Lipidomic Profiling Identifies Signatures of Poor Cardiovascular Health

. 2021 Oct 29 ; 11 (11) : . [epub] 20211029

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34822405

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
LQ1605 National Program of Sustainability II (MEYS CR)

Ideal cardiovascular health (CVH) is defined for the presence of ideal behavioral and health metrics known to prevent cardiovascular disease (CVD). The association of circulatory phospho- and sphingo-lipids to primary reduction in cardiovascular risk is unclear. Our aim was to determine the association of CVH metrics with the circulating lipid profile of a population-based cohort. Serum sphingolipid and phospholipid species were extracted from 461 patients of the randomly selected prospective Kardiovize study based on Brno, Czech Republic. Lipids species were measured by a hyphenated mass spectrometry technique, and were associated with poor CVH scores, as defined by the American Heart Association. Phosphatidylcholine (PC), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE) species were significantly lower in ideal and intermediate scores of health dietary metric, blood pressure, total cholesterol and blood fasting glucose compared to poor scores. Current smokers presented higher levels of PC, PE and LPE individual species compared to non-smokers. Ceramide (Cer) d18:1/14:0 was altered in poor blood pressure, total cholesterol and fasting blood glucose metrics. Poor cardiovascular health metric is associated with a specific phospho- and sphingolipid pattern. Circulatory lipid profiling is a potential biomarker to refine cardiovascular health status in primary prevention strategies.

Zobrazit více v PubMed

Roth G.A., Johnson C., Abajobir A., Abd-Allah F., Abera S.F., Abyu G., Ahmed M., Aksut B., Alam T., Alam K., et al. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J. Am. Coll. Cardiol. 2017;70:1–25. doi: 10.1016/j.jacc.2017.04.052. PubMed DOI PMC

Lloyd-Jones D.M., Hong Y., Labarthe D., Mozaffarian D., Appel L.J., Van Horn L., Greenlund K., Daniels S., Nichol G., Tomaselli G.F., et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: The American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121:586–613. doi: 10.1161/CIRCULATIONAHA.109.192703. PubMed DOI

Maugeri A., Hlinomaz O., Agodi A., Barchitta M., Kunzova S., Bauerova H., Sochor O., Medina-Inojosa J.R., Lopez-Jimenez F., Vinciguerra M., et al. Is Drinking Alcohol Really Linked to Cardiovascular Health? Evidence from the Kardiovize 2030 Project. Nutrients. 2020;12:2848. doi: 10.3390/nu12092848. PubMed DOI PMC

Movsisyan N.K., Vinciguerra M., Lopez-Jimenez F., Kunzova S., Homolka M., Jaresova J., Cífková R., Sochor O. Kardiovize Brno 2030, a prospective cardiovascular health study in Central Europe: Methods, baseline findings and future directions. Eur. J. Prev. Cardiol. 2018;25:54–64. doi: 10.1177/2047487317726623. PubMed DOI

Kunzova S., Maugeri A., Medina-Inojosa J., Lopez-Jimenez F., Vinciguerra M., Marques-Vidal P. Determinants of Metabolic Health across Body Mass Index Categories in Central Europe: A Comparison Between Swiss and Czech Populations. Front. Public Health. 2020;8:108. doi: 10.3389/fpubh.2020.00108. PubMed DOI PMC

Maugeri A., Barchitta M., Kunzova S., Bauerova H., Agodi A., Vinciguerra M. The association of social and behavioral factors with dietary risks in adults: Evidence from the Kardiovize Brno 2030 study. Nutr. Metab. Cardiovasc. Dis. 2020;30:896–906. doi: 10.1016/j.numecd.2020.02.009. PubMed DOI

Maugeri A., Hruskova J., Jakubik J., Hlinomaz O., Medina-Inojosa J.R., Barchitta M., Agodi A., Vinciguerra M. How dietary patterns affect left ventricular structure, function and remodelling: Evidence from the Kardiovize Brno 2030 study. Sci. Rep. 2019;9:19154. doi: 10.1038/s41598-019-55529-5. PubMed DOI PMC

Maugeri A., Medina-Inojosa J.R., Kunzova S., Barchitta M., Agodi A., Vinciguerra M., Lopez-Jimenez F. Dog Ownership and Cardiovascular Health: Results from the Kardiovize 2030 Project. Mayo Clin. Proc. Innov. Qual. Outcomes. 2019;3:268–275. doi: 10.1016/j.mayocpiqo.2019.07.007. PubMed DOI PMC

Maugeri A., Hruskova J., Jakubik J., Kunzova S., Sochor O., Barchitta M., Agodi A., Bauerova H., Medina-Inojosa J.R., Vinciguerra M. Dietary antioxidant intake decreases carotid intima media thickness in women but not in men: A cross-sectional assessment in the Kardiovize study. Free. Radic. Biol. Med. 2019;131:274–281. doi: 10.1016/j.freeradbiomed.2018.12.018. PubMed DOI

Maugeri A., Medina-Inojosa J.R., Kunzova S., Agodi A., Barchitta M., Sochor O., Lopez-Jimenez F., Geda Y.E., Vinciguerra M. Sleep Duration and Excessive Daytime Sleepiness Are Associated with Obesity Independent of Diet and Physical Activity. Nutrients. 2018;10:1219. doi: 10.3390/nu10091219. PubMed DOI PMC

Agodi A., Maugeri A., Kunzova S., Sochor O., Bauerova H., Kiacova N., Barchitta M., Vinciguerra M. Association of Dietary Patterns with Metabolic Syndrome: Results from the Kardiovize Brno 2030 Study. Nutrients. 2018;10:898. doi: 10.3390/nu10070898. PubMed DOI PMC

Hruskova J., Maugeri A., Podroužková H., Štípalová T., Jakubík J., Barchitta M., Medina-Inojosa J.R., Homolka M., Agodi A., Kunzova S., et al. Association of Cardiovascular Health with Epicardial Adipose Tissue and Intima Media Thickness: The Kardiovize Study. J. Clin. Med. 2018;7:113. doi: 10.3390/jcm7050113. PubMed DOI PMC

Maugeri A., Kunzova S., Medina-Inojosa J.R., Agodi A., Barchitta M., Homolka M., Kiacova N., Bauerova H., Sochor O., Lopez-Jimenez F., et al. Association between eating time interval and frequency with ideal cardiovascular health: Results from a random sample Czech urban population. Nutr. Metab. Cardiovasc. Dis. 2018;28:847–855. doi: 10.1016/j.numecd.2018.04.002. PubMed DOI

Medina-Inojosa J.R., Vinciguerra M., Maugeri A., Kunzova S., Sochor O., Movsisyan N., Geda Y.E., Stokin G.B., Lopez-Jimenez F. Prevalence of ideal cardiovascular health in a Central European community: Results from the Kardiovize Brno 2030 Project. Eur. J. Prev. Cardiol. 2020;27:441–443. doi: 10.1177/2047487319834875. PubMed DOI

Zhong S., Li L., Shen X., Li Q., Xu W., Wang X., Tao Y., Yin H. An update on lipid oxidation and inflammation in cardiovascular diseases. Free Radic. Biol. Med. 2019;144:266–278. doi: 10.1016/j.freeradbiomed.2019.03.036. PubMed DOI

Borodzicz S., Czarzasta K., Kuch M., Cudnoch-Jedrzejewska A. Sphingolipids in cardiovascular diseases and metabolic disor-ders. Lipids Health Dis. 2015;14:55. doi: 10.1186/s12944-015-0053-y. PubMed DOI PMC

Boffa M.B., Koschinsky M. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat. Rev. Cardiol. 2019;16:305–318. doi: 10.1038/s41569-018-0153-2. PubMed DOI

Stegemann C., Pechlaner R., Willeit P., Langley S.R., Mangino M., Mayr U., Menni C., Moayyeri A., Santer P., Rungger G., et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. Circulation. 2014;129:1821–1831. doi: 10.1161/CIRCULATIONAHA.113.002500. PubMed DOI

Mundra P., Barlow C.K., Nestel P.J., Barnes E.H., Kirby A., Thompson P., Sullivan D.R., Alshehry Z.H., Mellett N.A., Huynh K., et al. Large-scale plasma lipidomic profiling identifies lipids that predict cardiovascular events in secondary prevention. JCI Insight. 2018;3:3. doi: 10.1172/jci.insight.121326. PubMed DOI PMC

Vasile V.C., Meeusen J.W., Medina Inojosa J.R., Donato L.J., Scott C.G., Hyun M.S., Vinciguerra M., Rodeheffer R.R., Lopez-Jimenez F., Jaffe A.S. Ceramide Scores Predict Cardiovascular Risk in the Community. Arterioscler. Thromb. Vasc. Biol. 2021;41:1558–1569. doi: 10.1161/ATVBAHA.120.315530. PubMed DOI PMC

Huynh K., Barlow C.K., Jayawardana K.S., Weir J.M., Mellett N.A., Cinel M., Magliano D., Shaw J.E., Drew B.G., Meikle P.J. High-Throughput Plasma Lipidomics: Detailed Mapping of the Associations with Cardiometabolic Risk Factors. Cell Chem. Biol. 2019;26:71–84.e4. doi: 10.1016/j.chembiol.2018.10.008. PubMed DOI

Syme C., Czajkowski S., Shin J., Abrahamowicz M., Leonard G., Perron M., Richer L., Veillette S., Gaudet D., Strug L., et al. Glyc-erophosphocholine Metabolites and Cardiovascular Disease Risk Factors in Adolescents: A Cohort Study. Circulation. 2016;134:1629–1636. doi: 10.1161/CIRCULATIONAHA.116.022993. PubMed DOI

Alshehry Z.H., Mundra P.A., Barlow C.K., Mellett N.A., Wong G., McConville M.J., Simes J., Tonkin A.M., Sullivan D.R., Barnes E.H., et al. Plasma Lipidomic Profiles Improve on Traditional Risk Factors for the Prediction of Cardiovascular Events in Type 2 Dia-betes Mellitus. Circulation. 2016;134:1637–1650. doi: 10.1161/CIRCULATIONAHA.116.023233. PubMed DOI

Visseren F.L.J., Mach F., Smulders Y.M., Carballo D., Koskinas K.C., Back M., Benetos A., Biffi A., Boavida J.M., Capodanno D., et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021;42:3227–3337. doi: 10.1093/eurheartj/ehab484. PubMed DOI

Arnett D.K., Blumenthal R.S., Albert M.A., Buroker A.B., Goldberger Z.D., Hahn E.J., Himmelfarb C.D., Khera A., Lloyd-Jones D., McEvoy J.W., et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–e646. doi: 10.1161/CIR.0000000000000678. PubMed DOI PMC

Weir J.M., Wong G., Barlow C., Greeve M.A., Kowalczyk A., Almasy L., Comuzzie A.G., Mahaney M.C., Jowett J.B.M., Shaw J., et al. Plasma lipid profiling in a large population-based cohort. J. Lipid Res. 2013;54:2898–2908. doi: 10.1194/jlr.P035808. PubMed DOI PMC

Messner B., Bernhard D. Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler. Thromb. Vasc. Biol. 2014;34:509–515. doi: 10.1161/ATVBAHA.113.300156. PubMed DOI

Craig WY, Palomaki GE, Haddow JE: Cigarette smoking and serum lipid and lipoprotein concentrations: An analysis of pub-lished data. BMJ. 1989;298:784–788. doi: 10.1136/bmj.298.6676.784. PubMed DOI PMC

Ma J., Folsom A.R., Shahar E., Eckfeldt J.H. Plasma fatty acid composition as an indicator of habitual dietary fat intake in mid-dle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am. J. Clin. Nutr. 1995;62:564–571. doi: 10.1093/ajcn/62.3.564. PubMed DOI

Arab L. Biomarkers of Fat and Fatty Acid Intake. J. Nutr. 2003;133((Suppl. S3)):925S–932S. doi: 10.1093/jn/133.3.925S. PubMed DOI

Shahin M.H., Gong Y., Frye R.F., Rotroff D.M., Beitelshees A.L., Baillie R.A., Chapman A.B., Gums J.G., Turner S.T., Boerwinkle E., et al. Sphingolipid Metabolic Pathway Impacts Thiazide Diuretics Blood Pressure Response: Insights from Genomics, Metabolomics, and Lipidomics. J. Am. Heart Assoc. 2018;7:e006656. doi: 10.1161/JAHA.117.006656. PubMed DOI PMC

Zheng H., Xie X., Xie N., Xu H., Huang J., Luo M. Sphingomyelin levels in nondipper and dipper hypertensive patients. Exp. Ther. Med. 2014;7:599–603. doi: 10.3892/etm.2013.1455. PubMed DOI PMC

Fernandez C., Sandin M., Sampaio J., Almgren P., Narkiewicz K., Hoffmann M., Hedner T., Wahlstrand B., Simons K., Shevchenko A., et al. Plasma Lipid Composition and Risk of Developing Cardiovascular Disease. PLoS ONE. 2013;8:e71846. doi: 10.1371/journal.pone.0071846. PubMed DOI PMC

Meikle P.J., Wong G., Barlow C., Weir J.M., Greeve M.A., MacIntosh G.L., Almasy L., Comuzzie A.G., Mahaney M.C., Kowalczyk A., et al. Plasma Lipid Profiling Shows Similar Associations with Prediabetes and Type 2 Diabetes. PLoS ONE. 2013;8:e74341. doi: 10.1371/journal.pone.0074341. PubMed DOI PMC

Lu J., Lam S.M., Wan Q., Shi L., Huo Y., Chen L., Tang X., Li B., Wu X., Peng K., et al. High-Coverage Targeted Lipidomics Reveals Novel Serum Lipid Predictors and Lipid Pathway Dysregulation Antecedent to Type 2 Diabetes Onset in Normoglycemic Chinese Adults. Diabetes Care. 2019;42:2117–2126. doi: 10.2337/dc19-0100. PubMed DOI

Sciacca M.F., Brender J.R., Lee D.K., Ramamoorthy A. Phosphatidylethanolamine enhances amyloid fiber-dependent membrane fragmentation. Biochemistry. 2012;51:7676–7684. doi: 10.1021/bi3009888. PubMed DOI PMC

Ference B.A., Graham I., Tokgozoglu L., Catapano A.L. Impact of Lipids on Cardiovascular Health: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018;72:1141–1156. doi: 10.1016/j.jacc.2018.06.046. PubMed DOI

Shahidi F., Ambigaipalan P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018;9:345–381. doi: 10.1146/annurev-food-111317-095850. PubMed DOI

Bazinet R.P., Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014;15:771–785. doi: 10.1038/nrn3820. PubMed DOI

Jha P., McDevitt M.T., Halilbasic E., Williams E., Quiros P.M., Gariani K., Sleiman M.B., Gupta R., Ulbrich A., Jochem A., et al. Genetic Regulation of Plasma Lipid Species and Their Association with Metabolic Phenotypes. Cell Syst. 2018;6:709–721.e6. doi: 10.1016/j.cels.2018.05.009. PubMed DOI PMC

Monnerie S., Comte B., Ziegler D., Morais J.A., Pujos-Guillot E., Gaudreau P. Metabolomic and Lipidomic Signatures of Metabolic Syndrome and its Physiological Components in Adults: A Systematic Review. Sci. Rep. 2020;10:669. doi: 10.1038/s41598-019-56909-7. PubMed DOI PMC

Jiang X.-C., Paultre F., Pearson T.A., Reed R.G., Francis C.K., Lin M., Berglund L., Tall A.R. Plasma Sphingomyelin Level as a Risk Factor for Coronary Artery Disease. Arter. Thromb. Vasc. Biol. 2000;20:2614–2618. doi: 10.1161/01.ATV.20.12.2614. PubMed DOI

Van der Veen J.N., Kennelly J.P., Wan S., Vance J.E., Vance D.E., Jacobs R.L. The critical role of phosphatidylcholine and phospha-tidylethanolamine metabolism in health and disease. Biochim. Biophys. Acta Biomembr. 2017;1859:1558–1572. doi: 10.1016/j.bbamem.2017.04.006. PubMed DOI

Hatch G.M., Karmin O., Choy P.C. Regulation of phosphatidylcholine metabolism in mammalian hearts. Biochem. Cell Biol. 1989;67:67–77. doi: 10.1139/o89-011. PubMed DOI

Vance D.E. Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr. Opin. Lipidol. 2008;19:229–234. doi: 10.1097/MOL.0b013e3282fee935. PubMed DOI

Bar-On H., Roheim P.S., Stein O., Stein Y. Contribution of floating fat triglyceride and of lecithin towards formation of secretory triglyceride in perfused rat liver. Biochim. Biophys. Acta. 1971;248:1–11. doi: 10.1016/0005-2760(71)90068-3. PubMed DOI

Tran K., Sun F., Cui Z., Thorne-Tjomsland G., St Germain C., Lapierre L.R., McLeod R.S., Jamieson J.C., Yao Z. Attenuated secretion of very low density lipoproteins from McA-RH7777 cells treated with eicosapentaenoic acid is associated with impaired utilization of triacylglycerol synthesized via phospholipid remodeling. Biochim. Biophys. Acta. 2006;1761:463–473. doi: 10.1016/j.bbalip.2006.03.018. PubMed DOI

Makide K., Uwamizu A., Shinjo Y., Ishiguro J., Okutani M., Inoue A., Aoki J. Novel lysophosphoplipid receptors: Their structure and function. J. Lipid Res. 2014;55:1986–1995. doi: 10.1194/jlr.R046920. PubMed DOI PMC

Sekas G., Patton G.M., Lincoln E.C., Robins S.J. Origin of plasma lysophosphatidylcholine: Evidence for direct hepatic secretion in the rat. J. Lab. Clin. Med. 1985;105:190–194. PubMed

Iqbal J., Walsh M.T., Hammad S., Hussain M.M. Sphingolipids and Lipoproteins in Health and Metabolic Disorders. Trends Endocrinol. Metab. 2017;28:506–518. doi: 10.1016/j.tem.2017.03.005. PubMed DOI PMC

Nilsson Å., Duan R.-D. Absorption and lipoprotein transport of sphingomyelin. J. Lipid Res. 2006;47:154–171. doi: 10.1194/jlr.M500357-JLR200. PubMed DOI

Augé N., Escargueil-Blanc I., Lajoie-Mazenc I., Suc I., Andrieu-Abadie N., Pieraggi M.-T., Chatelut M., Thiers J.-C., Jaffrézou J.-P., Laurent G., et al. Potential Role for Ceramide in Mitogen-activated Protein Kinase Activation and Proliferation of Vascular Smooth Muscle Cells Induced by Oxidized Low Density Lipoprotein. J. Biol. Chem. 1998;273:12893–12900. doi: 10.1074/jbc.273.21.12893. PubMed DOI

Mantovani A., Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies. J. Clin. Lipidol. 2020;14:176–185. doi: 10.1016/j.jacl.2020.01.005. PubMed DOI

Yao K., Wang Y., Xu D., Liu X., Shen C., Hu W., Wang Z., Wu R., Tang X., Sun A., et al. Effect of combined testing of ceramides with high-sensitive troponin T on the detection of acute coronary syndrome in patients with chest pain in China: A prospective observational study. BMJ Open. 2019;9:e028211. doi: 10.1136/bmjopen-2018-028211. PubMed DOI PMC

Gao X., Ke C., Liu H., Liu W., Li K., 599 Yu B., Sun M. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis. Sci. Rep. 2017;7:11817. doi: 10.1038/s41598-017-12254-1. PubMed DOI PMC

Sigruener A., Kleber M., Heimerl S., Liebisch G., Schmitz G., Maerz W. Glycerophospholipid and Sphingolipid Species and Mortality: The Ludwigshafen Risk and Cardiovascular Health (LURIC) Study. PLoS ONE. 2014;9:e85724. doi: 10.1371/journal.pone.0085724. PubMed DOI PMC

Yin X., Willinger C.M., Keefe J., Liu J., Fernández-Ortiz A., Ibanez B., Peñalvo J., Adourian A., Chen G., Corella D., et al. Lipidomic profiling identifies signatures of metabolic risk. EBioMedicine. 2020;51:102520. doi: 10.1016/j.ebiom.2019.10.046. PubMed DOI PMC

Forget G., Doyon M., Lacerte G., Labonté M., Brown C., Carpentier A.C., Langlois M.-F., Hivert M.-F. Adoption of American Heart Association 2020 Ideal Healthy Diet Recommendations Prevents Weight Gain in Young Adults. J. Acad. Nutr. Diet. 2013;113:1517–1522. doi: 10.1016/j.jand.2013.06.346. PubMed DOI

Elliott P., Peakman T.C., Biobank O.B.O.U. The UK Biobank sample handling and storage protocol for the collection, processing and archiving of human blood and urine. Int. J. Epidemiol. 2008;37:234–244. doi: 10.1093/ije/dym276. PubMed DOI

Folch J., Lees M., Sloane Stanley G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957;226:497–509. doi: 10.1016/S0021-9258(18)64849-5. PubMed DOI

Rivas Serna I.M., Romito I., Maugeri A., Lo Re O., Giallongo S., Mazzoccoli G., Oben J.A., Li Volti G., Mazza T., Alisi A., et al. A Lipidomic Signature Complements Stemness Features Acquisition in Liver Cancer Cells. Int. J. Mol. Sci. 2020;21:8452. doi: 10.3390/ijms21228452. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace