi.org/10.1371/journal.ppat.1005873

Rajyaguru, P., She, M., & Parker, R. (2012). Scd6 targets eIF4G to repress translation: RGG motif proteins as a class of eIF4G-binding proteins. Molecular Cell, 45, 244-254. https://doi.org/10.1016/j.molcel.2011.11.026

Riback, J. A., Katanski, C. D., Kear-Scott, J. L., Pilipenko, E. V., Rojek, A. E., Sosnick, T. R., & Drummond, D. A. (2017). Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell, 168, 1028-1040. https://doi.org/10.1016/j.cell.2017.02.027

Riggs, C. L., Kedersha, N., Ivanov, P., & Anderson, P. (2020). Mammalian stress granules and P bodies at a glance. Journal of Cell Science, 133, jcs242487. https://doi.org/10.1242/jcs.242487

Satoh, R., Hara, N., Kawasaki, A., Takasaki, T., & Sugiura, R. (2018). Distinct modes of stress granule assembly mediated by the KH-type RNA-binding protein Rnc1. Genes to Cells, 23, 778-785. https://doi.org/10.1111/gtc.12624

Satoh, R., Tanaka, A., Kita, A., Morita, T., Matsumura, Y., Umeda, N., Takada, M., Hayashi, S., Tani, T., Shinmyozu, K., & Sugiura, R. (2012). Role of the RNA-binding protein Nrd1 in stress granule formation and its implication in the stress response in fission yeast. PLoS ONE, 7, e29683. https://doi.org/10.1371/journal.pone.0029683

Scarcelli, J. J., Viggiano, S., Hodge, C. A., Heath, C. V., Amberg, D. C., & Cole, C. N. (2008). Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components. Genetics, 179, 1945-1955. https://doi.org/10.1534/genetics.108.091256

Shah, K. H., Varia, S. N., Cook, L. A., & Herman, P. K. (2016). A hybrid-body containing constituents of both P-bodies and stress granules forms in response to hypoosmotic stress in Saccharomyces cerevisiae. PLoS ONE, 11, e0158776. https://doi.org/10.1371/journal.pone.0158776

Shah, K. H., Zhang, B., Ramachandran, V., & Herman, P. K. (2013). Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics, 193, 109-123. https://doi.org/10.1534/genetics.112.146993

Shiraishi, K., Hioki, T., Habata, A., Yurimoto, H., & Sakai, Y. (2018). Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress. Journal of Cell Science, 131, jcs209114. https://doi.org/10.1242/jcs.209114

Simpson, C. E., & Ashe, M. P. (2012). Adaptation to stress in yeast: To translate or not? Biochemical Society Transactions, 40, 794-799. https://doi.org/10.1042/BST20120078

Sontag, E. M., Samant, R. S., & Frydman, J. (2017). Mechanisms and functions of spatial protein quality control. Annual Review of Biochemistry, 86, 97-122. https://doi.org/10.1146/annurev-biochem-060815-014616

Specht, S., Miller, S. B. M., Mogk, A., & Bukau, B. (2011). Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. The Journal of Cell Biology, 195, 617-629. https://doi.org/10.1083/jcb.201106037

Spokoini, R., Moldavski, O., Nahmias, Y., England, J. L., Schuldiner, M., & Kaganovich, D. (2012). Confinement to organelle-associated inclusion structures mediates asymmetric inheritance of aggregated protein in budding yeast. Cell Reports, 2, 738-747. https://doi.org/10.1016/j.celrep.2012.08.024

Storti, R. V., Scott, M. P., Rich, A., & Lou, P. M. (1980). Translational control of protein synthesis in response to heat shock in D. melanogaster cells. Cell, 22, 825-834. https://doi.org/10.1016/0092-8674(80)90559-0

Swisher, K. D., & Parker, R. (2010). Localization to, and effects of Pbp1, Pbp4, Lsm12, Dhh1, and Pab1 on stress granules in Saccharomyces cerevisiae. PLoS ONE, 5, e10006. https://doi.org/10.1371/journal.pone.0010006

Takahara, T., & Maeda, T. (2012). Transient sequestration of TORC1 into stress granules during heat stress. Molecular Cell, 47, 242-252. https://doi.org/10.1016/j.molcel.2012.05.019

Tian, S., Curnutte, H. A., & Trcek, T. (2020). RNA granules: A view from the RNA perspective. Molecules, 25, 3130. https://doi.org/10.3390/molecules25143130

Tieg, B., & Krebber, H. (2013). Dbp5-From nuclear export to translation. Biochimica et Biophysica Acta, Gene Regulatory Mechanisms, 1829, 791-798. https://doi.org/10.1016/j.bbagrm.2012.10.010

Tudisca, V., Recouvreux, V., Moreno, S., Boy-Marcotte, E., Jacquet, M., & Portela, P. (2010). Differential localization to cytoplasm, nucleus or P-bodies of yeast PKA subunits under different growth conditions. European Journal of Cell Biology, 89, 339-348. https://doi.org/10.1016/j.ejcb.2009.08.005

Tudisca, V., Simpson, C., Castelli, L., Lui, J., Hoyle, N., Moreno, S., Ashe, M., & Portela, P. (2012). PKA isoforms coordinate mRNA fate during nutrient starvation. Journal of Cell Science, 125, 5221-5232. https://doi.org/10.1242/jcs.111534

Uniacke, J., & Zerges, W. (2008). Stress induces the assembly of RNA granules in the chloroplast of Chlamydomonas reinhardtii. The Journal of Cell Biology, 182(4), 641-646. https://doi.org/10.1083/jcb.200805125

Valiente-Echeverría, F., Melnychuk, L., & Mouland, A. J. (2012). Viral modulation of stress granules. Virus Research, 169, 430-437. https://doi.org/10.1016/j.virusres.2012.06.004

Wallace, E. W. J., Kear-Scott, J. L., Pilipenko, E. V., Schwartz, M. H., Laskowski, P. R., Rojek, A. E., Katanski, C. D., Riback, J. A., Dion, M. F., Franks, A. M., Airoldi, E. M., Pan, T., Budnik, B. A., & Drummond, D. A. (2015). Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell, 162, 1286-1298. https://doi.org/10.1016/j.cell.2015.08.041

Wang, C., Schmich, F., Srivatsa, S., Weidner, J., Beerenwinkel, N., & Spang, A. (2018). Context-dependent deposition and regulation of mRNAs in P-bodies. eLife, 7, e29815.

Wang, C. Y., Wen, W. L., Nilsson, D., Sunnerhagen, P., Chang, T. H., & Wang, S. W. (2012). Analysis of stress granule assembly in Schizosaccharomyces pombe. RNA, 18, 694-703. https://doi.org/10.1261/rna.030270.111

Weber, C., Nover, L., & Fauth, M. (2008). Plant stress granules and mRNA processing bodies are distinct from heat stress granules. The Plant Journal, 56, 517-530. https://doi.org/10.1111/j.1365-313X.2008.03623.x

Wen, W.-L., Wang, C.-Y., Chen, H.-J., Wang, S.-W., Stevenson, A. L., Kearsey, S. E., Norbury, C. J., Watt, S., & Bähler, J. (2010). Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Research, 38, 6555-6566. https://doi.org/10.1093/nar/gkq555

Yamamoto, Y., & Izawa, S. (2013). Adaptive response in stress granule formation and bulk translational repression upon a combined stress of mild heat shock and mild ethanol stress in yeast. Genes to Cells, 18, 974-984. https://doi.org/10.1111/gtc.12090

Yang, R., Wek, S. A., & Wek, R. C. (2000). Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Molecular and Cellular Biology, 20, 2706-2717. https://doi.org/10.1128/MCB.20.8.2706-2717.2000

Yoon, J. H., Choi, E. J., & Parker, R. (2010). Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae. The Journal of Cell Biology, 189(5), 813-827. https://doi.org/10.1083/jcb.200912019

Zid, B. M., & O'Shea, E. K. (2014). Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature, 514, 117-121. https://doi.org/10.1038/nature13578

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...