Nanotechnology-Abetted Astaxanthin Formulations in Multimodel Therapeutic and Biomedical Applications
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34919379
PubMed Central
PMC8762669
DOI
10.1021/acs.jmedchem.1c01144
Knihovny.cz E-zdroje
- MeSH
- lékové transportní systémy * MeSH
- lidé MeSH
- nanostruktury aplikace a dávkování chemie MeSH
- nanotechnologie metody MeSH
- preventivní lékařství * MeSH
- xanthofyly aplikace a dávkování chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- astaxanthine MeSH Prohlížeč
- xanthofyly MeSH
Astaxanthin (AXT) is one of the most important fat-soluble carotenoids that have abundant and diverse therapeutic applications namely in liver disease, cardiovascular disease, cancer treatment, protection of the nervous system, protection of the skin and eyes against UV radiation, and boosting the immune system. However, due to its intrinsic reactivity, it is chemically unstable, and therefore, the design and production processes for this compound need to be precisely formulated. Nanoencapsulation is widely applied to protect AXT against degradation during digestion and storage, thus improving its physicochemical properties and therapeutic effects. Nanocarriers are delivery systems with many advantages─ease of surface modification, biocompatibility, and targeted drug delivery and release. This review discusses the technological advancement in nanocarriers for the delivery of AXT through the brain, eyes, and skin, with emphasis on the benefits, limitations, and efficiency in practice.
Department of Chemistry Sharif University of Technology 11155 9161 Tehran Iran
Department of Physics Sharif University of Technology 11155 9161 Tehran Iran
School of Engineering Macquarie University Sydney New South Wales 2109 Australia
Zobrazit více v PubMed
Baralic I.; Andjelkovic M.; Djordjevic B.; Dikic N.; Radivojevic N.; Suzin-Zivkovic V.; Radojevic-Skodric S.; Pejic S. Effect of Astaxanthin Supplementation on Salivary IgA, Oxidative Stress, and Inflammation in Young Soccer Players. Evidence-Based Complementary and Alternative Medicine 2015, 2015, 783761.10.1155/2015/783761. PubMed DOI PMC
Hu J.; Nagarajan D.; Zhang Q.; Chang J. S.; Lee D. J. Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnol. Adv. 2018, 36 (1), 54–67. 10.1016/j.biotechadv.2017.09.009. PubMed DOI
Chuyen H. V.; Roach P. D.; Golding J. B.; Parks S. E.; Nguyen M. H. Encapsulation of carotenoid-rich oil from Gac peel: Optimisation of the encapsulating process using a spray drier and the storage stability of encapsulated powder. Powder Technol. 2019, 344, 373–379. 10.1016/j.powtec.2018.12.012. DOI
Taksima T.; Limpawattana M.; Klaypradit W. Astaxanthin encapsulated in beads using ultrasonic atomizer and application in yogurt as evaluated by consumer sensory profile. LWT - Food Science and Technology 2015, 62 (1, Part 2), 431–437. 10.1016/j.lwt.2015.01.011. DOI
Higuera-Ciapara I.; Félix-Valenzuela L.; Goycoolea F. M. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46 (2), 185–196. 10.1080/10408690590957188. PubMed DOI
Tirado D. F.; Palazzo I.; Scognamiglio M.; Calvo L.; Della Porta G.; Reverchon E. Astaxanthin encapsulation in ethyl cellulose carriers by continuous supercritical emulsions extraction: A study on particle size, encapsulation efficiency, release profile and antioxidant activity. J. Supercrit. Fluids 2019, 150, 128–136. 10.1016/j.supflu.2019.04.017. DOI
Liu G.; Hu M.; Zhao Z.; Lin Q.; Wei D.; Jiang Y. Enhancing the stability of astaxanthin by encapsulation in poly (l-lactic acid) microspheres using a supercritical anti-solvent process. Particuology 2019, 44, 54–62. 10.1016/j.partic.2018.04.006. DOI
Qiang M.; Pang X.; Ma D.; Ma C.; Liu F. Effect of membrane surface modification using chitosan hydrochloride and lactoferrin on the properties of astaxanthin-loaded liposomes. Molecules 2020, 25 (3), 610.10.3390/molecules25030610. PubMed DOI PMC
Kulkarni S. A.; Feng S.-S. Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm. Res. 2013, 30 (10), 2512–2522. 10.1007/s11095-012-0958-3. PubMed DOI
Sangsuriyawong A.; Limpawattana M.; Siriwan D.; Klaypradit W. Properties and bioavailability assessment of shrimp astaxanthin loaded liposomes. Food Sci. Biotechnol. 2019, 28 (2), 529–537. 10.1007/s10068-018-0495-x. PubMed DOI PMC
Rostamabadi H.; Falsafi S. R.; Jafari S. M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Controlled Release 2019, 298, 38–67. 10.1016/j.jconrel.2019.02.005. PubMed DOI
Hu Q.; Hu S.; Fleming E.; Lee J.-Y.; Luo Y. Chitosan-caseinate-dextran ternary complex nanoparticles for potential oral delivery of astaxanthin with significantly improved bioactivity. Int. J. Biol. Macromol. 2020, 151, 747–756. 10.1016/j.ijbiomac.2020.02.170. PubMed DOI
Rabiee N.; Bagherzadeh M.; Ghadiri A. M.; Kiani M.; Fatahi Y.; Tavakolizadeh M.; Pourjavadi A.; Jouyandeh M.; Saeb M. R.; Mozafari M. Multifunctional 3D Hierarchical Bioactive Green Carbon-Based Nanocomposites. ACS Sustainable Chem. Eng. 2021, 9 (26), 8706–8720. 10.1021/acssuschemeng.1c00781. DOI
Rabiee N.; Khatami M.; Jamalipour Soufi G.; Fatahi Y.; Iravani S.; Varma R. S. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater. Sci. Eng. 2021, 7 (7), 3053–3068. 10.1021/acsbiomaterials.1c00475. PubMed DOI
Rahimnejad M.; Nasrollahi Boroujeni N.; Jahangiri S.; Rabiee N.; Rabiee M.; Makvandi P.; Akhavan O.; Varma R. S. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering. Nano-Micro Lett. 2021, 13 (1), 1–24. 10.1007/s40820-021-00697-1. PubMed DOI PMC
Zare H.; Ahmadi S.; Ghasemi A.; Ghanbari M.; Rabiee N.; Bagherzadeh M.; Karimi M.; Webster T. J.; Hamblin M. R.; Mostafavi E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. Int. J. Nanomed. 2021, 16, 1681.10.2147/IJN.S299448. PubMed DOI PMC
Balietti M.; Giannubilo S. R.; Giorgetti B.; Solazzi M.; Turi A.; Casoli T.; Ciavattini A.; Fattorettia P. The effect of astaxanthin on the aging rat brain: gender-related differences in modulating inflammation. J. Sci. Food Agric. 2016, 96 (2), 615–618. 10.1002/jsfa.7131. PubMed DOI
Angell A.; de Nys R.; Mangott A.; Vucko M. J. The effects of concentration and supplementation time of natural and synthetic sources of astaxanthin on the colouration of the prawn Penaeus monodon. Algal Res. 2018, 35, 577–585. 10.1016/j.algal.2018.09.031. DOI
Jin Y.; Zhang C.; Liu W.; Tang Y.; Qi H.; Chen H.; Cao S. The alcohol dehydrogenase gene family in melon (Cucumis melo L.): bioinformatic analysis and expression patterns. Front. Plant Sci. 2016, 7, 670.10.3389/fpls.2016.00670. PubMed DOI PMC
Bjerkeng B.; Peisker M.; Von Schwartzenberg K.; Ytrestøyl T.; Åsgård T. Digestibility and muscle retention of astaxanthin in Atlantic salmon, Salmo salar, fed diets with the red yeast Phaffia rhodozyma in comparison with synthetic formulated astaxanthin. Aquaculture 2007, 269 (1–4), 476–489. 10.1016/j.aquaculture.2007.04.070. DOI
Kanwugu O. N.; Rao A. R.; Ravishankar G. A.; Glukhareva T. V.; Kovaleva E. G.. Astaxanthin from bacteria as a feed supplement for animals. In Global Perspectives on Astaxanthin; Elsevier: 2021; pp 647–667.
https://www.algatech.com/ (Accessed September 25 2020). In.
https://astareal.com/en/ (Accessed September 25 2020).
https://www.cyanotech.com/ (Accessed September 25 2020).
Rodríguez-Sifuentes L.; Marszalek J.; Hernández-Carbajal G.; Chuck-Hernández C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. Front. Chem. Eng. 2021, 2, 601483.10.3389/fceng.2020.601483. DOI
Li X.; Wang X.; Duan C.; Yi S.; Gao Z.; Xiao C.; Agathos S. N.; Wang G.; Li J. Biotechnological production of astaxanthin from the microalga Haematococcus pluvialis. Biotechnol. Adv. 2020, 43, 107602.10.1016/j.biotechadv.2020.107602. PubMed DOI
Jackson H.; Braun C. L.; Ernst H. The Chemistry of Novel Xanthophyll Carotenoids. Am. J. Cardiol. 2008, 101 (10, Supplement), S50–S57. 10.1016/j.amjcard.2008.02.008. PubMed DOI
Bagherzadeh M.; Rabiee N.; Fatahi Y.; Dinarvand R. Zn-rich (GaN) 1– x (ZnO) x: a biomedical friend?. New J. Chem. 2021, 45 (8), 4077–4089. 10.1039/D0NJ06310J. DOI
Rabiee N.; Bagherzadeh M.; Ghadiri A. M.; Kiani M.; Aldhaher A.; Ramakrishna S.; Tahriri M.; Tayebi L.; Webster T. J. Green synthesis of ZnO NPs via Salvia hispanica: Evaluation of potential antioxidant, antibacterial, mammalian cell viability, H1N1 influenza virus inhibition and photocatalytic activities. J. Biomed. Nanotechnol. 2020, 16 (4), 456–466. 10.1166/jbn.2020.2916. PubMed DOI
Rabiee N.; Bagherzadeh M.; Kiani M.; Ghadiri A. M.; Zhang K.; Jin Z.; Ramakrishna S.; Shokouhimehr M. High gravity-assisted green synthesis of ZnO nanoparticles via Allium ursinum: Conjoining nanochemistry to neuroscience. Nano Express 2020, 1 (2), 020025.10.1088/2632-959X/abac4d. DOI
Higuera-Ciapara I.; Felix-Valenzuela L.; Goycoolea F. Astaxanthin: a review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46 (2), 185–196. 10.1080/10408690590957188. PubMed DOI
Kamath B. S.; Srikanta B. M.; Dharmesh S. M.; Sarada R.; Ravishankar G. A. Ulcer preventive and antioxidative properties of astaxanthin from Haematococcus pluvialis. Eur. J. Pharmacol. 2008, 590 (1–3), 387–395. 10.1016/j.ejphar.2008.06.042. PubMed DOI
Yang L.; Qiao X.; Gu J.; Li X.; Cao Y.; Xu J.; Xue C. Influence of molecular structure of astaxanthin esters on their stability and bioavailability. Food Chem. 2021, 343, 128497.10.1016/j.foodchem.2020.128497. PubMed DOI
Chen Y.-Y.; Lee P.-C.; Wu Y.-L.; Liu L.-Y. In vivo effects of free form astaxanthin powder on anti-oxidation and lipid metabolism with high-cholesterol diet. PLoS One 2015, 10 (8), e0134733.10.1371/journal.pone.0134733. PubMed DOI PMC
Okada Y.; Ishikura M.; Maoka T. Bioavailability of astaxanthin in Haematococcus algal extract: the effects of timing of diet and smoking habits. Biosci., Biotechnol., Biochem. 2009, 73 (9), 1928–1932. 10.1271/bbb.90078. PubMed DOI
Liu Z.-W.; Zhou Y.-X.; Wang L.-H.; Ye Z.; Liu L.-J.; Cheng J.-H.; Wang F.; Bekhit A. E.-D.; Aadil R. M. Multi-spectroscopies and molecular docking insights into the interaction mechanism and antioxidant activity of astaxanthin and β-lactoglobulin nanodispersions. Food Hydrocolloids 2021, 117, 106739.10.1016/j.foodhyd.2021.106739. DOI
Mimoun-Benarroch M.; Hogot C.; Rhazi L.; Niamba C.-N.; Dépeint F. The Bioavailability of Astaxanthin Is Dependent on Both the Source and the Isomeric Variants of the Molecule. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Food Sci. Technol. 2016, 73, 61–69. 10.15835/buasvmcn-fst:12350. DOI
Su F.; Xu H.; Yang N.; Liu W.; Liu J. Hydrolytic efficiency and isomerization during de-esterification of natural astaxanthin esters by saponification and enzymolysis. Electron. J. Biotechnol. 2018, 34, 37–42. 10.1016/j.ejbt.2018.05.002. DOI
Mimoun-Benarroch M.; Hogot C.; Rhazi L.; Niamba C.; Depeint F. The Bioavailability of Astaxanthin Is Dependent on Both the Source and the Isomeric Variants of the Molecule. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Food Sci. Technol. 2016, 73, 61.10.15835/buasvmcn-fst:12350. DOI
Rao A. R.; Sarada R.; Shylaja M. D.; Ravishankar G. Evaluation of hepatoprotective and antioxidant activity of astaxanthin and astaxanthin esters from microalga-Haematococcus pluvialis. J. Food Sci. Technol. 2015, 52 (10), 6703–6710. 10.1007/s13197-015-1775-6. PubMed DOI PMC
Sun W.; Lin H.; Zhai Y.; Cao L.; Leng K.; Xing L. Separation, Purification, and Identification of (3S, 3′ S)-trans-Astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2015, 50 (9), 1377–1383. 10.1080/01496395.2014.976873. DOI
Sun W.; Lin H.; Zhai Y.; Cao L.; Leng K.; Xing L. Separation, Purification, and Identification of (3S,3′S)-trans-Astaxanthin from Haematococcus pluvialis. Sep. Sci. Technol. 2015, 50 (9), 1377–1383. 10.1080/01496395.2014.976873. DOI
Gallego R.; Arena K.; Dugo P.; Mondello L.; Ibáñez E.; Herrero M. Application of compressed fluid–based extraction and purification procedures to obtain astaxanthin-enriched extracts from Haematococcus pluvialis and characterization by comprehensive two-dimensional liquid chromatography coupled to mass spectrometry. Anal. Bioanal. Chem. 2020, 412 (3), 589–599. 10.1007/s00216-019-02287-y. PubMed DOI
Fábryová T.; Tůmová L.; da Silva D. C.; Pereira D. M.; Andrade P. B.; Valentão P.; Hrouzek P.; Kopecký J.; Cheel J. Isolation of astaxanthin monoesters from the microalgae Haematococcus pluvialis by high performance countercurrent chromatography (HPCCC) combined with high performance liquid chromatography (HPLC). Algal Res. 2020, 49, 101947.10.1016/j.algal.2020.101947. DOI
Jaime L.; Rodríguez-Meizoso I.; Cifuentes A.; Santoyo S.; Suarez S.; Ibáñez E.; Señorans F. J. Pressurized liquids as an alternative process to antioxidant carotenoids’ extraction from Haematococcus pluvialis microalgae. LWT - Food Science and Technology 2010, 43 (1), 105–112. 10.1016/j.lwt.2009.06.023. DOI
Kobayashi M.; Sakamoto Y. Singlet oxygen quenching ability of astaxanthin esters from the green alga Haematococcus pluvialis. Biotechnol. Lett. 1999, 21 (4), 265–269. 10.1023/A:1005445927433. DOI
Cerón M. C.; García-Malea M. C.; Rivas J.; Acien F. G.; Fernandez J. M.; Del Río E.; Guerrero M. G.; Molina E. Antioxidant activity of Haematococcus pluvialis cells grown in continuous culture as a function of their carotenoid and fatty acid content. Appl. Microbiol. Biotechnol. 2007, 74 (5), 1112–1119. 10.1007/s00253-006-0743-5. PubMed DOI
Régnier P.; Bastias J.; Rodriguez-Ruiz V.; Caballero-Casero N.; Caballo C.; Sicilia D.; Fuentes A.; Maire M.; Crepin M.; Letourneur D.; Gueguen V.; Rubio S.; Pavon-Djavid G.. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity. Mar. Drugs 2015, 13 ( (5), ).2857.10.3390/md13052857 PubMed DOI PMC
Régnier P.; Bastias J.; Rodriguez-Ruiz V.; Caballero-Casero N.; Caballo C.; Sicilia D.; Fuentes A.; Maire M.; Crepin M.; Letourneur D.; Gueguen V.; Rubio S.; Pavon-Djavid G. Astaxanthin from Haematococcus pluvialis Prevents Oxidative Stress on Human Endothelial Cells without Toxicity. Mar. Drugs 2015, 13 (5), 2857–2874. 10.3390/md13052857. PubMed DOI PMC
Rao A. R.; Sindhuja H. N.; Dharmesh S. M.; Sankar K. U.; Sarada R.; Ravishankar G. A. Effective Inhibition of Skin Cancer, Tyrosinase, and Antioxidative Properties by Astaxanthin and Astaxanthin Esters from the Green Alga Haematococcus pluvialis. J. Agric. Food Chem. 2013, 61 (16), 3842–3851. 10.1021/jf304609j. PubMed DOI
Aoi W.; Maoka T.; Abe R.; Fujishita M.; Tominaga K. Comparison of the effect of non-esterified and esterified astaxanthins on endurance performance in mice. J. Clin. Biochem. Nutr. 2018, 62 (2), 161–166. 10.3164/jcbn.17-89. PubMed DOI PMC
Zhao L.; Chen F.; Zhao G.; Wang Z.; Liao X.; Hu X. Isomerization of trans-astaxanthin induced by copper (II) ion in ethanol. J. Agric. Food Chem. 2005, 53 (24), 9620–9623. 10.1021/jf0517750. PubMed DOI
Honda M.; Kageyama H.; Hibino T.; Sowa T.; Kawashima Y. Efficient and environmentally friendly method for carotenoid extraction from Paracoccus carotinifaciens utilizing naturally occurring Z-isomerization-accelerating catalysts. Process Biochem. 2020, 89, 146–154. 10.1016/j.procbio.2019.10.005. DOI
Viazau Y. V.; Goncharik R. G.; Kulikova I. S.; Kulikov E. A.; Vasilov R. G.; Selishcheva A. A. E/Z isomerization of astaxanthin and its monoesters in vitro under the exposure to light or heat and in overilluminated Haematococcus pluvialis cells. Bioresour. Bioprocess. 2021, 8 (1), 1–13. 10.1186/s40643-021-00410-5. PubMed DOI PMC
Yang C.; Zhang H.; Liu R.; Zhu H.; Zhang L.; Tsao R. Bioaccessibility, cellular uptake, and transport of astaxanthin isomers and their antioxidative effects in human intestinal epithelial Caco-2 cells. J. Agric. Food Chem. 2017, 65 (47), 10223–10232. 10.1021/acs.jafc.7b04254. PubMed DOI
Honda M.; Kageyama H.; Hibino T.; Zhang Y.; Diono W.; Kanda H.; Yamaguchi R.; Takemura R.; Fukaya T.; Goto M. Improved carotenoid processing with sustainable solvents utilizing Z-isomerization-induced alteration in physicochemical properties: A review and future directions. Molecules 2019, 24 (11), 2149.10.3390/molecules24112149. PubMed DOI PMC
Yang C.; Hassan Y. I.; Liu R.; Zhang H.; Chen Y.; Zhang L.; Tsao R. Anti-inflammatory effects of different astaxanthin isomers and the roles of lipid transporters in the cellular transport of astaxanthin isomers in Caco-2 cell monolayers. J. Agric. Food Chem. 2019, 67 (22), 6222–6231. 10.1021/acs.jafc.9b02102. PubMed DOI
Liu X.; Chen X.; Liu H.; Cao Y. Antioxidation and anti-aging activities of astaxanthin geometrical isomers and molecular mechanism involved in Caenorhabditis elegans. J. Funct. Foods 2018, 44, 127–136. 10.1016/j.jff.2018.03.004. DOI
Honda M.; Maeda H.; Fukaya T.; Goto M. Effects of Z-isomerization on the bioavailability and functionality of carotenoids: a review. Prog. Carotenoid Res. 2018, 139–159. 10.5772/intechopen.78309. DOI
Liu X.; Osawa T. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 2007, 357 (1), 187–193. 10.1016/j.bbrc.2007.03.120. PubMed DOI
Yang C.; Zhang L.; Zhang H.; Sun Q.; Liu R.; Li J.; Wu L.; Tsao R. Rapid and efficient conversion of all-E-astaxanthin to 9 Z-and 13 Z-isomers and assessment of their stability and antioxidant activities. J. Agric. Food Chem. 2017, 65 (4), 818–826. 10.1021/acs.jafc.6b04962. PubMed DOI
Liu X.; Osawa T. Cis astaxanthin and especially 9-cis astaxanthin exhibits a higher antioxidant activity in vitro compared to the all-trans isomer. Biochem. Biophys. Res. Commun. 2007, 357 (1), 187–93. 10.1016/j.bbrc.2007.03.120. PubMed DOI
Coral-Hinostroza G.; Ytrestøyl T.; Ruyter B.; Bjerkeng B. Plasma appearance of unesterified astaxanthin geometrical E/Z and optical R/S isomers in men given single doses of a mixture of optical 3 and 3 ′ R/S isomers of astaxanthin fatty acyl diesters. Comp. Biochem. Physiol., Part C: Toxicol. Pharmacol. 2004, 139, 99–110. 10.1016/j.cca.2004.09.011. PubMed DOI
Bjerkeng B.; Følling M.; Lagocki S.; Storebakken T.; Olli J. J.; Alsted N. Bioavailability of all-E-astaxanthin and Z-isomers of astaxanthin in rainbow trout (Oncorhynchus mykiss). Aquaculture 1997, 157 (1), 63–82. 10.1016/S0044-8486(97)00146-4. DOI
Østerlie M.; Bjerkeng B.; Liaaen-Jensen S. Plasma appearance and distribution of astaxanthin E/Z and R/S isomers in plasma lipoproteins of men after single dose administration of astaxanthin11Preliminary results from the present study were presented at the First International Congress on Pigments in Food Technology, March 24–26, 1999, Seville, Spain1 and the 12th International Symposium on Carotenoids (Book of Abstracts, p. 72), July 18–23, 1999, Cairns, Australia. J. Nutr. Biochem. 2000, 11 (10), 482–490. 10.1016/S0955-2863(00)00104-2. PubMed DOI
Dizon M.; Tatarko M.; Szabo K.; Hianik T. Application of high-resolution ultrasonic spectroscopy for detection of the plasmin activity toward β-casein. Food Chem. 2021, 353, 129373.10.1016/j.foodchem.2021.129373. PubMed DOI
Irshad M.; Myint A. A.; Hong M. E.; Kim J.; Sim S. J. One-pot, simultaneous cell wall disruption and complete extraction of astaxanthin from Haematococcus pluvialis at room temperature. ACS Sustainable Chem. Eng. 2019, 7 (16), 13898–13910. 10.1021/acssuschemeng.9b02089. DOI
Damiani M. C.; Leonardi P. I.; Pieroni O. I.; Cáceres E. J. Ultrastructure of the cyst wall of Haematococcus pluvialis (Chlorophyceae): wall development and behaviour during cyst germination. Phycologia 2006, 45 (6), 616–623. 10.2216/05-27.1. DOI
Hagen C.; Siegmund S.; Braune W. Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation. Eur. J. Phycol. 2002, 37 (2), 217–226. 10.1017/S0967026202003669. DOI
Kim D.-Y.; Vijayan D.; Praveenkumar R.; Han J.-I.; Lee K.; Park J.-Y.; Chang W.-S.; Lee J.-S.; Oh Y.-K. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. Bioresour. Technol. 2016, 199, 300–310. 10.1016/j.biortech.2015.08.107. PubMed DOI
Choi S.-A.; Oh Y.-K.; Lee J.; Sim S. J.; Hong M. E.; Park J.-Y.; Kim M.-S.; Kim S. W.; Lee J.-S. High-efficiency cell disruption and astaxanthin recovery from Haematococcus pluvialis cyst cells using room-temperature imidazolium-based ionic liquid/water mixtures. Bioresour. Technol. 2019, 274, 120–126. 10.1016/j.biortech.2018.11.082. PubMed DOI
Molino A.; Mehariya S.; Iovine A.; Larocca V.; Di Sanzo G.; Martino M.; Casella P.; Chianese S.; Musmarra D. Extraction of astaxanthin and lutein from microalga Haematococcus pluvialis in the red phase using CO2 supercritical fluid extraction technology with ethanol as co-solvent. Mar. Drugs 2018, 16 (11), 432.10.3390/md16110432. PubMed DOI PMC
Zhang F.; Cheng L.-H.; Xu X.-H.; Zhang L.; Chen H.-L. Screening of biocompatible organic solvents for enhancement of lipid milking from Nannochloropsis sp. Process Biochem. 2011, 46 (10), 1934–1941. 10.1016/j.procbio.2011.06.024. DOI
Praveenkumar R.; Gwak R.; Kang M.; Shim T. S.; Cho S.; Lee J.; Oh Y.-K.; Lee K.; Kim B. Regenerative astaxanthin extraction from a single microalgal (Haematococcus pluvialis) cell using a gold nano-scalpel. ACS Appl. Mater. Interfaces 2015, 7 (40), 22702–22708. 10.1021/acsami.5b07651. PubMed DOI
Choi H. D.; Youn Y. K.; Shin W. G. Positive Effects of Astaxanthin on Lipid Profiles and Oxidative Stress in Overweight Subjects. Plant Foods Hum. Nutr. 2011, 66 (4), 363–369. 10.1007/s11130-011-0258-9. PubMed DOI
Tyssandier V.; Choubert G.; Grolier P.; Borel P. Carotenoids, mostly the xanthophylls, exchange between plasma lipoproteins. Int. J. Vitam. Nutr. Res. 2002, 72 (5), 300–308. 10.1024/0300-9831.72.5.300. PubMed DOI
Miki W. Biological functions and activities of animal carotenoids. Pure Appl. Chem. 1991, 63 (1), 141–146. 10.1351/pac199163010141. DOI
Brotosudarmo T. H. P.; Limantara L.; Setiyono E.; Heriyanto Structures of Astaxanthin and Their Consequences for Therapeutic Application. Int. J. Food Sci. 2020, 2020, 2156582.10.1155/2020/2156582. PubMed DOI PMC
Martínez-Álvarez Ó.; Calvo M. M.; Gómez-Estaca J. Recent Advances in Astaxanthin Micro/Nanoencapsulation to Improve Its Stability and Functionality as a Food Ingredient. Mar. Drugs 2020, 18 (8), 406.10.3390/md18080406. PubMed DOI PMC
Satoh A.; Tsuji S.; Okada Y.; Murakami N.; Urami M.; Nakagawa K.; Ishikura M.; Katagiri M.; Koga Y.; Shirasawa T. Preliminary clinical evaluation of toxicity and efficacy of a new astaxanthin-rich Haematococcus pluvialis extract. J. Clin. Biochem. Nutr. 2009, 44 (3), 280–284. 10.3164/jcbn.08-238. PubMed DOI PMC
Niu T.; Xuan R.; Jiang L.; Wu W.; Zhen Z.; Song Y.; Hong L.; Zheng K.; Zhang J.; Xu Q.; Tan Y.; Yan X.; Chen H. Astaxanthin Induces the Nrf2/HO-1 Antioxidant Pathway in Human Umbilical Vein Endothelial Cells by Generating Trace Amounts of ROS. J. Agric. Food Chem. 2018, 66 (6), 1551–1559. 10.1021/acs.jafc.7b05493. PubMed DOI
Young I. S.; Woodside J. V. Antioxidants in health and disease. J. Clin. Pathol. 2001, 54 (3), 176.10.1136/jcp.54.3.176. PubMed DOI PMC
Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007, 35 (5), 1147–1150. 10.1042/BST0351147. PubMed DOI
Ambati R. R.; Sarada R.; Baskaran V.; Gokare R. Identification of carotenoids from green alga Haematococcus pluvialis by HPLC and LC-MS (APCI) and their antioxidant properties. J. Microbiol. Biotechnol. 2009, 19 (11), 1333–41. 10.4014/jmb.0905.03007. PubMed DOI
Ranga Rao A.; Raghunath Reddy R. L.; Baskaran V.; Sarada R.; Ravishankar G. A. Characterization of Microalgal Carotenoids by Mass Spectrometry and Their Bioavailability and Antioxidant Properties Elucidated in Rat Model. J. Agric. Food Chem. 2010, 58 (15), 8553–8559. 10.1021/jf101187k. PubMed DOI
Hix L. M.; Frey D. A.; McLaws M. D.; Østerlie M.; Lockwood S. F.; Bertram J. S. Inhibition of chemically-induced neoplastic transformation by a novel tetrasodium diphosphate astaxanthin derivative. Carcinogenesis 2005, 26 (9), 1634–1641. 10.1093/carcin/bgi121. PubMed DOI
Parisi V.; Tedeschi M.; Gallinaro G.; Varano M.; Saviano S.; Piermarocchi S. Carotenoids and Antioxidants in Age-Related Maculopathy Italian Study: Multifocal Electroretinogram Modifications after 1 Year. Ophthalmology 2008, 115 (2), 324–333. 10.1016/j.ophtha.2007.05.029. PubMed DOI
Jyonouchi H.; Zhang L.; Gross M.; Tomita Y. Immunomodulating actions of carotenoids: Enhancement of in vivo and in vitro antibody production to T-dependent antigens. Nutr. Cancer 1994, 21 (1), 47–58. 10.1080/01635589409514303. PubMed DOI
Lin K.-H.; Lin K.-C.; Lu W.-J.; Thomas P.-A.; Jayakumar T.; Sheu J.-R. Astaxanthin, a carotenoid, stimulates immune responses by enhancing IFN-γ and IL-2 secretion in primary cultured lymphocytes in vitro and ex vivo. Int. J. Mol. Sci. 2016, 17 (1), 44.10.3390/ijms17010044. PubMed DOI PMC
Shatoor A. S.; Al Humayed S. Astaxanthin Ameliorates high-fat diet-induced cardiac damage and fibrosis by upregulating and activating SIRT1. Saudi J. Biol. Sci. 2021, 28 (12), 7012–7021. 10.1016/j.sjbs.2021.07.079. PubMed DOI PMC
Coombes J. S.; Sharman J. E.; Fassett R. G. Astaxanthin has no effect on arterial stiffness, oxidative stress, or inflammation in renal transplant recipients: a randomized controlled trial (the XANTHIN trial). Am. J. Clin. Nutr. 2016, 103 (1), 283–289. 10.3945/ajcn.115.115477. PubMed DOI
Brown D. R.; Gough L. A.; Deb S. K.; Sparks S. A.; McNaughton L. R. Astaxanthin in Exercise Metabolism, Performance and Recovery: A Review. Frontiers in Nutrition 2018, 4, 7610.3389/fnut.2017.00076. PubMed DOI PMC
Kato T.; Kasai T.; Sato A.; Ishiwata S.; Yatsu S.; Matsumoto H.; Shitara J.; Murata A.; Shimizu M.; Suda S.; Hiki M.; Naito R.; Daida H. Effects of 3-Month Astaxanthin Supplementation on Cardiac Function in Heart Failure Patients with Left Ventricular Systolic Dysfunction-A Pilot Study. Nutrients 2020, 12 (6), 1896.10.3390/nu12061896. PubMed DOI PMC
Speranza L.; Pesce M.; Patruno A.; Franceschelli S.; Lutiis M. A. d.; Grilli A.; Felaco M. Astaxanthin treatment reduced oxidative induced pro-inflammatory cytokines secretion in U937: SHP-1 as a novel biological target. Mar. Drugs 2012, 10 (4), 890–899. 10.3390/md10040890. PubMed DOI PMC
Song X.; Zhang J.-j.; Wang M.-r.; Liu W.-b.; Gu X.-b.; Lv C.-J. Astaxanthin induces mitochondria-mediated apoptosis in rat hepatocellular carcinoma CBRH-7919 cells. Biol. Pharm. Bull. 2011, 34, 839–844. 10.1248/bpb.34.839. PubMed DOI
Kim K.-N.; Heo S.-J.; Kang S.-M.; Ahn G.; Jeon Y.-J. Fucoxanthin induces apoptosis in human leukemia HL-60 cells through a ROS-mediated Bcl-xL pathway. Toxicol. In Vitro 2010, 24 (6), 1648–1654. 10.1016/j.tiv.2010.05.023. PubMed DOI
Al-Amin M. M.; Akhter S.; Hasan A. T.; Alam T.; Nageeb Hasan S. M.; Saifullah A. R. M.; Shohel M. The antioxidant effect of astaxanthin is higher in young mice than aged: a region specific study on brain. Metab. Brain Dis. 2015, 30 (5), 1237–1246. 10.1007/s11011-015-9699-4. PubMed DOI
Ying C.-j.; Zhang F.; Zhou X.-y.; Hu X.-t.; Chen J.; Wen X.-r.; Sun Y.; Zheng K.-y.; Tang R.-x.; Song Y.-j. Anti-inflammatory effect of astaxanthin on the sickness behavior induced by diabetes mellitus. Cell. Mol. Neurobiol. 2015, 35 (7), 1027–1037. 10.1007/s10571-015-0197-3. PubMed DOI PMC
Suganuma K.; Nakajima H.; Ohtsuki M.; Imokawa G. Astaxanthin attenuates the UVA-induced up-regulation of matrix-metalloproteinase-1 and skin fibroblast elastase in human dermal fibroblasts. J. Dermatol. Sci. 2010, 58 (2), 136–142. 10.1016/j.jdermsci.2010.02.009. PubMed DOI
Tominaga K.; Hongo N.; Karato M.; Yamashita E.. Cosmetic benefits of astaxanthin on humans subjects. Acta Biochim. Pol. 2012, 59 ( (1), ).10.18388/abp.2012_2168 PubMed DOI
Fakhri S.; Aneva I. Y.; Farzaei M. H.; Sobarzo-Sánchez E.. The neuroprotective effects of astaxanthin: therapeutic targets and clinical perspective. Molecules 2019, 24 ( (14), ).2640.10.3390/molecules24142640 PubMed DOI PMC
Galasso C.; Orefice I.; Pellone P.; Cirino P.; Miele R.; Ianora A.; Brunet C.; Sansone C.. On the Neuroprotective Role of Astaxanthin: New Perspectives? Mar. Drugs 2018, 16 ( (8), ).247.10.3390/md16080247 PubMed DOI PMC
Lobos P.; Bruna B.; Cordova A.; Barattini P.; Galáz J. L.; Adasme T.; Hidalgo C.; Muñoz P.; Paula-Lima A.. Astaxanthin protects primary hippocampal neurons against noxious effects of Aβ-oligomers. Neural Plast. 2016, 2016.1.10.1155/2016/3456783 PubMed DOI PMC
Davinelli S.; Nielsen M. E.; Scapagnini G. Astaxanthin in Skin Health, Repair, and Disease: A Comprehensive Review. Nutrients 2018, 10 (4), 522.10.3390/nu10040522. PubMed DOI PMC
Luo L.; Li X.; Huang R.; Luo H. Exploring the mechanism of astaxanthin against lipopolysaccharide-induced acute lung injury by network pharmacology and experimental validation. Research Square 2021, 10, 1–14. 10.21203/rs.3.rs-334157/v1. DOI
Guo S.; Guo L.; Fang Q.; Yu M.; Zhang L.; You C.; Wang X.; Liu Y.; Han C. Astaxanthin protects against early acute kidney injury in severely burned rats by inactivating the TLR4/MyD88/NF-κB axis and upregulating heme oxygenase-1. Sci. Rep. 2021, 11 (1), 6679.10.1038/s41598-021-86146-w. PubMed DOI PMC
Suzuki Y.; Ohgami K.; Shiratori K.; Jin X. H.; Ilieva I.; Koyama Y.; Yazawa K.; Yoshida K.; Kase S.; Ohno S. Suppressive effects of astaxanthin against rat endotoxin-induced uveitis by inhibiting the NF-kappaB signaling pathway. Exp. Eye Res. 2006, 82 (2), 275–281. 10.1016/j.exer.2005.06.023. PubMed DOI
Giannaccare G.; Pellegrini M.; Senni C.; Bernabei F.; Scorcia V.; Cicero A. F. G. Clinical Applications of Astaxanthin in the Treatment of Ocular Diseases: Emerging Insights. Mar. Drugs 2020, 18 (5), 239.10.3390/md18050239. PubMed DOI PMC
Zaafan M. A.; Abdelhamid A. M. The cardioprotective effect of astaxanthin against isoprenaline-induced myocardial injury in rats: involvement of TLR4/NF-κB signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2021, 25 (11), 4099–4105. 10.26355/eurrev_202106_26052. PubMed DOI
Zarneshan S. N.; Fakhri S.; Farzaei M. H.; Khan H.; Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem. Toxicol. 2020, 145, 111714.10.1016/j.fct.2020.111714. PubMed DOI
Lai T. T.; Yang C. M.; Yang C. H.. Astaxanthin Protects Retinal Photoreceptor Cells against High Glucose-Induced Oxidative Stress by Induction of Antioxidant Enzymes via the PI3K/Akt/Nrf2 Pathway. Antioxidants (Basel, Switzerland) 2020, 9 ( (8), ). PubMed PMC
Fu J.; Sun H.; Wei H.; Dong M.; Zhang Y.; Xu W.; Fang Y.; Zhao J. Astaxanthin alleviates spinal cord ischemia-reperfusion injury via activation of PI3K/Akt/GSK-3β pathway in rats. J. Orthop. Surg. Res. 2020, 15 (1), 275.10.1186/s13018-020-01790-8. PubMed DOI PMC
Zarneshan S. N.; Fakhri S.; Farzaei M. H.; Khan H.; Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem. Toxicol. 2020, 145, 111714.10.1016/j.fct.2020.111714. PubMed DOI
Reinhold A. K.; Rittner H. L. Barrier function in the peripheral and central nervous system—a review. Pfluegers Arch. 2017, 469 (1), 123–134. 10.1007/s00424-016-1920-8. PubMed DOI
Berndt P.; Winkler L.; Cording J.; Breitkreuz-Korff O.; Rex A.; Dithmer S.; Rausch V.; Blasig R.; Richter M.; Sporbert A.; Wolburg H.; Blasig I. E.; Haseloff R. F. Tight junction proteins at the blood–brain barrier: far more than claudin-5. Cell. Mol. Life Sci. 2019, 76 (10), 1987–2002. 10.1007/s00018-019-03030-7. PubMed DOI PMC
Costea L.; Mészáros Á.; Bauer H.; Bauer H.-C.; Traweger A.; Wilhelm I.; Farkas A. E.; Krizbai I. A. The Blood–Brain Barrier and Its Intercellular Junctions in Age-Related Brain Disorders. Int. J. Mol. Sci. 2019, 20 (21), 5472.10.3390/ijms20215472. PubMed DOI PMC
Erdő F.; Denes L.; de Lange E. Age-associated physiological and pathological changes at the blood–brain barrier: a review. J. Cereb. Blood Flow Metab. 2017, 37 (1), 4–24. 10.1177/0271678X16679420. PubMed DOI PMC
Sweeney M. D.; Zhao Z.; Montagne A.; Nelson A. R.; Zlokovic B. V. Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 2019, 99 (1), 21–78. 10.1152/physrev.00050.2017. PubMed DOI PMC
Abdullahi W.; Davis T. P.; Ronaldson P. T. Functional Expression of P-glycoprotein and Organic Anion Transporting Polypeptides at the Blood-Brain Barrier: Understanding Transport Mechanisms for Improved CNS Drug Delivery?. AAPS J. 2017, 19 (4), 931–939. 10.1208/s12248-017-0081-9. PubMed DOI PMC
Azevedo F. A.; Carvalho L. R.; Grinberg L. T.; Farfel J. M.; Ferretti R. E.; Leite R. E.; Filho W. J.; Lent R.; Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 2009, 513 (5), 532–541. 10.1002/cne.21974. PubMed DOI
Masgrau R.; Guaza C.; Ransohoff R. M.; Galea E. Should We Stop Saying ‘Glia’ and ‘Neuroinflammation’?. Trends Mol. Med. 2017, 23 (6), 486–500. 10.1016/j.molmed.2017.04.005. PubMed DOI
Wilhelm I.; Krizbai I. A. In Vitro Models of the Blood–Brain Barrier for the Study of Drug Delivery to the Brain. Mol. Pharmaceutics 2014, 11 (7), 1949–1963. 10.1021/mp500046f. PubMed DOI
Vega R. A.; Zhang Y.; Curley C.; Price R. L.; Abounader R. 370 magnetic resonance-guided focused ultrasound delivery of polymeric brain-penetrating nanoparticle microRNA conjugates in glioblastoma. Neurosurgery 2016, 63 (CN_suppl_1), 210.10.1227/01.neu.0000489858.08559.c8. DOI
Abbott N. J.; Patabendige A. A. K.; Dolman D. E. M.; Yusof S. R.; Begley D. J. Structure and function of the blood–brain barrier. Neurobiol. Dis. 2010, 37 (1), 13–25. 10.1016/j.nbd.2009.07.030. PubMed DOI
Lin Q.; Liang R.; Williams P. A.; Zhong F. Factors affecting the bioaccessibility of β-carotene in lipid-based microcapsules: Digestive conditions, the composition, structure and physical state of microcapsules. Food Hydrocolloids 2018, 77, 187–203. 10.1016/j.foodhyd.2017.09.034. DOI
Lin Q.; Liang R.; Zhong F.; Ye A.; Singh H. Effect of degree of octenyl succinic anhydride (OSA) substitution on the digestion of emulsions and the bioaccessibility of β-carotene in OSA-modified-starch-stabilized-emulsions. Food Hydrocolloids 2018, 84, 303–312. 10.1016/j.foodhyd.2018.05.056. DOI
Dube T.; Chibh S.; Mishra J.; Panda J. J. Receptor Targeted Polymeric Nanostructures Capable of Navigating across the Blood-Brain Barrier for Effective Delivery of Neural Therapeutics. ACS Chem. Neurosci. 2017, 8 (10), 2105–2117. 10.1021/acschemneuro.7b00207. PubMed DOI
Makvandi P.; Chen M.; Sartorius R.; Zarrabi A.; Ashrafizadeh M.; Moghaddam F. D.; Ma J.; Mattoli V.; Tay F. R. Endocytosis of Abiotic Nanomaterials and Nanobiovectors: Inhibition of Membrane Trafficking. Nano Today 2021, 40, 101279.10.1016/j.nantod.2021.101279. PubMed DOI PMC
Liu D.-z.; Cheng Y.; Cai R.-q.; Wang B. D. W.-w.; Cui H.; Liu M.; Zhang B.-l.; Mei Q.-b.; Zhou S.-y. The enhancement of siPLK1 penetration across BBB and its anti glioblastoma activity in vivo by magnet and transferrin co-modified nanoparticle. Nanomedicine 2018, 14 (3), 991–1003. 10.1016/j.nano.2018.01.004. PubMed DOI
Dixit S.; Novak T.; Miller K.; Zhu Y.; Kenney M. E.; Broome A.-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale 2015, 7 (5), 1782–1790. 10.1039/C4NR04853A. PubMed DOI PMC
You Z.-q.; Wu Q.; Zhou X.-m.; Zhang X.-s.; Yuan B.; Wen L.-l.; Xu W.-d.; Cui S.; Tang X.-l.; Zhang X. Receptor-mediated delivery of Astaxanthin-loaded nanoparticles to neurons: An enhanced potential for subarachnoid hemorrhage treatment. Front. Neurosci. 2019, 13, 989.10.3389/fnins.2019.00989. PubMed DOI PMC
Farjadian F.; Moghoofei M.; Mirkiani S.; Ghasemi A.; Rabiee N.; Hadifar S.; Beyzavi A.; Karimi M.; Hamblin M. R. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work?. Biotechnol. Adv. 2018, 36 (4), 968–985. 10.1016/j.biotechadv.2018.02.016. PubMed DOI PMC
Rabiee N.; Ahmadi S.; Afshari R.; Khalaji S.; Rabiee M.; Bagherzadeh M.; Fatahi Y.; Dinarvand R.; Tahriri M.; Tayebi L. Polymeric Nanoparticles for Nasal Drug Delivery to the Brain: Relevance to Alzheimer’s Disease. Adv. Therap. 2021, 4 (3), 2000076.10.1002/adtp.202000076. DOI
Rabiee N.; Bagherzadeh M.; Rabiee M. A perspective to the correlation between Brain insulin resistance and Alzheimer: medicinal chemistry approach. Curr. Diabetes Rev. 2019, 15 (4), 255–258. 10.2174/1573399814666181031154817. PubMed DOI
Siegal T.; Rubinstein R.; Bokstein F.; Schwartz A.; Lossos A.; Shalom E.; Chisin R.; Gomori J. M. In vivo assessment of the window of barrier opening after osmotic blood-brain barrier disruption in humans. J. Neurosurg. 2000, 92 (4), 599–605. 10.3171/jns.2000.92.4.0599. PubMed DOI
Rabiee N.; Ahmadvand S.; Ahmadi S.; Fatahi Y.; Dinarvand R.; Bagherzadeh M.; Rabiee M.; Tahriri M.; Tayebi L.; Hamblin M. R. Carbosilane dendrimers: Drug and gene delivery applications. J. Drug Delivery Sci. Technol. 2020, 59, 101879.10.1016/j.jddst.2020.101879. DOI
Rabiee N.; Yaraki M. T.; Garakani S. M.; Garakani S. M.; Ahmadi S.; Lajevardi A.; Bagherzadeh M.; Rabiee M.; Tayebi L.; Tahriri M. Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy. Biomaterials 2020, 232, 119707.10.1016/j.biomaterials.2019.119707. PubMed DOI PMC
Hynynen K.; McDannold N.; Vykhodtseva N.; Raymond S.; Weissleder R.; Jolesz F. A.; Sheikov N. Focal disruption of the blood-brain barrier due to 260-kHz ultrasound bursts: a method for molecular imaging and targeted drug delivery. J. Neurosurg. 2006, 105 (3), 445–454. 10.3171/jns.2006.105.3.445. PubMed DOI
Maghsoudi S.; Shahraki B. T.; Rabiee N.; Fatahi Y.; Dinarvand R.; Tavakolizadeh M.; Ahmadi S.; Rabiee M.; Bagherzadeh M.; Pourjavadi A. Burgeoning polymer nano blends for improved controlled drug release: a review. Int. J. Nanomed. 2020, 15, 4363.10.2147/IJN.S252237. PubMed DOI PMC
Rabiee N.; Ahmadi S.; Fatahi Y.; Rabiee M.; Bagherzadeh M.; Dinarvand R.; Bagheri B.; Zarrintaj P.; Saeb M. R.; Webster T. J. Nanotechnology-assisted microfluidic systems: from bench to bedside. Nanomedicine 2021, 16 (3), 237–258. 10.2217/nnm-2020-0353. PubMed DOI
Fanaee-Danesh E.; Gali C. C.; Tadic J.; Zandl-Lang M.; Kober A. C.; Agujetas V. R.; de Dios C.; Tam-Amersdorfer C.; Stracke A.; Albrecher N. M. Astaxanthin exerts protective effects similar to bexarotene in Alzheimer’s disease by modulating amyloid-beta and cholesterol homeostasis in blood-brain barrier endothelial cells. Biochim. Biophys. Acta, Mol. Basis Dis. 2019, 1865 (9), 2224–2245. 10.1016/j.bbadis.2019.04.019. PubMed DOI
Bellavance M.-A.; Blanchette M.; Fortin D. Recent Advances in Blood–Brain Barrier Disruption as a CNS Delivery Strategy. AAPS J. 2008, 10 (1), 166–177. 10.1208/s12248-008-9018-7. PubMed DOI PMC
Shabana P.; Bonthagarala B.; Harini A. L.; Dasari V. Nasal drug delivery: a potential route for brain targeting. Int. J. Adv. Sci. Res. 2015, 1, 65–70. 10.7439/ijasr.v1i2.1782. DOI
Nasseri B.; Kocum I. C.; Seymen C. M.; Rabiee N. Penetration depth in nanoparticles incorporated radiofrequency hyperthermia into the tissue: comprehensive study with histology and pathology observations. IET Nanobiotechnol. 2019, 13 (6), 634–639. 10.1049/iet-nbt.2019.0066. PubMed DOI PMC
Pardridge W. M. Molecular Trojan horses for blood–brain barrier drug delivery. Curr. Opin. Pharmacol. 2006, 6 (5), 494–500. 10.1016/j.coph.2006.06.001. PubMed DOI
Pardridge W. M. Delivery of Biologics Across the Blood–Brain Barrier with Molecular Trojan Horse Technology. BioDrugs 2017, 31 (6), 503–519. 10.1007/s40259-017-0248-z. PubMed DOI
Thassu D.; Pathak Y.; Deleers M.. Nanoparticulate drug-delivery systems: an overview. CRC Press: 2007.
Rabiee N.; Ahmadi S.; Arab Z.; Bagherzadeh M.; Safarkhani M.; Nasseri B.; Rabiee M.; Tahriri M.; Webster T. J.; Tayebi L. Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review. Int. J. Nanomed. 2020, 15, 4237.10.2147/IJN.S248736. PubMed DOI PMC
Rabiee N.; Bagherzadeh M.; Ghadiri A. M.; Fatahi Y.; Aldhaher A.; Makvandi P.; Dinarvand R.; Jouyandeh M.; Saeb M. R.; Mozafari M. Turning Toxic Nanomaterials into a Safe and Bioactive Nanocarrier for Co-delivery of DOX/pCRISPR. ACS Appl. Bio Mater. 2021, 4 (6), 5336–5351. 10.1021/acsabm.1c00447. PubMed DOI
Silva G. A. Nanotechnology approaches to crossing the blood-brain barrier and drug delivery to the CNS. BMC Neurosci. 2008, 9 (3), S4.10.1186/1471-2202-9-S3-S4. PubMed DOI PMC
Tang W.; Fan W.; Lau J.; Deng L.; Shen Z.; Chen X. Emerging blood–brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev. 2019, 48 (11), 2967–3014. 10.1039/C8CS00805A. PubMed DOI
Tillotson G. S. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance?. Infect. Dis.: Res. Treat. 2016, 9, 45–52. 10.4137/IDRT.S31567. PubMed DOI PMC
Fang F.; Zou D.; Wang W.; Yin Y.; Yin T.; Hao S.; Wang B.; Wang G.; Wang Y. Non-invasive approaches for drug delivery to the brain based on the receptor mediated transport. Mater. Sci. Eng., C 2017, 76, 1316–1327. 10.1016/j.msec.2017.02.056. PubMed DOI
Jain K. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegener. Dis. 2007, 4 (4), 287–291. 10.1159/000101884. PubMed DOI
Naqvi S.; Panghal A.; Flora S. J. S. Nanotechnology: A Promising Approach for Delivery of Neuroprotective Drugs. Front. Neurosci. 2020, 14, 494–494. 10.3389/fnins.2020.00494. PubMed DOI PMC
Masserini M.Nanoparticles for brain drug delivery. International Scholarly Research Notices 2013, 2013.1.10.1155/2013/238428 PubMed DOI
Pietroiusti A.; Campagnolo L.; Fadeel B. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 2013, 9 (9–10), 1557–1572. 10.1002/smll.201201463. PubMed DOI
Patterson C.; Feightner J. W.; Garcia A.; Hsiung G.-Y. R.; MacKnight C.; Sadovnick A. D. Diagnosis and treatment of dementia: 1. Risk assessment and primary prevention of Alzheimer disease. Cmaj 2008, 178 (5), 548–556. 10.1503/cmaj.070796. PubMed DOI PMC
Rekatsina M.; Paladini A.; Piroli A.; Zis P.; Pergolizzi J. V.; Varrassi G. Pathophysiology and Therapeutic Perspectives of Oxidative Stress and Neurodegenerative Diseases: A Narrative Review. Adv. Ther. 2020, 37 (1), 113–139. 10.1007/s12325-019-01148-5. PubMed DOI PMC
Scheiblich H.; Trombly M.; Ramirez A.; Heneka M. T. Neuroimmune Connections in Aging and Neurodegenerative Diseases. Trends Immunol. 2020, 41 (4), 300–312. 10.1016/j.it.2020.02.002. PubMed DOI
Schüssel K.; Keil U.; Eckert A.. Oxidative stress and neurodegenerative disease. In Oxidative Stress, Disease And Cancer; World Scientific: 2006; pp 627–647.
Melo A.; Monteiro L.; Lima R. M. F.; de Oliveira D. M.; de Cerqueira M. D.; El-Bachá R. S. Oxidative Stress in Neurodegenerative Diseases: Mechanisms and Therapeutic Perspectives. Oxidative Med. Cellular Longevity 2011, 2011, 467180.10.1155/2011/467180. PubMed DOI PMC
Allan Butterfield D.; Castegna A.; Lauderback C. M.; Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 2002, 23 (5), 655–664. 10.1016/S0197-4580(01)00340-2. PubMed DOI
Pan L.; Wang H.; Gu K. Nanoliposomes as Vehicles for Astaxanthin: Characterization, In Vitro Release Evaluation and Structure. Molecules 2018, 23 (11), 2822.10.3390/molecules23112822. PubMed DOI PMC
Wyss-Coray T.; Mucke L. Inflammation in Neurodegenerative Disease—A Double-Edged Sword. Neuron 2002, 35 (3), 419–432. 10.1016/S0896-6273(02)00794-8. PubMed DOI
Cervellati C.; Trentini A.; Pecorelli A.; Valacchi G. Inflammation in neurological disorders: the thin boundary between brain and periphery. Antioxid. Redox Signaling 2020, 33 (3), 191–210. 10.1089/ars.2020.8076. PubMed DOI
González H.; Elgueta D.; Montoya A.; Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J. Neuroimmunol. 2014, 274 (1), 1–13. 10.1016/j.jneuroim.2014.07.012. PubMed DOI
Nakagawa Y.; Chiba K. Role of Microglial M1/M2 Polarization in Relapse and Remission of Psychiatric Disorders and Diseases. Pharmaceuticals 2014, 7 (12), 1028–1048. 10.3390/ph7121028. PubMed DOI PMC
Cherry J. D.; Olschowka J. A.; O’Banion M. K. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J. Neuroinflammation 2014, 11 (1), 98.10.1186/1742-2094-11-98. PubMed DOI PMC
Anaeigoudari A.; Shafei M. N.; Soukhtanloo M.; Sadeghnia H. R.; Reisi P.; Nosratabadi R.; Behradnia S.; Hosseini M. The effects of L-arginine on spatial memory and synaptic plasticity impairments induced by lipopolysaccharide. Adv. Biomed Res. 2015, 4, 202.10.4103/2277-9175.166138. PubMed DOI PMC
Anaeigoudari A.; Soukhtanloo M.; Shafei M. N.; Sadeghnia H. R.; Reisi P.; Beheshti F.; Behradnia S.; Mousavi S. M.; Hosseini M. Neuronal nitric oxide synthase has a role in the detrimental effects of lipopolysaccharide on spatial memory and synaptic plasticity in rats. Pharmacol. Rep. 2016, 68 (2), 243–249. 10.1016/j.pharep.2015.09.004. PubMed DOI
Fischer C. W.; Elfving B.; Lund S.; Wegener G. Behavioral and systemic consequences of long-term inflammatory challenge. J. Neuroimmunol. 2015, 288, 40–46. 10.1016/j.jneuroim.2015.08.011. PubMed DOI
Hosseini M.; Zakeri S.; Khoshdast S.; Yousefian F. T.; Rastegar M.; Vafaee F.; Kahdouee S.; Ghorbani F.; Rakhshandeh H.; Kazemi S. A. The effects of Nigella sativa hydro-alcoholic extract and thymoquinone on lipopolysaccharide - induced depression like behavior in rats. J. Pharm. BioAllied Sci. 2012, 4 (3), 219–225. 10.4103/0975-7406.99052. PubMed DOI PMC
Saavedra J. M. Angiotensin II AT1 Receptor Blockers Ameliorate Inflammatory Stress: A Beneficial Effect for the Treatment of Brain Disorders. Cell. Mol. Neurobiol. 2012, 32 (5), 667–681. 10.1007/s10571-011-9754-6. PubMed DOI PMC
Kempuraj D.; Thangavel R.; Selvakumar G. P.; Zaheer S.; Ahmed M. E.; Raikwar S. P.; Zahoor H.; Saeed D.; Natteru P. A.; Iyer S.; Zaheer A. Brain and Peripheral Atypical Inflammatory Mediators Potentiate Neuroinflammation and Neurodegeneration. Front. Cell. Neurosci. 2017, 11, 21610.3389/fncel.2017.00216. PubMed DOI PMC
Sankowski R.; Mader S.; Valdés-Ferrer S. I. Systemic Inflammation and the Brain: Novel Roles of Genetic, Molecular, and Environmental Cues as Drivers of Neurodegeneration. Front. Cell. Neurosci. 2015, 9, 2810.3389/fncel.2015.00028. PubMed DOI PMC
Benicky J.; Sánchez-Lemus E.; Honda M.; Pang T.; Orecna M.; Wang J.; Leng Y.; Chuang D.-M.; Saavedra J. M. Angiotensin II AT1 Receptor Blockade Ameliorates Brain Inflammation. Neuropsychopharmacology 2011, 36 (4), 857–870. 10.1038/npp.2010.225. PubMed DOI PMC
Saavedra J. M. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin. Sci. 2012, 123 (10), 567–590. 10.1042/CS20120078. PubMed DOI PMC
Trollor J. N.; Smith E.; Agars E.; Kuan S. A.; Baune B. T.; Campbell L.; Samaras K.; Crawford J.; Lux O.; Kochan N. A.; Brodaty H.; Sachdev P. The association between systemic inflammation and cognitive performance in the elderly: the Sydney Memory and Ageing Study. AGE 2012, 34 (5), 1295–1308. 10.1007/s11357-011-9301-x. PubMed DOI PMC
Ferrari C. C.; Tarelli R.. Parkinson’s disease and systemic inflammation. Parkinson’s Dis. 2011, 2011.1.10.4061/2011/436813 PubMed DOI PMC
Ali I.; Chugh D.; Ekdahl C. T. Role of fractalkine–CX3CR1 pathway in seizure-induced microglial activation, neurodegeneration, and neuroblast production in the adult rat brain. Neurobiol. Dis. 2015, 74, 194–203. 10.1016/j.nbd.2014.11.009. PubMed DOI
Zychowska M.; Rojewska E.; Makuch W.; Przewlocka B.; Mika J. The influence of microglia activation on the efficacy of amitriptyline, doxepin, milnacipran, venlafaxine and fluoxetine in a rat model of neuropathic pain. Eur. J. Pharmacol. 2015, 749, 115–123. 10.1016/j.ejphar.2014.11.022. PubMed DOI
Fakhri S.; Abbaszadeh F.; Dargahi L.; Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res. 2018, 136, 1–20. 10.1016/j.phrs.2018.08.012. PubMed DOI
Barros M. P.; Poppe S. C.; Bondan E. F. Neuroprotective Properties of the Marine Carotenoid Astaxanthin and Omega-3 Fatty Acids, and Perspectives for the Natural Combination of Both in Krill Oil. Nutrients 2014, 6 (3), 1293–1317. 10.3390/nu6031293. PubMed DOI PMC
Graber J. J.; Dhib-Jalbut S. Protective autoimmunity in the nervous system. Pharmacol. Ther. 2009, 121 (2), 147–159. 10.1016/j.pharmthera.2008.10.001. PubMed DOI
Lin T.-C.; Hung K.-H.; Peng C.-H.; Liu J.-H.; Woung L.-C.; Tsai C.-Y.; Chen S.-J.; Chen Y.-T.; Hsu C.-C. Nanotechnology-based drug delivery treatments and specific targeting therapy for age-related macular degeneration. J. Chin. Med. Assoc. 2015, 78 (11), 635–641. 10.1016/j.jcma.2015.07.008. PubMed DOI
Shen H.; Kuo C.-C.; Chou J.; Delvolve A.; Jackson S. N.; Post J.; Woods A. S.; Hoffer B. J.; Wang Y.; Harvey B. K. Astaxanthin reduces ischemic brain injury in adult rats. FASEB J. 2009, 23 (6), 1958–1968. 10.1096/fj.08-123281. PubMed DOI PMC
Pan L.; Zhou Y.; Li X.-f.; Wan Q.-j.; Yu L.-h. Preventive treatment of astaxanthin provides neuroprotection through suppression of reactive oxygen species and activation of antioxidant defense pathway after stroke in rats. Brain Res. Bull. 2017, 130, 211–220. 10.1016/j.brainresbull.2017.01.024. PubMed DOI
Rahman S. O.; Panda B. P.; Parvez S.; Kaundal M.; Hussain S.; Akhtar M.; Najmi A. K. Neuroprotective role of astaxanthin in hippocampal insulin resistance induced by Aβ peptides in animal model of Alzheimer’s disease. Biomed. Pharmacother. 2019, 110, 47–58. 10.1016/j.biopha.2018.11.043. PubMed DOI
Che H.; Li Q.; Zhang T.; Wang D.; Yang L.; Xu J.; Yanagita T.; Xue C.; Chang Y.; Wang Y. Effects of astaxanthin and docosahexaenoic-acid-acylated astaxanthin on Alzheimer’s disease in APP/PS1 double-transgenic mice. J. Agric. Food Chem. 2018, 66 (19), 4948–4957. 10.1021/acs.jafc.8b00988. PubMed DOI
Gorska-Ciebiada M.; Saryusz-Wolska M.; Borkowska A.; Ciebiada M.; Loba J. Serum levels of inflammatory markers in depressed elderly patients with diabetes and mild cognitive impairment. PLoS One 2015, 10 (3), e0120433.10.1371/journal.pone.0120433. PubMed DOI PMC
Modrego P. J.; Fayed N.; Pina M. A. Conversion from mild cognitive impairment to probable Alzheimer’s disease predicted by brain magnetic resonance spectroscopy. Am. J. Psychiatry 2005, 162 (4), 667–675. 10.1176/appi.ajp.162.4.667. PubMed DOI
Kessing L. V.; Rytgaard H. C.; Ekstrøm C. T.; Knop F. K.; Berk M.; Gerds T. A. Antidiabetes Agents and Incident Depression: A Nationwide Population-Based Study. Diabetes Care 2020, 43 (12), 3050–3060. 10.2337/dc20-1561. PubMed DOI
Fonseka T. M.; McIntyre R. S.; Soczynska J. K.; Kennedy S. H. Novel investigational drugs targeting IL-6 signaling for the treatment of depression. Expert Opin. Invest. Drugs 2015, 24 (4), 459–475. 10.1517/13543784.2014.998334. PubMed DOI
Mazza M.; Pomponi M.; Janiri L.; Bria P.; Mazza S. Omega-3 fatty acids and antioxidants in neurological and psychiatric diseases: An overview. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2007, 31 (1), 12–26. 10.1016/j.pnpbp.2006.07.010. PubMed DOI
Zhou Y.; Baker J. S.; Chen X.; Wang Y.; Chen H.; Davison G. W.; Yan X. High-Dose Astaxanthin Supplementation Suppresses Antioxidant Enzyme Activity during Moderate-Intensity Swimming Training in Mice. Nutrients 2019, 11 (6), 1244.10.3390/nu11061244. PubMed DOI PMC
Wibrand K.; Berge K.; Messaoudi M.; Duffaud A.; Panja D.; Bramham C. R.; Burri L. Enhanced cognitive function and antidepressant-like effects after krill oil supplementation in rats. Lipids Health Dis. 2013, 12 (1), 6.10.1186/1476-511X-12-6. PubMed DOI PMC
Ghasemi N. The Evaluation of Astaxanthin Effects on Differentiation of Human Adipose Derived Stem Cells into Oligodendrocyte Precursor Cells. Avicenna J. Med. Biotechnol. 2018, 10 (2), 69–74. PubMed PMC
Ameeduzzafar; Ali J.; Fazil M.; Qumbar M.; Khan N.; Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug Delivery 2016, 23 (3), 700–716. 10.3109/10717544.2014.923065. PubMed DOI
Joseph R. R.; Venkatraman S. S. Drug delivery to the eye: what benefits do nanocarriers offer?. Nanomedicine 2017, 12 (6), 683–702. 10.2217/nnm-2016-0379. PubMed DOI
Jumelle C.; Gholizadeh S.; Annabi N.; Dana R. Advances and limitations of drug delivery systems formulated as eye drops. J. Controlled Release 2020, 321, 1–22. 10.1016/j.jconrel.2020.01.057. PubMed DOI PMC
Karla P. K.; Earla R.; Boddu S. H.; Johnston T. P.; Pal D.; Mitra A. Molecular Expression and Functional Evidence of a Drug Efflux Pump (BCRP) in Human Corneal Epithelial Cells. Curr. Eye Res. 2009, 34 (1), 1–9. 10.1080/02713680802518251. PubMed DOI PMC
Katragadda S.; Talluri R. S.; Mitra A. K. Modulation of P-Glycoprotein–Mediated Efflux by Prodrug Derivatization: An Approach Involving Peptide Transporter–Mediated Influx Across Rabbit Cornea. J. Ocul. Pharmacol. Ther. 2006, 22 (2), 110–120. 10.1089/jop.2006.22.110. PubMed DOI
Barar J.; Javadzadeh A. R.; Omidi Y. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin. Drug Delivery 2008, 5 (5), 567–581. 10.1517/17425247.5.5.567. PubMed DOI
Ghasemi Falavarjani K.; Nguyen Q. D. Adverse events and complications associated with intravitreal injection of anti-VEGF agents: a review of literature. Eye 2013, 27 (7), 787–794. 10.1038/eye.2013.107. PubMed DOI PMC
Das S.; Suresh P. K.. Drug delivery to eye: Special reference to nanoparticles. Int. J. Drug Delivery 2010, 2 ( (1), ).12.10.5138/ijdd.2010.0975.0215.02007 DOI
Tiwari R.; Pandey V.; Asati S.; Soni V.; Jain D. Therapeutic challenges in ocular delivery of lipid based emulsion. Egyptian Journal of Basic and Applied Sciences 2018, 5 (2), 121–129. 10.1016/j.ejbas.2018.04.001. DOI
Zhao R.; Li J.; Wang J.; Yin Z.; Zhu Y.; Liu W. Development of Timolol-Loaded Galactosylated Chitosan Nanoparticles and Evaluation of Their Potential for Ocular Drug Delivery. AAPS PharmSciTech 2017, 18 (4), 997–1008. 10.1208/s12249-016-0669-x. PubMed DOI
Kikuchi K.; Dong Z.; Shinmei Y.; Murata M.; Kanda A.; Noda K.; Harada T.; Ishida S. Cytoprotective Effect of Astaxanthin in a Model of Normal Intraocular Pressure Glaucoma. J. Ophthalmol. 2020, 2020, 9539681.10.1155/2020/9539681. PubMed DOI PMC
Otsuka T.; Shimazawa M.; Inoue Y.; Nakano Y.; Ojino K.; Izawa H.; Tsuruma K.; Ishibashi T.; Hara H. Astaxanthin Protects Against Retinal Damage: Evidence from In Vivo and In Vitro Retinal Ischemia and Reperfusion Models. Curr. Eye Res. 2016, 41 (11), 1465–1472. 10.3109/02713683.2015.1127392. PubMed DOI
Rivera J. C.; Dabouz R.; Noueihed B.; Omri S.; Tahiri H.; Chemtob S. Ischemic Retinopathies: Oxidative Stress and Inflammation. Oxid. Med. Cell. Longevity 2017, 2017, 3940241.10.1155/2017/3940241. PubMed DOI PMC
Semeraro F.; Cancarini A.; dell’Omo R.; Rezzola S.; Romano M. R.; Costagliola C. Diabetic Retinopathy: Vascular and Inflammatory Disease. J. Diabetes Res. 2015, 2015, 582060.10.1155/2015/582060. PubMed DOI PMC
Tha K. K.; Okuma Y.; Miyazaki H.; Murayama T.; Uehara T.; Hatakeyama R.; Hayashi Y.; Nomura Y. Changes in expressions of proinflammatory cytokines IL-1β, TNF-α and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 2000, 885 (1), 25–31. 10.1016/S0006-8993(00)02883-3. PubMed DOI
Choi S.-K.; Park Y.-S.; Choi D.-K.; Chang H.-I. Effects of astaxanthin on the production of NO and the expression of COX-2 and iNOS in LPS-stimulated BV2 microglial cells. J. Microbiol. Biotechnol. 2008, 18 (12), 1990–1996. 10.4014/JMB.0800.489. PubMed DOI
Lennikov A.; Kitaichi N.; Fukase R.; Murata M.; Noda K.; Ando R.; Ohguchi T.; Kawakita T.; Ohno S.; Ishida S. Amelioration of ultraviolet-induced photokeratitis in mice treated with astaxanthin eye drops. Mol. Vis 2012, 18, 455–464. PubMed PMC
Yamagishi R.; Aihara M. Neuroprotective effect of astaxanthin against rat retinal ganglion cell death under various stresses that induce apoptosis and necrosis. Mol. Vis 2014, 20, 1796–1805. PubMed PMC
Cort A.; Ozturk N.; Akpinar D.; Unal M.; Yucel G.; Ciftcioglu A.; Yargicoglu P.; Aslan M. Suppressive effect of astaxanthin on retinal injury induced by elevated intraocular pressure. Regul. Toxicol. Pharmacol. 2010, 58 (1), 121–130. 10.1016/j.yrtph.2010.05.001. PubMed DOI
Schwartz S. D.; Regillo C. D.; Lam B. L.; Eliott D.; Rosenfeld P. J.; Gregori N. Z.; Hubschman J.-P.; Davis J. L.; Heilwell G.; Spirn M.; Maguire J.; Gay R.; Bateman J.; Ostrick R. M.; Morris D.; Vincent M.; Anglade E.; Del Priore L. V.; Lanza R. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 2015, 385 (9967), 509–516. 10.1016/S0140-6736(14)61376-3. PubMed DOI
Rowe-Rendleman C. L.; Durazo S. A.; Kompella U. B.; Rittenhouse K. D.; Di Polo A.; Weiner A. L.; Grossniklaus H. E.; Naash M. I.; Lewin A. S.; Horsager A. Drug and gene delivery to the back of the eye: from bench to bedside. Invest. Ophthalmol. Vis. Sci. 2014, 55 (4), 2714–2730. 10.1167/iovs.13-13707. PubMed DOI PMC
Nayak K.; Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed. Pharmacother. 2018, 107, 1564–1582. 10.1016/j.biopha.2018.08.138. PubMed DOI
Li H.; Li J.; Hou C.; Li J.; Peng H.; Wang Q. The effect of astaxanthin on inflammation in hyperosmolarity of experimental dry eye model in vitro and in vivo. Exp. Eye Res. 2020, 197, 108113.10.1016/j.exer.2020.108113. PubMed DOI
Agrahari V.; Mandal A.; Agrahari V.; Trinh H. M.; Joseph M.; Ray A.; Hadji H.; Mitra R.; Pal D.; Mitra A. K. A comprehensive insight on ocular pharmacokinetics. Drug Delivery Transl. Res. 2016, 6 (6), 735–754. 10.1007/s13346-016-0339-2. PubMed DOI PMC
Fratter A.; Biagi D.; Cicero A. F. G. Sublingual Delivery of Astaxanthin through a Novel Ascorbyl Palmitate-Based Nanoemulsion: Preliminary Data. Mar. Drugs 2019, 17 (9), 508.10.3390/md17090508. PubMed DOI PMC
Shimokawa T.; Yoshida M.; Fukuta T.; Tanaka T.; Inagi T.; Kogure K. Efficacy of high-affinity liposomal astaxanthin on up-regulation of age-related markers induced by oxidative stress in human corneal epithelial cells. Journal of clinical biochemistry and nutrition 2019, 64, 27–35. 10.3164/jcbn.18-27. PubMed DOI PMC
Schopf L. R.; Popov A. M.; Enlow E. M.; Bourassa J. L.; Ong W. Z.; Nowak P.; Chen H. Topical ocular drug delivery to the back of the eye by mucus-penetrating particles. Translational vision science & technology 2015, 4 (3), 11–11. 10.1167/tvst.4.3.11. PubMed DOI PMC
Weng Y.; Liu J.; Jin S.; Guo W.; Liang X.; Hu Z. Nanotechnology-based strategies for treatment of ocular disease. Acta Pharm. Sin. B 2017, 7 (3), 281–291. 10.1016/j.apsb.2016.09.001. PubMed DOI PMC
Patel A.; Cholkar K.; Agrahari V.; Mitra A. K. Ocular drug delivery systems: An overview. World J. Pharmacol 2013, 2 (2), 47–64. 10.5497/wjp.v2.i2.47. PubMed DOI PMC
Makvandi P.; Jamaledin R.; Chen G.; Baghbantaraghdari Z.; Zare E. N.; Di Natale C.; Onesto V.; Vecchione R.; Lee J.; Tay F. R.; et al. Stimuli-Responsive Transdermal Microneedle Patches. Mater. Today 2021, 47, 206–222. 10.1016/j.mattod.2021.03.012. PubMed DOI PMC
Bolzinger M.-A.; Briançon S.; Pelletier J.; Chevalier Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci. 2012, 17 (3), 156–165. 10.1016/j.cocis.2012.02.001. DOI
Iqbal B.; Ali J.; Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int. J. Dermatol. 2018, 57 (6), 646–660. 10.1111/ijd.13902. PubMed DOI
Chamundeeswari M.; Jeslin J.; Verma M. L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019, 17 (2), 849–865. 10.1007/s10311-018-00841-1. DOI
Dayan N. Pathways for skin penetration. Cosmetics and toiletries 2005, 120 (6), 67–76.
Zhang H.; Zhai Y.; Yang X.; Zhai G. Breaking the skin barrier: achievements and future directions. Curr. Pharm. Des. 2015, 21 (20), 2713–2724. 10.2174/1381612821666150428124406. PubMed DOI
Al Shaal L.; Shegokar R.; Müller R. H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm. 2011, 420 (1), 133–140. 10.1016/j.ijpharm.2011.08.018. PubMed DOI
Batheja P.; Sheihet L.; Kohn J.; Singer A. J.; Michniak-Kohn B. Topical drug delivery by a polymeric nanosphere gel: Formulation optimization and in vitro and in vivo skin distribution studies. J. Controlled Release 2011, 149 (2), 159–167. 10.1016/j.jconrel.2010.10.005. PubMed DOI
Prow T. W.; Grice J. E.; Lin L. L.; Faye R.; Butler M.; Becker W.; Wurm E. M. T.; Yoong C.; Robertson T. A.; Soyer H. P.; Roberts M. S. Nanoparticles and microparticles for skin drug delivery. Adv. Drug Delivery Rev. 2011, 63 (6), 470–491. 10.1016/j.addr.2011.01.012. PubMed DOI
Ahmadi Ashtiani H. R.; Bishe P.; Lashgari N.-A.; Nilforoushzadeh M. A.; Zare S. Liposomes in cosmetics. J. Skin Stem Cell 2016, 3 (3), e65815.10.5812/jssc.65815. DOI
Tabata N.; O’Goshi K.; Zhen Y. X.; Kligman A. M.; Tagami H. Biophysical Assessment of Persistent Effects of Moisturizers after Their Daily Applications: Evaluation of Corneotherapy. Dermatology 2000, 200 (4), 308–313. 10.1159/000018393. PubMed DOI
Makvandi P.; Kirkby M.; Hutton A. R. J.; Shabani M.; Yiu C. K. Y.; Baghbantaraghdari Z.; Jamaledin R.; Carlotti M.; Mazzolai B.; Mattoli V.; Donnelly R. F. Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion. Nano-Micro Lett. 2021, 13 (1), 93.10.1007/s40820-021-00611-9. PubMed DOI PMC
Bagheri M.; Validi M.; Gholipour A.; Makvandi P.; Sharifi E. Chitosan Nanofiber Biocomposites for Potential Wound Healing Applications: Antioxidant Activity with Synergic Antibacterial Effect. Bioeng. Transl. Med. 2021, e10254.10.1002/btm2.10254. PubMed DOI PMC
Visioli F.; Artaria C. Astaxanthin in cardiovascular health and disease: mechanisms of action, therapeutic merits, and knowledge gaps. Food Funct. 2017, 8 (1), 39–63. 10.1039/C6FO01721E. PubMed DOI
Svobodova A.; Walterova D.; Vostalova J. Ultraviolet light induced alteration to the skin. Biomed. Pap. 2006, 150 (1), 25.10.5507/bp.2006.003. PubMed DOI
Rafi M. M.; Yadav P. N.; Reyes M. Lycopene inhibits LPS-induced proinflammatory mediator inducible nitric oxide synthase in mouse macrophage cells. J. Food Sci. 2007, 72 (1), S069–S074. 10.1111/j.1750-3841.2006.00219.x. PubMed DOI
Chew B. P.; Mathison B. D.; Hayek M. G.; Massimino S.; Reinhart G. A.; Park J. S. Dietary astaxanthin enhances immune response in dogs. Vet. Immunol. Immunopathol. 2011, 140 (3), 199–206. 10.1016/j.vetimm.2010.12.004. PubMed DOI
Santocono M.; Zurria M.; Berrettini M.; Fedeli D.; Falcioni G. Influence of astaxanthin, zeaxanthin and lutein on DNA damage and repair in UVA-irradiated cells. J. Photochem. Photobiol., B 2006, 85 (3), 205–215. 10.1016/j.jphotobiol.2006.07.009. PubMed DOI
Chalyk N. E.; Klochkov V. A.; Bandaletova T. Y.; Kyle N. H.; Petyaev I. M. Continuous astaxanthin intake reduces oxidative stress and reverses age-related morphological changes of residual skin surface components in middle-aged volunteers. Nutr. Res. (N. Y., NY, U. S.) 2017, 48, 40–48. 10.1016/j.nutres.2017.10.006. PubMed DOI
Ito N.; Seki S.; Ueda F. The Protective Role of Astaxanthin for UV-Induced Skin Deterioration in Healthy People—A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2018, 10 (7), 817.10.3390/nu10070817. PubMed DOI PMC
McCall B.; McPartland C. K.; Moore R.; Frank-Kamenetskii A.; Booth B. W. Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro. Antioxidants 2018, 7 (10), 135.10.3390/antiox7100135. PubMed DOI PMC
Yamashita E. The effects of a dietary supplement containing astaxanthin on skin condition. Food Style 21 2005, 9 (9), 72.
Singh K. N.; Patil S.; Barkate H. Protective effects of astaxanthin on skin: Recent scientific evidence, possible mechanisms, and potential indications. Journal of cosmetic dermatology 2020, 19 (1), 22–27. 10.1111/jocd.13019. PubMed DOI
Tavassolifar M. j.; Vodjgani M.; Salehi Z.; Izad M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020, 2020, 5793817.10.1155/2020/5793817. PubMed DOI PMC
Bennedsen M.; Wang X.; Willén R.; Wadström T.; Andersen L. P. Treatment of H. pylori infected mice with antioxidant astaxanthin reduces gastric inflammation, bacterial load and modulates cytokine release by splenocytes. Immunol. Lett. 2000, 70 (3), 185–189. 10.1016/S0165-2478(99)00145-5. PubMed DOI
Park J. S.; Chyun J. H.; Kim Y. K.; Line L. L.; Chew B. P. Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr. Metab. 2010, 7 (1), 18.10.1186/1743-7075-7-18. PubMed DOI PMC
Veeruraj A.; Liu L.; Zheng J.; Wu J.; Arumugam M. Evaluation of astaxanthin incorporated collagen film developed from the outer skin waste of squid Doryteuthis singhalensis for wound healing and tissue regenerative applications. Mater. Sci. Eng., C 2019, 95, 29–42. 10.1016/j.msec.2018.10.055. PubMed DOI
Lyons N. M.; O’Brien N. M. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J. Dermatol. Sci. 2002, 30 (1), 73–84. 10.1016/S0923-1811(02)00063-4. PubMed DOI
Poljšak B.; Dahmane R. G.; Godić A. Intrinsic skin aging: the role of oxidative stress. Acta Dermatovenerol Alp Pannonica Adriat 2012, 21 (2), 33–36. PubMed
Kishimoto Y.; Tani M.; Uto-Kondo H.; Iizuka M.; Saita E.; Sone H.; Kurata H.; Kondo K. Astaxanthin suppresses scavenger receptor expression and matrix metalloproteinase activity in macrophages. Eur. J. Nutr. 2010, 49 (2), 119–126. 10.1007/s00394-009-0056-4. PubMed DOI
Priyadarshini L.; Aggarwal A. Astaxanthin inhibits cytokines production and inflammatory gene expression by suppressing IκB kinase-dependent nuclear factor κB activation in pre and postpartum Murrah buffaloes during different seasons. Vet. World 2018, 11 (6), 782–788. 10.14202/vetworld.2018.782-788. PubMed DOI PMC
Yoshihisa Y.; Rehman M. U.; Shimizu T. Astaxanthin, a xanthophyll carotenoid, inhibits ultraviolet-induced apoptosis in keratinocytes. Experimental dermatology 2014, 23 (3), 178–183. 10.1111/exd.12347. PubMed DOI
Landon R.; Gueguen V.; Petite H.; Letourneur D.; Pavon-Djavid G.; Anagnostou F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs 2020, 18 (7), 357.10.3390/md18070357. PubMed DOI PMC
McNulty H. P.; Byun J.; Lockwood S. F.; Jacob R. F.; Mason R. P. Differential effects of carotenoids on lipid peroxidation due to membrane interactions: X-ray diffraction analysis. Biochim. Biophys. Acta, Biomembr. 2007, 1768 (1), 167–174. 10.1016/j.bbamem.2006.09.010. PubMed DOI
Kim S. H.; Kim H. Inhibitory effect of astaxanthin on oxidative stress-induced mitochondrial dysfunction-a mini-review. Nutrients 2018, 10 (9), 1137.10.3390/nu10091137. PubMed DOI PMC
Yang G.; Zhao Z.; Zhang X.; Wu A.; Huang Y.; Miao Y.; Yang M. Effect of berberine on the renal tubular epithelial-to-mesenchymal transition by inhibition of the Notch/snail pathway in diabetic nephropathy model KKAy mice. Drug Des., Dev. Ther. 2017, 11, 1065.10.2147/DDDT.S124971. PubMed DOI PMC
Mashhadi N. S.; Zakerkish M.; Mohammadiasl J.; Zarei M.; Mohammadshahi M.; Haghighizadeh M. H. Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asia Pac. J. Clin. Nutr. 2018, 27 (2), 341–346. 10.6133/apjcn.052017.11. PubMed DOI
Uchiyama K.; Naito Y.; Hasegawa G.; Nakamura N.; Takahashi J.; Yoshikawa T. Astaxanthin protects β-cells against glucose toxicity in diabetic db/db mice. Redox Rep. 2002, 7 (5), 290–293. 10.1179/135100002125000811. PubMed DOI
Chen Q.; Tao J.; Xie X. Astaxanthin promotes Nrf2/ARE signaling to inhibit HG-induced renal fibrosis in GMCs. Mar. Drugs 2018, 16 (4), 117.10.3390/md16040117. PubMed DOI PMC
Kitahara A.; Takahashi K.; Morita N.; Murashima T.; Onuma H.; Sumitani Y.; Tanaka T.; Kondo T.; Hosaka T.; Ishida H. The novel mechanisms concerning the inhibitions of palmitate-induced proinflammatory factor releases and endogenous cellular stress with astaxanthin on MIN6 β-cells. Mar. Drugs 2017, 15 (6), 185.10.3390/md15060185. PubMed DOI PMC
Arunkumar E.; Bhuvaneswari S.; Anuradha C. V. An intervention study in obese mice with astaxanthin, a marine carotenoid–effects on insulin signaling and pro-inflammatory cytokines. Food Funct. 2012, 3 (2), 120–126. 10.1039/C1FO10161G. PubMed DOI
Nishida Y.; Nawaz A.; Kado T.; Takikawa A.; Igarashi Y.; Onogi Y.; Wada T.; Sasaoka T.; Yamamoto S.; Sasahara M. Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J. Cachexia, Sarcopenia Muscle 2020, 11 (1), 241–258. 10.1002/jcsm.12530. PubMed DOI PMC
Bhuvaneswari S.; Anuradha C. V. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice. Can. J. Physiol. Pharmacol. 2012, 90 (11), 1544–1552. 10.1139/y2012-119. PubMed DOI
Park C. H.; Xu F. H.; Roh S.-S.; Song Y. O.; Uebaba K.; Noh J. S.; Yokozawa T. Astaxanthin and Corni Fructus protect against diabetes-induced oxidative stress, inflammation, and advanced glycation end product in livers of streptozotocin-induced diabetic rats. J. Med. Food 2015, 18 (3), 337–344. 10.1089/jmf.2014.3174. PubMed DOI
Dehdashtian E.; Mehrzadi S.; Yousefi B.; Hosseinzadeh A.; Reiter R. J.; Safa M.; Ghaznavi H.; Naseripour M. Diabetic retinopathy pathogenesis and the ameliorating effects of melatonin; involvement of autophagy, inflammation and oxidative stress. Life Sci. 2018, 193, 20–33. 10.1016/j.lfs.2017.12.001. PubMed DOI
Kowluru R. A.; Kowluru A.; Mishra M.; Kumar B. Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog. Retinal Eye Res. 2015, 48, 40–61. 10.1016/j.preteyeres.2015.05.001. PubMed DOI PMC
Roy S.; Kern T. S.; Song B.; Stuebe C. Mechanistic insights into pathological changes in the diabetic retina: implications for targeting diabetic retinopathy. Am. J. Pathol. 2017, 187 (1), 9–19. 10.1016/j.ajpath.2016.08.022. PubMed DOI PMC
Yeh P.-T.; Huang H.-W.; Yang C.-M.; Yang W.-S.; Yang C.-H. Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS One 2016, 11 (1), e0146438.10.1371/journal.pone.0146438. PubMed DOI PMC
Sun Z.; Liu J.; Zeng X.; Huangfu J.; Jiang Y.; Wang M.; Chen F. Protective actions of microalgae against endogenous and exogenous advanced glycation endproducts (AGEs) in human retinal pigment epithelial cells. Food Funct. 2011, 2 (5), 251–258. 10.1039/c1fo10021a. PubMed DOI
Benlarbi-Ben Khedher M.; Hajri K.; Dellaa A.; Baccouche B.; Hammoum I.; Boudhrioua-Mihoubi N.; Dhifi W.; Ben Chaouacha-Chekir R. Astaxanthin inhibits aldose reductase activity in Psammomys obesus, a model of type 2 diabetes and diabetic retinopathy. Food Sci. Nutr. 2019, 7 (12), 3979–3985. 10.1002/fsn3.1259. PubMed DOI PMC
Roohbakhsh A.; Karimi G.; Iranshahi M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed. Pharmacother. 2017, 91, 31–42. 10.1016/j.biopha.2017.04.057. PubMed DOI
Xu L.; Zhu J.; Yin W.; Ding X. Astaxanthin improves cognitive deficits from oxidative stress, nitric oxide synthase and inflammation through upregulation of PI3K/Akt in diabetes rat. Int. J. Clin. Exp. Pathol. 2015, 8 (6), 6083. PubMed PMC
Feng Y.; Chu A.; Luo Q.; Wu M.; Shi X.; Chen Y. The protective effect of astaxanthin on cognitive function via inhibition of oxidative stress and inflammation in the brains of chronic T2DM rats. Front. Pharmacol. 2018, 9, 748.10.3389/fphar.2018.00748. PubMed DOI PMC
Stirban A.; Gawlowski T.; Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol. Metab. 2014, 3 (2), 94–108. 10.1016/j.molmet.2013.11.006. PubMed DOI PMC
Strain W. D.; Paldánius P. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol. 2018, 17 (1), 1–10. 10.1186/s12933-018-0703-2. PubMed DOI PMC
Chan K. c.; Pen P. J.; Yin M. c. Anticoagulatory and antiinflammatory effects of astaxanthin in diabetic rats. J. Food Sci. 2012, 77 (2), H76–H80. 10.1111/j.1750-3841.2011.02558.x. PubMed DOI
Hussein G.; Goto H.; Oda S.; Sankawa U.; Matsumoto K.; Watanabe H. Antihypertensive potential and mechanism of action of astaxanthin: III. Antioxidant and histopathological effects in spontaneously hypertensive rats. Biol. Pharm. Bull. 2006, 29 (4), 684–688. 10.1248/bpb.29.684. PubMed DOI
Iwamoto T.; Hosoda K.; Hirano R.; Kurata H.; Matsumoto A.; Miki W.; Kamiyama M.; Itakura H.; Yamamoto S.; Kondo K. Inhibition of low-density lipoprotein oxidation by astaxanthin. J. Atheroscler. Thromb. 2000, 7 (4), 216–222. 10.5551/jat1994.7.216. PubMed DOI
Naito Y.; Uchiyama K.; Aoi W.; Hasegawa G.; Nakamura N.; Yoshida N.; Maoka T.; Takahashi J.; Yoshikawa T. Prevention of diabetic nephropathy by treatment with astaxanthin in diabetic db/db mice. BioFactors 2004, 20 (1), 49–59. 10.1002/biof.5520200105. PubMed DOI
Manabe E.; Handa O.; Naito Y.; Mizushima K.; Akagiri S.; Adachi S.; Takagi T.; Kokura S.; Maoka T.; Yoshikawa T. Astaxanthin protects mesangial cells from hyperglycemia-induced oxidative signaling. J. Cell. Biochem. 2008, 103 (6), 1925–1937. 10.1002/jcb.21583. PubMed DOI
Sila A.; Ghlissi Z.; Kamoun Z.; Makni M.; Nasri M.; Bougatef A.; Sahnoun Z. Astaxanthin from shrimp by-products ameliorates nephropathy in diabetic rats. Eur. J. Nutr. 2015, 54 (2), 301–307. 10.1007/s00394-014-0711-2. PubMed DOI
Penislusshiyan S.; Chitra L.; Ancy I.; Kumaradhas P.; Palvannan T. Novel antioxidant astaxanthin-s-allyl cysteine biconjugate diminished oxidative stress and mitochondrial dysfunction to triumph diabetes in rat model. Life Sci. 2020, 245, 117367.10.1016/j.lfs.2020.117367. PubMed DOI
Zhu X.; Chen Y.; Chen Q.; Yang H.; Xie X.. Astaxanthin promotes Nrf2/ARE signaling to alleviate renal fibronectin and collagen IV accumulation in diabetic rats. J. Diabetes Res. 2018, 2018.1.10.1155/2018/6730315 PubMed DOI PMC
Zhang H.; Schin M.; Saha J.; Burke K.; Holzman L. B.; Filipiak W.; Saunders T.; Xiang M.; Heilig C. W.; Brosius F. C. III Podocyte-specific overexpression of GLUT1 surprisingly reduces mesangial matrix expansion in diabetic nephropathy in mice. American Journal of Physiology-Renal Physiology 2010, 299 (1), F91–F98. 10.1152/ajprenal.00021.2010. PubMed DOI PMC
Chen Z.; Li W.; Shi L.; Jiang L.; Li M.; Zhang C.; Peng H. Kidney-targeted astaxanthin natural antioxidant nanosystem for diabetic nephropathy therapy. Eur. J. Pharm. Biopharm. 2020, 156, 143–154. 10.1016/j.ejpb.2020.09.005. PubMed DOI
Utikal J.; Udart M.; Leiter U.; Kaskel P.; Peter R. U.; Krähn G. Numerical abnormalities of the Cyclin D1 gene locus on chromosome 11q13 in non-melanoma skin cancer. Cancer Lett. 2005, 219 (2), 197–204. 10.1016/j.canlet.2004.07.011. PubMed DOI
Susin S. A.; Daugas E.; Ravagnan L.; Samejima K.; Zamzami N.; Loeffler M.; Costantini P.; Ferri K. F.; Irinopoulou T.; Prévost M.-C. Two distinct pathways leading to nuclear apoptosis. J. Exp. Med. 2000, 192 (4), 571–580. 10.1084/jem.192.4.571. PubMed DOI PMC
Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science 1995, 267 (5203), 1456–1462. 10.1126/science.7878464. PubMed DOI
Zhou G. P.; Doctor K. Subcellular location prediction of apoptosis proteins. Proteins: Struct., Funct., Genet. 2003, 50 (1), 44–48. 10.1002/prot.10251. PubMed DOI
Fesik S. W.; Shi Y. Controlling the Caspases. Science 2001, 294 (5546), 1477–1478. 10.1126/science.1062236. PubMed DOI
Murphy K. M.; Ranganathan V.; Farnsworth M. L.; Kavallaris M.; Lock R. B. Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ. 2000, 7 (1), 102–111. 10.1038/sj.cdd.4400597. PubMed DOI
Tang G.; Yang J.; Minemoto Y.; Lin A. Blocking Caspase-3-Mediated Proteolysis of IKKβ Suppresses TNF-α-Induced Apoptosis. Mol. Cell 2001, 8 (5), 1005–1016. 10.1016/S1097-2765(01)00380-X. PubMed DOI
Tang X.; Liu B.; Wang X.; Yu Q.; Fang R. Epidermal growth factor, through alleviating oxidative stress, protect IPEC-J2 cells from lipopolysaccharides-induced apoptosis. Int. J. Mol. Sci. 2018, 19 (3), 848.10.3390/ijms19030848. PubMed DOI PMC
Anderson M. L. A Preliminary Investigation of the Enzymatic Inhibition of 5α-Reductase and Growth of Prostatic Carcinoma Cell Line LNCap-FGC by Natural Astaxanthin and Saw Palmetto Lipid Extract In Vitro. J. Herb. Pharmacother. 2005, 5 (1), 17–26. 10.1080/J157v05n01_03. PubMed DOI
Chen Y.-T.; Kao C.-J.; Huang H.-Y.; Huang S.-Y.; Chen C.-Y.; Lin Y.-S.; Wen Z.-H.; Wang H.-M. D. Astaxanthin reduces MMP expressions, suppresses cancer cell migrations, and triggers apoptotic caspases of in vitro and in vivo models in melanoma. J. Funct. Foods 2017, 31, 20–31. 10.1016/j.jff.2017.01.005. DOI
Liao K.-S.; Wei C.-L.; Chen J.-C.; Zheng H.-Y.; Chen W.-C.; Wu C.-H.; Wang T.-J.; Peng Y.-S.; Chang P.-Y.; Lin Y.-W. Astaxanthin enhances pemetrexed-induced cytotoxicity by downregulation of thymidylate synthase expression in human lung cancer cells. Regul. Toxicol. Pharmacol. 2016, 81, 353–361. 10.1016/j.yrtph.2016.09.031. PubMed DOI
Nagaraj S.; Rajaram M. G.; Arulmurugan P.; Baskaraboopathy A.; Karuppasamy K.; Jayappriyan K. R.; Sundararaj R.; Rengasamy R. Antiproliferative potential of astaxanthin-rich alga Haematococcus pluvialis Flotow on human hepatic cancer (HepG2) cell line. Biomedicine & Preventive Nutrition 2012, 2 (3), 149–153. 10.1016/j.bionut.2012.03.009. DOI
Bharathiraja S.; Manivasagan P.; Oh Y. O.; Moorthy M. S.; Seo H.; Bui N. Q.; Oh J. Astaxanthin conjugated polypyrrole nanoparticles as a multimodal agent for photo-based therapy and imaging. Int. J. Pharm. 2017, 517 (1–2), 216–225. 10.1016/j.ijpharm.2016.12.020. PubMed DOI
Nguyen V. P.; Kim S. W.; Kim H.; Kim H.; Seok K. H.; Jung M. J.; Ahn Y.-c.; Kang H. W. Biocompatible astaxanthin as a novel marine-oriented agent for dual chemo-photothermal therapy. PLoS One 2017, 12 (4), e0174687.10.1371/journal.pone.0174687. PubMed DOI PMC
Wang L. V. Multiscale photoacoustic microscopy and computed tomography. Nat. Photonics 2009, 3 (9), 503–509. 10.1038/nphoton.2009.157. PubMed DOI PMC
Cho E. C.; Glaus C.; Chen J.; Welch M. J.; Xia Y. Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol. Med. 2010, 16 (12), 561–73. 10.1016/j.molmed.2010.09.004. PubMed DOI PMC
Smith A. M.; Mancini M. C.; Nie S. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4 (11), 710–711. 10.1038/nnano.2009.326. PubMed DOI PMC
Nguyen V. P.; Park S.; Oh J.; Wook Kang H. Biocompatible astaxanthin as novel contrast agent for biomedical imaging. Journal of biophotonics 2017, 10 (8), 1053–1061. 10.1002/jbio.201600159. PubMed DOI
Wang T.; Hu Q.; Lee J.-Y.; Luo Y. Solid lipid–polymer hybrid nanoparticles by in situ conjugation for oral delivery of astaxanthin. J. Agric. Food Chem. 2018, 66 (36), 9473–9480. 10.1021/acs.jafc.8b02827. PubMed DOI
Li M.; Zahi M. R.; Yuan Q.; Tian F.; Liang H. Preparation and stability of astaxanthin solid lipid nanoparticles based on stearic acid. Eur. J. Lipid Sci. Technol. 2016, 118 (4), 592–602. 10.1002/ejlt.201400650. DOI
Liu C.; Zhang S.; McClements D. J.; Wang D.; Xu Y. Design of astaxanthin-loaded core–shell nanoparticles consisting of chitosan oligosaccharides and poly (lactic-co-glycolic acid): enhancement of water solubility, stability, and bioavailability. J. Agric. Food Chem. 2019, 67 (18), 5113–5121. 10.1021/acs.jafc.8b06963. PubMed DOI
Sun R.; Xia N.; Xia Q. Non-aqueous nanoemulsions as a new strategy for topical application of astaxanthin. J. Dispersion Sci. Technol. 2020, 41 (12), 1777–1788. 10.1080/01932691.2019.1635027. DOI
Shanmugapriya K.; Kim H.; Kang H. W. A new alternative insight of nanoemulsion conjugated with κ-carrageenan for wound healing study in diabetic mice: In vitro and in vivo evaluation. Eur. J. Pharm. Sci. 2019, 133, 236–250. 10.1016/j.ejps.2019.04.006. PubMed DOI
Xu L.; Yu H.; Sun H.; Yu X.; Tao Y. Optimized nonionic emulsifier for the efficient delivery of astaxanthin nanodispersions to retina: in vivo and ex vivo evaluations. Drug Delivery 2019, 26 (1), 1222–1234. 10.1080/10717544.2019.1682718. PubMed DOI PMC
Bhatt P. C.; Srivastava P.; Pandey P.; Khan W.; Panda B. P. Nose to brain delivery of astaxanthin-loaded solid lipid nanoparticles: fabrication, radio labeling, optimization and biological studies. RSC Adv. 2016, 6 (12), 10001–10010. 10.1039/C5RA19113K. DOI
Han J. H.; Ju J. H.; Lee Y. S.; Park J. H.; Yeo I. J.; Park M. H.; Roh Y. S.; Han S. B.; Hong J. T. Astaxanthin alleviated ethanol-induced liver injury by inhibition of oxidative stress and inflammatory responses via blocking of STAT3 activity. Sci. Rep. 2018, 8 (1), 1–10. 10.1038/s41598-018-32497-w. PubMed DOI PMC
Zuluaga M.; Gueguen V.; Letourneur D.; Pavon-Djavid G. Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. Chem.-Biol. Interact. 2018, 279, 145–158. 10.1016/j.cbi.2017.11.012. PubMed DOI
MU N.; Mehar J. G.; Mudliar S. N.; Shekh A. Y. Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Comp. Rev. Food Sci. Food Safety 2019, 18 (6), 1882–1897. 10.1111/1541-4337.12500. PubMed DOI
Silva S. C.; Ferreira I. C.; Dias M. M.; Barreiro M. F. Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules 2020, 25 (15), 3406.10.3390/molecules25153406. PubMed DOI PMC
Pogorzelska E.; Hamulka J.; Wawrzyniak A.. Astaksantyna–budowa, właściwości i możliwości zastosowania w żywności funkcjonalnej. Żywność Nauka Technologia Jakość 2016, 23 ( (1), ).
Borowiak D.; Lenartowicz P.; Grzebyk M.; Wiśniewski M.; Lipok J.; Kafarski P. Novel, automated, semi-industrial modular photobioreactor system for cultivation of demanding microalgae that produce fine chemicals—The next story of H. pluvialis and astaxanthin. Algal Res. 2021, 53, 102151.10.1016/j.algal.2020.102151. DOI
Mulders K. J.; Lamers P. P.; Martens D. E.; Wijffels R. H. Phototrophic pigment production with microalgae: biological constraints and opportunities. J. Phycol. 2014, 50 (2), 229–242. 10.1111/jpy.12173. PubMed DOI
Tan B. L.; Norhaizan M. E.; Liew W.-P.-P.; Sulaiman Rahman H. Antioxidant and Oxidative Stress: A Mutual Interplay in Age-Related Diseases. Front. Pharmacol. 2018, 9, 1162.10.3389/fphar.2018.01162. PubMed DOI PMC
Bjelakovic G.; Nikolova D.; Gluud C. Antioxidant supplements and mortality. Curr. Opin. Clin. Nutr. Metabol. Care 2013, 17 (1), 40–44. 10.1097/MCO.0000000000000009. PubMed DOI
Ndhlala A. R.; Moyo M.; Van Staden J. Natural Antioxidants: Fascinating or Mythical Biomolecules?. Molecules 2010, 15 (10), 6905–6930. 10.3390/molecules15106905. PubMed DOI PMC
Ganesan P.; Arulselvan P.; Choi D.-K. Phytobioactive compound-based nanodelivery systems for the treatment of type 2 diabetes mellitus - current status. Int. J. Nanomed. 2017, 12, 1097–1111. 10.2147/IJN.S124601. PubMed DOI PMC
Liu R. H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013, 78 (s1), A18–A25. 10.1111/1750-3841.12101. PubMed DOI
González-Ballesteros N.; Rodríguez-Argüelles M. C.; Lastra-Valdor M.; González-Mediero G.; Rey-Cao S.; Grimaldi M.; Cavazza A.; Bigi F. Synthesis of Silver and Gold Nanoparticles by Sargassum Muticum Biomolecules and Evaluation of Their Antioxidant Activity and Antibacterial Properties. J. Nanostruct. Chem. 2020, 10 (4), 317–330. 10.1007/s40097-020-00352-y. DOI
Shin S.; Saravanakumar K.; Mariadoss A. V. A.; Hu X; Sathiyaseelan A.; Wang M.-H. Functionalization of Selenium Nanoparticles Using the Methanolic Extract of Cirsium Setidens and Its Antibacterial, Antioxidant, and Cytotoxicity Activities. J. Nanostruct. Chem. 2021, 012345678910.1007/s40097-021-00397-7. DOI
Ashrafi M.; Bayat M.; Mortazavi P.; Hashemi S. J.; Meimandipour A Antimicrobial Effect of Chitosan–Silver–Copper Nanocomposite on Candida Albicans. J. Nanostruct. Chem. 2020, 10 (1), 87–95. 10.1007/s40097-020-00331-3. DOI
Gulla S.; Lomada D.; Araveti P. B.; Srivastava A.; Murikinati M. K.; Reddy K. R.; Inamuddin; Reddy M. C.; Altalhi T. Titanium Dioxide Nanotubes Conjugated with Quercetin Function as an Effective Anticancer Agent by Inducing Apoptosis in Melanoma Cells. J. Nanostruct. Chem. 2021, 11 (4), 721–734. 10.1007/s40097-021-00396-8. DOI
Magne T. M.; de Oliveira Vieira T.; Alencar L. M. R.; Junior F. F. M.; Gemini-Piperni S.; Carneiro S. V.; Fechine L. M. U. D.; Freire R. M.; Golokhvast K.; Metrangolo P. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J. Nanostruct. Chem. 2021, 10.1007/s40097-021-00444-3. PubMed DOI PMC