PI(3,4)P2-mediated cytokinetic abscission prevents early senescence and cataract formation
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 EY030574
NEI NIH HHS - United States
R01 DK119305
NIDDK NIH HHS - United States
P30 EY025585
NEI NIH HHS - United States
MC_U105184308
Medical Research Council - United Kingdom
R01 EY017037
NEI NIH HHS - United States
PubMed
34882480
PubMed Central
PMC7612254
DOI
10.1126/science.abk0410
Knihovny.cz E-resources
- MeSH
- Biological Evolution MeSH
- Cell Line MeSH
- Cytokinesis * MeSH
- Zebrafish MeSH
- Endosomal Sorting Complexes Required for Transport metabolism MeSH
- Phosphatidylinositol 3-Kinases genetics metabolism MeSH
- Phosphatidylinositol 4,5-Diphosphate metabolism MeSH
- Phosphatidylinositols metabolism MeSH
- Cataract metabolism pathology MeSH
- Humans MeSH
- Mutation MeSH
- Mice MeSH
- Lens, Crystalline cytology growth & development metabolism MeSH
- Aging, Premature MeSH
- Cell Cycle Proteins metabolism MeSH
- Zebrafish Proteins genetics metabolism MeSH
- Calcium-Binding Proteins metabolism MeSH
- Cellular Senescence * MeSH
- Tubulin metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- CHMP4B protein, human MeSH Browser
- Endosomal Sorting Complexes Required for Transport MeSH
- Phosphatidylinositol 4,5-Diphosphate MeSH
- Phosphatidylinositols MeSH
- PDCD6IP protein, human MeSH Browser
- phosphoinositide-3,4-bisphosphate MeSH Browser
- PIK3C2A protein, human MeSH Browser
- Pik3c2a protein, mouse MeSH Browser
- Cell Cycle Proteins MeSH
- Zebrafish Proteins MeSH
- Calcium-Binding Proteins MeSH
- Tubulin MeSH
- VPS36 protein, human MeSH Browser
Cytokinetic membrane abscission is a spatially and temporally regulated process that requires ESCRT (endosomal sorting complexes required for transport)–dependent control of membrane remodeling at the midbody, a subcellular organelle that defines the cleavage site. Alteration of ESCRT function can lead to cataract, but the underlying mechanism and its relation to cytokinesis are unclear. We found a lens-specific cytokinetic process that required PI3K-C2α (phosphatidylinositol-4-phosphate 3-kinase catalytic subunit type 2α), its lipid product PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate), and the PI(3,4)P2–binding ESCRT-II subunit VPS36 (vacuolar protein-sorting-associated protein 36). Loss of each of these components led to impaired cytokinesis, triggering premature senescence in the lens of fish, mice, and humans. Thus, an evolutionarily conserved pathway underlies the cell type–specific control of cytokinesis that helps to prevent early onset cataract by protecting from senescence.
Department of Biochemistry Case Western Reserve University Cleveland OH 44106 USA
Department of Genetics and Genome Sciences Case Western Reserve University Cleveland OH 44106 USA
Department of Microbiology and Molecular Medicine University of Geneva 1211 Geneva Switzerland
Department of Molecular Biotechnology and Health Sciences University of Turin Turin 10126 Italy
Department of Ophthalmic Research Cole Eye Institute Cleveland Clinic Cleveland OH 44106 USA
Division of Nephrology and Internal Intensive Care Medicine Charite University Berlin Germany
Freie Universität Berlin Faculty of Biology Chemistry and Pharmacy 14195 Berlin Germany
Institute for Research in Biomedicine Università della Svizzera Italiana Bellinzona Switzerland
Leibniz Forschungsinstitut für Molekulare Pharmakologie 13125 Berlin Germany
Pharmaceutical Biology Lexicon Pharmaceuticals The Woodlands TX 77381 USA
Rappaport Family Faculty of Medicine Technion Israel Institute of Technology Haifa 30196 Israel
Section des Sciences Pharmaceutiques University of Geneva 1211 Geneva Switzerland
The Genetics Institute Rambam Health Care Campus Haifa Israel
See more in PubMed
Gulluni F, Martini M, Hirsch E. Cytokinetic abscission: Phosphoinositides and ESCRTs direct the final cut. J Cell Biochem. 2017;118:3561–3568. PubMed
Schmidt O, Teis D. The ESCRT machinery. Curr Biol. 2012;22:R116–R120. PubMed PMC
Adell MAY, Teis D. Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS Lett. 2011;585:3191–3196. PubMed PMC
Carlton JG, Agromayor M, Martin-Serrano J. Differential requirements for Alix and ESCRT-III in cytokinesis and HIV-1 release. Proc Natl Acad Sci USA. 2008;105:10541–10546. PubMed PMC
Bhutta MS, McInerny CJ, Gould GW. ESCRT function in cytokinesis: Location, dynamics and regulation by mitotic kinases. Int J Mol Sci. 2014;15:21723–21739. PubMed PMC
Hurley JH. ESCRTs are everywhere. EMBO J. 2015;34:2398–2407. PubMed PMC
Laporte MH, Chatellard C, Vauchez V, Hemming FJ, Deloulme J-C, Vossier F, Blot B, Fraboulet S, Sadoul R. Alix is required during development for normal growth of the mouse brain. Sci Rep. 2017;7:44767. PubMed PMC
Christ L, Raiborg C, Wenzel EM, Campsteijn C, Stenmark H. Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci. 2017;42:42–56. PubMed
Christ L, Wenzel EM, Liestøl K, Raiborg C, Campsteijn C, Stenmark H. ALIX and ESCRT-I/II function as parallel ESCRT-III recruiters in cytokinetic abscission. J Cell Biol. 2016;212:499–513. PubMed PMC
Goliand I, Nachmias D, Gershony O, Elia N. Inhibition of ESCRT-II-CHMP6 interactions impedes cytokinetic abscission and leads to cell death. Mol Biol Cell. 2014;25:3740–3748. PubMed PMC
Addi C, Presle A, Frémont S, Cuvelier F, Rocancourt M, Milin F, Schmutz S, Chamot-Rooke J, Douché T, Duchateau M, Giai Gianetto Q, et al. The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion ofcytokinesis. Nat Commun. 2020;11:1941. PubMed PMC
Hurley JH. The ESCRT complexes. Crit Rev Biochem Mol Biol. 2010;45:463–487. PubMed PMC
Teo H, Gill DJ, Sun J, Perisic O, Veprintsev DB, Vallis Y, Emr SD, Williams RL. ESCRT-I core and ESCRT-II GLUE domain structures reveal role for GLUE in linking to ESCRT-I and membranes. Cell. 2006;125:99–111. PubMed
Im YJ, Hurley JH. Integrated structural model and membrane targeting mechanism of the human ESCRT-II complex. Dev Cell. 2008;14:902–913. PubMed PMC
Sreekumar PG, Hinton DR, Kannan R. The emerging role of senescence in ocular disease. Oxid Med Cell Longev. 2020:2583601. 2020. PubMed PMC
Matsuyama M, Tanaka H, Inoko A, Goto H, Yonemura S, Kobori K, Hayashi Y, Kondo E, Itohara S, Izawa I, Inagaki M. Defect of mitotic vimentin phosphorylation causes microophthalmia and cataract via aneuploidy and senescence in lens epithelial cells. J Biol Chem. 2013;288:35626–35635. PubMed PMC
Zhou Y, Bennett TM, Shiels A. A charged multivesicular body protein (CHMP4B) is required for lens growth and differentiation. Differentiation. 2019;109:16–27. PubMed PMC
Rodger C, Flex E, Allison RJ, Sanchis-Juan A, Hasenahuer MA, Cecchetti S, French CE, Edgar JR, Carpentieri G, Ciolfi A, Pantaleoni F, et al. Genomics England Research Consortium, De novoVPS4A mutations cause multisystem disease with abnormal neurodevelopment. Am J Hum Genet. 2020;107:1129–1148. PubMed PMC
Seu KG, Trump LR, Emberesh S, Lorsbach RB, Johnson C, Meznarich J, Underhill HR, Chou ST, Sakthivel H, Nassar NN, Seu KJ, et al. VPS4A mutations in humans cause syndromic congenital dyserythropoietic anemia due to cytokinesis and trafficking defects. Am J Hum Genet. 2020;107:1149–1156. PubMed PMC
Tiosano D, Baris HN, Chen A, Hitzert MM, Schueler M, Gulluni F, Wiesener A, Bergua A, Mory A, Copeland B, Gleeson JG, et al. Mutations in PIK3C2A cause syndromic short stature, skeletal abnormalities, and cataracts associated with ciliary dysfunction. PLOS Genet. 2019;15:e1008088. PubMed PMC
Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O, Bishop C, Campisi J, Collado M, Evangelou K, Ferbeyre G, Gil J, et al. Cellular senescence: Defining a path forward. Cell. 2019;179:813–827. PubMed
Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E. Class II PI3K functions in cell biology and disease. Trends Cell Biol. 2019;29:339–359. PubMed
Harris DP, Vogel P, Wims M, Moberg K, Humphries J, Jhaver KG, DaCosta CM, Shadoan MK, Xu N, Hansen GM, Balakrishnan S, et al. Requirement for class II phosphoinositide 3-kinase C2α in maintenance of glomerular structure and function. Mol Cell Biol. 2011;31:63–80. PubMed PMC
Rhodes JD, Lott MC, Russell SL, Moulton V, Sanderson J, Wormstone IM, Broadway DC. Activation of the innate immune response and interferon signalling in myotonic dystrophy type 1 and type 2 cataracts. Hum Mol Genet. 2012;21:852–862. PubMed
Morita E, Sandrin V, Chung H-Y, Morham SG, Gygi SP, Rodesch CK, Sundquist WI. Human ESCRT and ALIX proteins interact with proteins of the midbody and function in cytokinesis. EMBO J. 2007;26:4215–4227. PubMed PMC
Tcherniuk S, Skoufias DA, Labriere C, Rath O, Gueritte F, Guillou C, Kozielski F. Relocation of Aurora B and survivin from centromeres to the central spindle impaired by a kinesin-specific MKLP-2 inhibitor. Angew Chem Int Ed. 2010;49:8228–8231. PubMed
Brill JA, Wong R, Wilde A. Phosphoinositide function in cytokinesis. Curr Biol. 2011;21:R930–R934. PubMed
Wang H, Lo W-T, Vujičić Žagar A, Gulluni F, Lehmann M, Scapozza L, Haucke V, Vadas O. Autoregulation of class II α PI3K activity by its lipid-binding PX-C2 domain module. Mol Cell. 2018;71:343–351.:e4. PubMed
Gupta GD, Coyaud É, Gonçalves J, Mojarad BA, Liu Y, Wu Q, Gheiratmand L, Comartin D, Tkach JM, Cheung SWT, Bashkurov M, et al. A dynamic protein interaction landscape of the human centrosome-cilium interface. Cell. 2015;163:1484–1499. PubMed PMC
Fanarraga ML, Bellido J, Jaén C, Villegas JC, Zabala JC. TBCD links centriologenesis, spindle microtubule dynamics, and midbody abscission in human cells. PLOS ONE. 2010;5:e8846. PubMed PMC
Gulluni F, Martini M, De Santis MC, Campa CC, Ghigo A, Margaria JP, Ciraolo E, Franco I, Ala U, Annaratone L, Disalvatore D, et al. Mitotic spindle assembly and genomic stability in breast cancer require PI3K-C2α scaffolding function. Cancer Cell. 2017;32:444–459.:e7. PubMed
Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, Skotheim RI, Raiborg C, Stenmark H. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol. 2010;12:362–371. PubMed
Posor Y, Eichhorn-Gruenig M, Puchkov D, Schöneberg J, Ullrich A, Lampe A, Müller R, Zarbakhsh S, Gulluni F, Hirsch E, Krauss M, et al. Spatiotemporal control of endocytosis by phosphatidylinositol-3,4-bisphosphate. Nature. 2013;499:233–237. PubMed
Balla T. Phosphoinositides: Tiny lipids with giant impact on cell regulation. Physiol Rev. 2013;93:1019–1137. PubMed PMC
Franco I, Gulluni F, Campa CC, Costa C, Margaria JP, Ciraolo E, Martini M, Monteyne D, De Luca E, Germena G, Posor Y, et al. PI3K class II α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev Cell. 2014;28:647–658. PubMed PMC
Alam SL, Langelier C, Whitby FG, Koirala S, Robinson H, Hill CP, Sundquist WI. Structural basis for ubiquitin recognition by the human ESCRT-II EAP45 GLUE domain. Nat Struct Mol Biol. 2006;13:1029–1030. PubMed
Hirano S, Suzuki N, Slagsvold T, Kawasaki M, Trambaiolo D, Kato R, Stenmark H, Wakatsuki S. Structural basis of ubiquitin recognition by mammalian Eap45 GLUE domain. Nat Struct Mol Biol. 2006;13:1031–1032. PubMed
Elia N, Fabrikant G, Kozlov MM, Lippincott-Schwartz J. Computational model of cytokinetic abscission driven by ESCRT-III polymerization and remodeling. Biophys J. 2012;102:2309–2320. PubMed PMC
Mierzwa B, Gerlich DW. Cytokinetic abscission: Molecular mechanisms and temporal control. Dev Cell. 2014;31:525–538. PubMed
Schiel JA, Simon GC, Zaharris C, Weisz J, Castle D, Wu CC, Prekeris R. FIP3-endosome-dependent formation of the secondary ingression mediates ESCRT-III recruitment during cytokinesis. Nat Cell Biol. 2012;14:1068–1078. PubMed PMC
Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, Shields S, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21:91. PubMed PMC
De Matteis MA, Staiano L, Emma F, Devuyst O. The 5-phosphatase OCRL in Lowe syndrome and Dent disease 2. Nat Rev Nephrol. 2017;13:455–470. PubMed
Wiessner M, Roos A, Munn CJ, Viswanathan R, Whyte T, Cox D, Schoser B, Sewry C, Roper H, Phadke R, Marini Bettolo C, et al. Mutations in INPP5K, encoding a phosphoinositide 5-phosphatase, cause congenital muscular dystrophy with cataracts and mild cognitive impairment. Am J Hum Genet. 2017;100:523–536. PubMed PMC
Cauvin C, Echard A. Phosphoinositides: Lipids with informative heads and mastermind functions in cell division. Biochim Biophys Acta. 2015;1851:832–843. PubMed
Sagona AP, Nezis IP, Stenmark H. Association of CHMP4B and autophagy with micronuclei: Implications for cataract formation. BioMed Res Int. 2014:974393. 2014. PubMed PMC
Alfred V, Vaccari T. When membranes need an ESCRT: Endosomal sorting and membrane remodelling in health and disease. Swiss Med Wkly. 2016;146:w14347. PubMed
Goto H, Inagaki M. New insights into roles of intermediate filament phosphorylation and progeria pathogenesis. IUBMB Life. 2014;66:195–200. PubMed
Panopoulos A, Pacios-Bras C, Choi J, Yenjerla M, Sussman MA, Fotedar R, Margolis RL. Failure of cell cleavage induces senescence in tetraploid primary cells. Mol Biol Cell. 2014;25:3105–3118. PubMed PMC
Bojjireddy N, Botyanszki J, Hammond G, Creech D, Peterson R, Kemp DC, Snead M, Brown R, Morrison A, Wilson S, Harrison S, et al. Pharmacological and genetic targeting of the PI4KA enzyme reveals its important role in maintaining plasma membrane phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate levels. J Biol Chem. 2014;289:6120–6132. PubMed PMC
Thoresen SB, Campsteijn C, Vietri M, Schink KO, Liestøl K, Andersen JS, Raiborg C, Stenmark H. ANCHR mediates aurora-B-dependent abscission checkpoint control through retention of VPS4. Nat Cell Biol. 2014;16:550–560. PubMed
Kettleborough RN, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fényes F, et al. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature. 2013;496:494–497. PubMed PMC
Roy A, Kucukural A, Zhang Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5:725–738. PubMed PMC
Rice LM, Montabana EA, Agard DA. The lattice as allosteric effector: Structural studies of alphabeta-and γ-tubulin clarify the role of GTP in microtubule assembly. Proc Natl Acad Sci USA. 2008;105:5378–5383. PubMed PMC