Safety and efficacy of repeat long-term incobotulinumtoxinA treatment for lower limb or combined upper/lower limb spasticity in children with cerebral palsy
Language English Country United States Media print
Document type Clinical Trial, Phase III, Journal Article, Research Support, Non-U.S. Gov't
PubMed
34957963
PubMed Central
PMC9028655
DOI
10.3233/prm-210041
PII: PRM210041
Knihovny.cz E-resources
- Keywords
- Botulinum toxins, Type A, cerebral palsy, movement disorders, muscle spasticity, paediatric,
- MeSH
- Botulinum Toxins, Type A * adverse effects MeSH
- Child MeSH
- Lower Extremity MeSH
- Humans MeSH
- Adolescent MeSH
- Cerebral Palsy * complications drug therapy MeSH
- Neuromuscular Agents * MeSH
- Muscle Spasticity drug therapy etiology MeSH
- Treatment Outcome MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Botulinum Toxins, Type A * MeSH
- incobotulinumtoxinA MeSH Browser
- Neuromuscular Agents * MeSH
PURPOSE: The open-label phase 3 "Treatment with IncobotulinumtoxinA in Movement Open-Label" (TIMO) study investigated longer-term safety and efficacy of incobotulinumtoxin A in children/adolescents with cerebral palsy (CP). METHODS: Patients on standard treatment, with unilateral or bilateral lower limb (LL) or combined upper limb (UL)/LL spasticity received four incobotulinumtoxinA injection cycles (16 or 20 Units/kg bodyweight total [maximum 400 or 500 Units] per cycle depending on ambulatory status/clinical pattern treated), each followed by 12-16 weeks' observation. Treatment for pes equinus was mandatory; flexed knee or adducted thigh were options for unilateral treatment and/or ULs for unilateral/bilateral treatment. The primary endpoint was safety; changes in Ashworth Scale and Gross Motor Function Measure-66 scores, and Global Impression of Change Scale scores at week 4 of each injection cycle were also evaluated. RESULTS: IncobotulinumtoxinA (≤500 Units for ≤98 weeks) was safe, well-tolerated, and effective across all endpoints for multipattern treatment of LL and combined LL/UL spasticity in ambulant/nonambulant children/adolescents with CP. Treatment effects increased with each injection cycle. No new/unexpected safety concerns were identified. CONCLUSION: IncobotulinumtoxinA showed a good safety and tolerability profile, with efficacy over multiple clinical presentations. As an adjunct treatment, it offers an effective, individualized treatment option for pediatric CP-related spasticity.
Beaumont Pediatric Physical Medicine and Rehabilitation Royal Oak Royal Oak MI USA
Department of Neurology Collegium Medicum Jagiellonian University Krakow Poland
Formerly of Merz North America Raleigh NC USA
Merz Pharmaceuticals Gmb H Frankfurt am Main Germany
See more in PubMed
Sadowska M, Sarecka-Hujar B, Kopyta I. Cerebral palsy: current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr Dis Treat. 2020;16:1505–18. doi: 10.2147/NDT.S235165 PubMed DOI PMC
Surveillance of Cerebral Palsy in Europe. Surveillance of cerebral palsy in Europe: a collaboration of cerebral palsy surveys and registers. Surveillance of Cerebral Palsy in Europe (SCPE). Dev Med Child Neurol. 2000;42(12):816–24. doi: 10.1017/s0012162200001511 PubMed DOI
Hagglund G, Wagner OP. Development of spasticity with age in a total population of children with cerebral palsy. BMC Musculoskelet Disord. 2008;9:150–9. doi: 10.1186/1471-2474-9-150 PubMed DOI PMC
Bar-On L, Molenaers G, Aertbeliën E, Van Campenhout A, Feys H, Nuttin B, et al.. Spasticity and its contribution to hypertonia incerebral palsy. Biomed Res Int. 2015;2015:317047. doi: 10.1155/2015/317047 PubMed DOI PMC
Lampe R, Mitternacht J. Research on the performance of the spastic calf muscle of young adults with cerebral palsy. J Clin Med Res. 2011;3(1):8–16. doi: 10.4021/jocmr483w PubMed DOI PMC
Horsch A, Götze M, Geisbüsch A, Beckmann N, Tsitlakidis S, Berrsche G, et al.. Prevalence and classification of equinus foot in bilateral spastic cerebral palsy. World J Pediatr. 2019;15(3):276–80. doi: 10.1007/s12519-019-00238-2 PubMed DOI
Rethlefsen SA, Blumstein G, Kay RM, Dorey F, Wren TA. Prevalence of specific gait abnormalities in children with cerebral palsy revisited: influence of age, prior surgery, and Gross Motor Function Classification System level. Dev Med Child Neurol. 2017;59(1):79–88. doi: 10.1111/dmcn.13205 PubMed DOI
BMJ Best Practice. Cerebral palsy [cited 2021 Feb 4]. Available from: https://bestpractice.bmj.com/topics/en-us/674.
Fehlings D, Novak I, Berweck S, Hoare B, Stott NS, Russo RN. Cerebral Palsy Institute. Botulinum toxin assessment, intervention and follow-up for paediatric upper limb hypertonicity: international consensus statement. Eur J Neurol. 2010;17(Suppl 2):38–56. doi: 10.1111/j.1468-1331.2010.03127.x PubMed DOI
Love SC, Novak I, Kentish M, Desloovere K, Heinen F, Molenaers G, et al.. Cerebral Palsy Institute. Botulinum toxin assessment, intervention and after-care for lower limb spasticity in children with cerebral palsy: international consensus statement. Eur J Neurol. 2010;17(Suppl 2):9–37. doi: 10.1111/j.1468-1331.2010.03126.x PubMed DOI
Delgado MR, Hirtz D, Aisen M, Ashwal S, Fehlings DL, McLaughlin J, et al.. Practice parameter: pharmacologic treatment of spasticity in children and adolescents with cerebral palsy (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2010;74(4):336–43. doi: 10.1212/WNL.0b013e3181cbcd2f PubMed DOI PMC
Heinen F, Desloovere K, Schroeder AS, Berweck S, Borggraefe I, van Campenhout A, et al.. The updated European Consensus on the use of Botulinum toxin for children with cerebral palsy. Eur J Paediatr Neurol. 2010;14(1):45–66. doi: 10.1016/j.ejpn.2009.09.005 PubMed DOI
National Collaborating Centre for Women’s and Children’s Health. Commissioned by the National Institute for Health and Clinical Excellence. Spasticity in children and young people with non-progressive brain disorders: management of spasticity and co-existing motor disorders and their early musculoskeletal complications. NICE clinical guideline. July 2012 [cited 2021 Feb 11]. Available from: https://www.nice.org.uk/guidance/cg145/evidence/full-guideline-updated-november-2016-pdf-186774301.
Botox® 100 U. Summary of product characteristics. Bucks: Allergan Ltd, 2020 [cited 2021 Feb 4]. Available from: https://www.medicines.org.uk/EMC/medicine/112/SPC/.
BOTOX (onabotulinumtoxinA) for injection, for intramuscular, intradetrusor, or intradermal use. Highlights of prescribing information –Botox®. Dublin: Allergan Inc., 2019 [cited 2021 Feb 23]. Available from: https://media.allergan.com/actavis/actavis/media/allergan-pdf-documents/product-prescribing/20190620-BOTOX-100-and-200-Units-v3-0USPI1145-v2-0MG1145.pdf.
Dysport® 500U. Summary of product characteristics. Cambridge, MA: Ipsen Biopharm Ltd, 2020 [cited 2021 Jan 19]. Available from: https://www.medicines.org.uk/emc/medicine/32114.
DYSPORT (abobotulinumtoxinA) for injection, for intramuscular use. Highlights of prescribing information. Cambridge, MA: Ipsen Biopharm Ltd, 2020 [cited 2021 Feb 4]. Available from: https://www.ipsen.com/websites/Ipsen_Online/wp-content/uploads/2020/07/10002305/DYS-US-004998_Dysport-PI-July-2020.pdf
XEOMIN (incobotulinumtoxinA) for injection, for intramuscular or intraglandular use: US prescribing information. Raleigh, NC: Merz Pharmaceuticals LLC, 2020 [cited 2021 Feb 5]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/125360s078lbl.pdf
Merz Pharma UK Ltd. Xeomin 200 units powder for solution for injection. Herts: Merz Pharma UK Ltd, 2020 [cited 2021 Feb 05]. Available from: https://www.medicines.org.uk/emc/product/2162/smpc
Delgado MR, Tilton A, Russman B, Benavides O, Bonikowski M, Carranza J, et al.. AbobotulinumtoxinA for equinus foot deformity in cerebral palsy: a randomized controlled trial. Pediatrics. 2016;137(2):e20152830. doi: 10.1542/peds.2015-2830 PubMed DOI
Delgado MR, Tilton A, Carranza-Del Río J, Dursun N, Bonikowski M, Aydin R, et al.. Dysport in PUL study group. Efficacy and safety of abobotulinumtoxinA for upper limb spasticity in children with cerebral palsy: a randomized repeat-treatment study. Dev Med Child Neurol. 2021;63(5):592-600. doi: 10.1111/dmcn.14733 PubMed DOI PMC
Hong BY, Chang HJ, Lee SJ, Lee S, Park JH, Kwon JY. Efficacy of repeated botulinum toxin type A injections for spastic equinus in children with cerebral palsy –a secondary analysis of the randomized clinical trial. Toxins (Basel). 2017;9(8):253. doi: 10.3390/toxins9080253 PubMed DOI PMC
Frevert J. Pharmaceutical, biological, and clinical properties of botulinum neurotoxin type A products. Drugs R D. 2015;15(1):1–9. doi: 10.1007/s40268-014-0077-1 PubMed DOI PMC
Heinen F, Kaňovský P, Schroeder AS, Chambers HG, Dabrowski E, Geister TL, et al.. IncobotulinumtoxinA for the treatment oflower-limb spasticity in children and adolescents with cerebralpalsy: a phase 3 study. J Pediatr Rehabil Med. 2021;14(2):183–97. doi: 10.3233/PRM-210040 PubMed DOI PMC
Dabrowski E, Chambers HG, Gaebler-Spira D, Banach M, Kaňovský P, Dersch H, et al.. Efficacy and safety ofincobotulinumtoxinA for upper- or combined upper- and lower-limbspasticity in children and adolescents with cerebral palsy: resultsof the phase 3 XARA study. Toxicon. 2021;190(Suppl 1):S14–S15. doi: 10.1016/j.toxicon.2020.11.369 DOI
Göschel H, Wohlfarth K, Frevert J, Dengler R, Bigalke H. Botulinum A toxin therapy: neutralizing and nonneutralizing antibodies –therapeutic consequences. Exp Neurol. 1997;147(1):96–102. doi: 10.1006/exnr.1997.6580 PubMed DOI
Sesardic D, Jones RG, Leung T, Alsop T, Tierney R. Detection of antibodies against botulinum toxins. Mov Disord. 2004;19(Suppl 8):S85–91. doi: 10.1002/mds.20021 PubMed DOI
Ashworth B. Preliminary trial of carisoprodol in multiple sclerosis. Practitioner. 1964;192:540–2. PubMed
Russell DJ, Avery LM, Rosenbaum PL, Raina PS, Walter SD, Palisano RJ. Improved scaling of the gross motor function measure for children with cerebral palsy: evidence of reliability and validity. Phys Ther. 2000;80(9):873–85. doi: 10.1093/ptj/80.9.873 PubMed DOI
Hoare BJ, Wallen MA, Imms C, Villanueva E, Rawicki HB, Carey L. Botulinum toxin A as an adjunct to treatment in the management of the upper limb in children with spastic cerebral palsy (UPDATE). Cochrane Database Syst Rev. 2010;2010(1):CD003469. doi: 10.1002/14651858.CD003469.pub4 PubMed DOI PMC
Delgado MR, Bonikowski M, Carranza J, Dabrowski E, Matthews D, Russman B, et al.. Safety and efficacy of repeat open-label abobotulinumtoxinA treatment in pediatric cerebral palsy. J Child Neurol. 2017;32(13):1058–64. doi: 10.1177/0883073817729918 PubMed DOI PMC
Lukban MB, Rosales RL, Dressler D. Effectiveness of botulinum toxin A for upper and lower limb spasticity in children with cerebral palsy: a summary of evidence. J Neural Transm (Vienna). 2009;116(3):319–31. doi: 10.1007/s00702-008-0175-8 PubMed DOI
Association of Paediatric Chartered Physiotherapists. Evidence-based guidance for physiotherapists. The use of Botulinum Toxin in Children with Neurological Conditions [cited 2021 Aug 06]. Available from: https://apcp.csp.org.uk/system/files/use_of_botulinum_toxin.pdf
Mathevon L, Declemy A, Laffont I, Perennou D. Immunogenicity induced by botulinum toxin injections for limb spasticity: A systematic review. Ann Phys Rehabil Med. 2019;62(4):241–51. doi: 10.1016/j.rehab.2019.03.004 PubMed DOI
Baker R, Jasinski M, Maciag-Tymecka I, Michalowska-Mrozek J, Bonikowski M, Carr L, et al.. Botulinum toxin treatment of spasticity in diplegic cerebral palsy: a randomized, double-blind, placebo-controlled, dose-ranging study. Dev Med Child Neurol. 2002;44(10):666–75. doi: 10.1017/s0012162201002730 PubMed DOI
Chang HJ, Hong BY, Lee SJ, Lee S, Park JH, Kwon JY. Efficacy and safety of letibotulinum toxin A for the treatment of dynamic equinus foot deformity in children with cerebral palsy: a randomized controlled trial. Toxins (Basel). 2017;9(8):252. doi: 10.3390/toxins9080252 PubMed DOI PMC
Kim K, Shin HI, Kwon BS, Kim SJ, Jung IY, Bang MS. Neuronox versus BOTOX for spastic equinus gait in children with cerebral palsy: a randomized, double-blinded, controlled multicentre clinical trial. Dev Med Child Neurol. 2011;53(3):239–44. doi: 10.1111/j.1469-8749.2010.03830.x PubMed DOI
Oeffinger D, Bagley A, Rogers S, Gorton G, Kryscio R, Abel M, et al.. Outcome tools used for ambulatory children with cerebral palsy: responsiveness and minimum clinically important differences. Dev Med Child Neurol. 2008;50(12):918–25. doi: 10.1111/j.1469-8749.2008.03150.x PubMed DOI PMC
Wang HY, Yang YH. Evaluating the responsiveness of 2 versions of the gross motor function measure for children with cerebral palsy. Arch Phys Med Rehabil. 2006;87(1):51–6. doi: 10.1016/j.apmr.2005.08.117 PubMed DOI
Reid SM, Carlin JB, Reddihough DS. Using the Gross Motor Function Classification System to describe patterns of motor severity in cerebral palsy. Dev Med Child Neurol. 2011;53(11):1007–12. doi: 10.1111/j.1469-8749.2011.04044.x PubMed DOI
Bugler KE, Gaston MS, Robb JE. Distribution and motor ability of children with cerebral palsy in Scotland: a registry analysis. Scott Med J. 2019;64(1):16–21. doi: 10.1177/0036933018805897 PubMed DOI
Himmelmann K, Beckung E, Hagberg G, Uvebrant P. Gross and fine motor function and accompanying impairments in cerebral palsy. Dev Med Child Neurol. 2006;48(6):417–23. doi: 10.1017/S0012162206000922 PubMed DOI