Marine microbial enzymes for the production of algal oligosaccharides and its bioactive potential for application as nutritional supplements
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
34997524
DOI
10.1007/s12223-021-00943-4
PII: 10.1007/s12223-021-00943-4
Knihovny.cz E-zdroje
- MeSH
- algináty MeSH
- mořské řasy * MeSH
- oligosacharidy * MeSH
- potravní doplňky MeSH
- prebiotika MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- algináty MeSH
- oligosacharidy * MeSH
- prebiotika MeSH
Marine macroalgae have a very high carbohydrate content due to complex algal polysaccharides (APS) like agar, alginate, and ulvan in their cell wall. Despite numerous reports on their biomedical properties, their hydrocolloid nature limits their applications. Algal oligosaccharides (AOS), which are hydrolyzed forms of complex APS, are gaining importance due to their low molecular weight, biocompatibility, bioactivities, safety, and solubility in water that makes it a lucrative alternative. The AOS produced through enzymatic hydrolysis using microbial enzymes have far-reaching applications because of its stereospecific nature. Identification and characterization of novel microorganisms producing APS hydrolyzing enzymes are the major bottlenecks for the efficient production of AOS. This review will discuss the marine microbial enzymes identified for AOS production and the bioactive potential of enzymatically produced AOS. This can improve our understanding of the biotechnological potential of microbial enzymes for the production of AOS and facilitate the sustainable utilization of algal biomass. Enzymatically produced AOS are shown to have bioactivities such as antioxidant, antiglycemic, prebiotic, immunomodulation, antiobesity or antihypercholesterolemia, anti-inflammatory, anticancer, and antimicrobial activity. The myriad of health benefits provided by the AOS is the need of the hour as there is an alarming increase in physiological disorders among a wide range of the global population.
Academy of Scientific and Innovative Research Ghaziabad 201002 India
Biological Oceanography Division CSIR National Institute of Oceanography Dona Paula Goa 403004 India
School of Earth Ocean and Atmospheric Sciences Goa University Taleigao Plateau Goa 403206 India
Zobrazit více v PubMed
Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139. https://doi.org/10.3390/biom4010117 DOI PMC
An QD, Zhang GL, Wu HT et al (2008) Properties of an alginate degrading Flavobacterium sp. strain LXA isolated from rotting algae from coastal China. Can J Microbiol 54:314–320. https://doi.org/10.1139/W08-013 DOI
Badur AH, Ammar EM, Yalamanchili G, Hehemann JH, Rao CV (2020) Characterization of the GH16 and GH17 laminarinases from Vibrio breoganii 1C10. Appl Microbiol Biotechnol 104:161–171. https://doi.org/10.1007/s00253-019-10243-0 DOI
Baghel RS, Kumari P, Reddy CRK, Jha B (2014) Growth, pigments, and biochemical composition of marine red alga Gracilaria crassa. J Appl Phycol 26:2143–2150. https://doi.org/10.1007/s10811-014-0250-5 DOI
Bakunina IY, Nedashkovskaya OI, Alekseeva SA et al (2002) Degradation of fucoidan by the marine proteobacterium Pseudoalteromonas citrea. Microbiol 71:41–47. https://doi.org/10.1023/A:1017994131769 DOI
Bang MA, Seo JH, Seo JW et al (2015) Bacillus subtilis KCTC 11782BP-produced alginate oligosaccharide effectively suppresses asthma via T-helper cell type 2-related cytokines. PLoS ONE 10:e0117524. https://doi.org/10.1371/journal.pone.0130510 DOI PMC
Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B (2000) ι-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of κ-carrageenases. J Biol Chem 275:35499–35505. https://doi.org/10.1074/jbc.m003404200 DOI
Becker S, Scheffel A, Polz MF, Hehemann JH (2017) Accurate quantification of laminarin in marine organic matter with enzymes from marine microbes. Appl Environ Microbiol 83:e03389-e3416. https://doi.org/10.1128/AEM.03389-16 DOI PMC
Belik A, Silchenko A, Malyarenko O et al (2020) Two new alginate lyases of PL7 and PL6 families from polysaccharide-degrading bacterium Formosa algae KMM 3553 DOI PMC
Bianchetti CM, Takasuka TE, Deutsch S et al (2015) Active site and laminarin binding in glycoside hydrolase family 55. J Biol Chem 290:11819–11832. https://doi.org/10.1074/jbc.m114.623579 DOI PMC
Boucelkha A, Petit E, Elboutachfaiti R et al (2017) Production of guluronate oligosaccharide of alginate from brown algae Stypocaulon scoparium using an alginate lyase. J Appl Phycol 29: 509-19. https://doi.org/10.1007/s10811-016-0928-y
Cao HT, Mikkelsen MD, Lezyk MJ, Bui LM, Tran VT, Silchenko AS, Meyer AS (2018) Novel enzyme actions for sulphated galactofucan depolymerisation and a new engineering strategy for molecular stabilisation of fucoidan degrading enzymes. Mar Drugs 16:422
Chen J, Hu Y, Zhang L, Wang Y, Wang S, Zhang Y, Wang Y (2017) Alginate oligosaccharide DP5 exhibits antitumor effects in osteosarcoma patients following surgery. Front Pharmacol 8:623. https://doi.org/10.3389/fphar.2017.00623 DOI PMC
Chen P, Zhu Y, Men Y, Zeng Y, Sun Y (2018) Purification and characterization of a novel alginate lyase from the marine bacterium Bacillus sp. Alg07. Mar Drugs 16:86
Chen Q, Kou L, Wang F, Wang Y (2019) Size-dependent whitening activity of enzyme-degraded fucoidan from Laminaria japonica. Carbohydr Polym 225:115211. https://doi.org/10.1016/j.carbpol.2019.115211 DOI
Chen XL, Hou YP, Jin M, Zeng RY, Lin HT (2016) Expression and characterization of a novel thermostable and pH-stable β-agarase from deep-sea bacterium Flammeovirga sp. OC4. J Agric Food Chem 64:7251–7258. https://doi.org/10.1021/acs.jafc.6b02998 DOI
Cheng D, Liu Z, Jiang C, Li L, Xue C, Mao X (2020) Biochemical characterization and degradation pattern analysis of a novel PL-6 alginate lyase from Streptomyces coelicolor A3 (2). Food Chem 323:126852. https://doi.org/10.1016/j.foodchem.2020.126852 DOI
Cheong KL, Qiu HM, Du H, Liu Y, Khan BM (2018) Oligosaccharides derived from red seaweed: Production, properties, and potential health and cosmetic applications. Molecules 23:2451. https://doi.org/10.3390/molecules23102451 DOI PMC
Cian RE, Drago SR, De Medina FS, Martínez-Augustin O (2015) Proteins and carbohydrates from red seaweeds: evidence for beneficial effects on gut function and microbiota. Mar Drugs 13:5358–5383. https://doi.org/10.3390/md13085358 DOI PMC
Collen PN, Sassi JF, Rogniaux H, Marfaing H, Helbert W (2011) Ulvan lyases isolated from the Flavobacteria Persicivirga ulvanivorans are the first members of a new polysaccharide lyase family. J Biol Chem 286:42063–42071
Correc G, Hehemann JH, Czjzek M, Helbert W (2011) Structural analysis of the degradation products of porphyran digested by Zobellia galactanivorans β-porphyranase A. Carbohydr Polym 83(1):277–283. https://doi.org/10.1016/j.carbpol.2010.07.060 DOI
Coste O, Malta EJ, López JC, Fernández-Díaz C (2015) Production of sulfated oligosaccharides from the seaweed Ulva sp. using a new ulvan-degrading enzymatic bacterial crude extract. Algal Res 10:224–231. https://doi.org/10.1016/j.algal.2015.05.014 DOI
Cui F, Dong S, Shi X, Zhao X, Zhang XH (2014) Overexpression and characterization of a novel thermostable β-agarase YM01-3, from marine bacterium Catenovulum agarivorans YM01T. Mar Drugs 12:2731–2747. https://doi.org/10.3390/md12052731 DOI PMC
Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C (2017) A review about brown algal cell walls and fucose-containing sulfated polysaccharides: Cell wall context, biomedical properties and key research challenges. Carbohydr Polym 175:395–408. https://doi.org/10.1016/j.carbpol.2017.07.082 DOI
Dong J, Hashikawa KT, Tamaru Y, Araki T (2006) Cloning of the novel gene encoding β-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl Environ Microbiol 72:6399–6401. https://doi.org/10.1128/AEM.00935-06 DOI PMC
Ezzine A, Chahed H, Hannachi M, Hardouin J, Jouenne T, Marzouki MN (2016) Biochemical and molecular characterization of a new glycoside hydrolase family 17 from Sclerotinia sclerotiorum. J New Sci 28:1610–1621
Fischer A, Wefers D (2019) Chromatographic analysis of alginate degradation by five recombinant alginate lyases from Cellulophaga algicola DSM 14237. Food Chem 299:125142. https://doi.org/10.1016/j.foodchem.2019.125142 DOI
Foran E, Buravenkov V, Kopel M, Mizrahi N, Shoshani S, Helbert W, Banin E (2017) Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR Genome Algal Res 25:39–46. https://doi.org/10.1016/j.algal.2017.04.036 DOI
Fu XT, Kim SM (2010) Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar Drugs 8:200–218
Furukawa SI, Fujikawa T, Koga D, Ide A (1992) Purification and some properties of exo-type fucoidanases from Vibrio sp. N-5. Biosci Biotechnol Biochem 56:1829–1834. https://doi.org/10.1271/bbb.56.1829 DOI
Gao B, Li L, Wu H, Zhu D, Jin M, Qu W, Zeng R (2019a) A novel strategy for efficient agaro-oligosaccharide production based on the enzymatic degradation of crude agarose in Flammeovirga pacifica WPAGA1. Front Microbiol 10:1231. https://doi.org/10.3389/fmicb.2019.01231 DOI PMC
Gao J, Du C, Chi Y, Zuo S, Ye H, Wang P (2019b) Cloning, expression, and characterization of a new PL25 family ulvan lyase from marine bacterium Alteromonas sp. A321. Mar Drugs 17:568. https://doi.org/10.3390/md17100568
Ghanbarzadeh M, Golmoradizadeh A, Homaei A (2018) Carrageenans and carrageenases: Versatile polysaccharides and promising marine enzymes. Phytochem Rev 17:535–571. https://doi.org/10.1007/s11101-018-9548-2 DOI
Giese EC, Covizzi LG, Dekker RF, Monteiro NK, Da Silva MDLC, Barbosa AM (2006) Enzymatic hydrolysis of botryosphaeran and laminarin by β-1, 3-glucanases produced by Botryosphaeria rhodina and Trichoderma harzianum Rifai. Process Biochem 41:1265–1271. https://doi.org/10.1016/j.procbio.2005.12.023 DOI
Gonzalez A, Castro J, Vera J, Moenne A (2013) Seaweed oligosaccharides stimulate plant growth by enhancing carbon and nitrogen assimilation, basal metabolism, and cell division. J Plant Growth Regul 32:443–448. https://doi.org/10.1007/s00344-012-9309-1 DOI
Guibet M, Colin S, Barbeyron T, Genicot S, Kloareg B, Michel G, Helbert W (2007) Degradation of λ-carrageenan by Pseudoalteromonas carrageenovora λ-carrageenase: a new family of glycoside hydrolases unrelated to κ-and ι-carrageenases. Biochem J 404:105–114
Guo J, Zheng Z, Lu X, Zeng S, Chen C, Zhang L, Zheng B (2018) Purification and characterisation of κ-carrageenan oligosaccharides prepared by κ-Carrageenase from Thalassospira sp. Fjfst-332. Carbohydr Polym 180:314–327. https://doi.org/10.1016/j.carbpol.2017.10.043 DOI
Gupta V, Trivedi N, Kumar M, Reddy CRK, Jha B (2013) Purification and characterization of exo-β-agarase from an endophytic marine bacterium and its catalytic potential in bioconversion of red algal cell wall polysaccharides into galactans. Biomass Bioenerg 49:290–298. https://doi.org/10.1016/j.biombioe.2012.12.027 DOI
Haijin M, Xiaolu J, Huashi G (2003) A κ-carrageenan derived oligosaccharide prepared by enzymatic degradation containing anti-tumor activity. J Appl Phycol 15:297–303. https://doi.org/10.1023/A:1025103530534 DOI
Han W, Gu J, Cheng Y, Liu H, Li Y, Li F (2016) Novel alginate lyase (Aly5) from a polysaccharide-degrading marine bacterium, Flammeovirga sp. strain MY04: effects of module truncation on biochemical characteristics, alginate degradation patterns, and oligosaccharide-yielding properties. Appl Environ Microbiol 82:364–374. https://doi.org/10.1128/aem.03022-15 DOI
Han ZL, Yang M, Fu XD, Chen M, Su Q, Zhao YH, Mou HJ (2019) Evaluation of prebiotic potential of three marine algae oligosaccharides from enzymatic hydrolysis. Mar Drugs 17:173. https://doi.org/10.3390/md17030173 DOI PMC
Hashimoto W, Miyake O, Ochiai A, Murata K (2005) Molecular identification of Sphingomonas sp. A1 alginate lyase (A1-IV′) as a member of novel polysaccharide lyase family 15 and implications in alginate lyase evolution. J Biosci Bioeng 99:48–54. https://doi.org/10.1263/jbb.99.48 DOI
Hatada Y, Mizuno M, Li Z, Ohta Y (2011) Hyper-production and characterization of the ι-Carrageenase useful for ι-carrageenan oligosaccharide production from a deep-sea bacterium, Microbulbifer thermotolerans JAMB-A94 T and insight into the unusual catalytic mechanism. Mar Biotechnol 13:411–422. https://doi.org/10.1007/s10126-010-9312-0 DOI
He C, Muramatsu H, Kato SI, Ohnishi K (2017) Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi. Biosci Biotechnol Biochem 81:2145–2151. https://doi.org/10.1080/09168451.2017.1379352 DOI
Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912. https://doi.org/10.1038/nature08937 DOI
Hehemann JH, Correc G, Thomas F, Bernard T, Barbeyron T, Jam M, Czjzek M (2012) Biochemical and structural characterization of the complex agarolytic enzyme system from the marine bacterium Zobellia galactanivorans. J Biol Chem 287:30571–30584
Hong SJ, Lee JH, Kim EJ, Yang HJ, Chang YK, Park JS, Hong SK (2017) In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnol Bioprocess Eng 22:489–496. https://doi.org/10.1007/s12257-017-0049-8 DOI
Hu F, Cao S, Li Q, Zhu B, Yao Z (2021) Construction and biochemical characterization of a novel hybrid alginate lyase with high activity by module recombination to prepare alginate oligosaccharides. Int J Biol Macromol 166:1272–1279. https://doi.org/10.1016/j.ijbiomac.2020.11.009 DOI
Huang G, Wen S, Liao S, Wang Q, Pan S, Zhang R, Huang S (2019) Characterization of a bifunctional alginate lyase as a new member of the polysaccharide lyase family 17 from a marine strain BP-2. Biotechnol Lett 41:1187–1200. https://doi.org/10.1007/s10529-019-02722-1 DOI PMC
Huang H, Li S, Bao S, Mo K, Sun D, Hu Y (2021) Expression and characterization of a cold-adapted alginate lyase with exo/endo-type activity from a novel marine bacterium Alteromonas portus HB161718T. Mar Drugs 19:155
Huang L, Zhou J, Li X, Peng Q, Lu H, Du Y (2013) Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J Ind Microbiol Biotechnol 40:113–122. https://doi.org/10.1007/s10295-012-1210-1 DOI
Hung YHR, Chen GW, Pan CL, Lin HTV (2021) Production of ulvan oligosaccharides with antioxidant and angiotensin-converting enzyme-inhibitory activities by microbial enzymatic hydrolysis. Fermentation 7:160. https://doi.org/10.3390/fermentation7030160 DOI
Inoue A, Anraku M, Nakagawa S, Ojima T (2016) Discovery of a novel alginate lyase from Nitratiruptor sp. SB155-2 thriving at deep-sea hydrothermal vents and identification of the residues responsible for its heat stability. J Biol Chem 291:15551–15563. https://doi.org/10.1074/jbc.m115.713230 DOI PMC
Jagtap AS, Manohar CS (2021) Overview on microbial enzymatic production of algal oligosaccharides for nutraceutical applications. Mar Biotechnol 23:159–171. https://doi.org/10.1007/s10126-021-10027-6 DOI
Jam M, Flament D, Allouch J, Potin P, Thion L, Kloareg B, Barbeyron T (2005) The endo-β-agarases AgaA and AgaB from the marine bacterium Zobellia galactanivorans: two paralogue enzymes with different molecular organizations and catalytic behaviours. Biochem J 385:703–713. https://doi.org/10.1042/BJ20041044 DOI PMC
Jiang Z, Zhang X, Wu L, Li H, Chen Y, Li L, Zhu Y (2021) Exolytic products of alginate by the immobilized alginate lyase confer antioxidant and antiapoptotic bioactivities in human umbilical vein endothelial cells. Carbohydr Polym 251:116976. https://doi.org/10.1016/j.carbpol.2020.116976 DOI
Jung S, Jeong BC, Hong SK, Lee CR (2017) Cloning, expression, and biochemical characterization of a novel acidic GH16 β-agarase, AgaJ11, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 181:961–971. https://doi.org/10.1007/s12010-016-2262-x DOI
Kawai R, Igarashi K, Yoshida M, Kitaoka M, Samejima M (2006) Hydrolysis of β-1, 3/1, 6-glucan by glycoside hydrolase family 16 endo-1, 3 (4)-β-glucanase from the basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 71:898–906. https://doi.org/10.1007/s00253-005-0214-4 DOI
Kim HT, Ko HJ, Kim N, Kim D, Lee D, Choi IG, Kim KH (2012) Characterization of a recombinant endo-type alginate lyase (Alg7D) from Saccharophagus degradans. Biotechnol Lett 34:1087–1092. https://doi.org/10.1007/s10529-012-0876-9 DOI
Kim HT, Lee S, Lee D, Kim HS, Bang WG, Kim KH, Choi IG (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: an exo-type β-agarase producing neoagarobiose. Appl Microbiol Biotechnol 86:227–234. https://doi.org/10.1007/s00253-009-2256-5 DOI
Kim JH, Yun EJ, Yu S, Kim KH, Kang NJ (2017) Different levels of skin whitening activity among 3, 6-anhydro-l-galactose, agarooligosaccharides, and neoagarooligosaccharides. Mar Drugs 15:321. https://doi.org/10.3390/md15100321 DOI PMC
Kim KH, Kim YW, Kim HB, Lee BJ, Lee DS (2006) Anti-apoptotic activity of laminarin polysaccharides and their enzymatically hydrolyzed oligosaccharides from Laminaria japonica. Biotechnol Lett 28:439–446. https://doi.org/10.1007/s10529-005-6177-9 DOI
Kim WJ, Park JW, Park JK, Choi DJ, Park YI (2015) Purification and characterization of a fucoidanase (FNase S) from a marine bacterium Sphingomonas paucimobilis PF-1. Mar Drugs 13:4398–4417. https://doi.org/10.3390/md13074398 DOI PMC
Konasani VR, Jin C, Karlsson NG, Albers E (2018) A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Sci Rep 8:1–11. https://doi.org/10.1038/s41598-018-32922-0 DOI
Kothari D, Patel S, Goyal A (2014) Therapeutic spectrum of nondigestible oligosaccharides: overview of current state and prospect. J Food Sci 79:R1491–R1498. https://doi.org/10.1111/1750-3841.12536 DOI
Kusaykin MI, Silchenko AS, Zakharenko AM, Zvyagintseva TN (2016) Fucoidanases Glycobiology 26:3–12. https://doi.org/10.1093/glycob/cwv072 DOI
Labourel A, Jam M, Legentil L, Sylla B, Hehemann JH, Ferrières V, Michel G (2015) Structural and biochemical characterization of the laminarinase ZgLamCGH16 from Zobellia galactanivorans suggests preferred recognition of branched laminarin. Acta Crystallogr D Biol Crystallogr 71:173–184. https://doi.org/10.1107/s139900471402450x DOI
Lahaye M, Robic A (2007) Structure and functional properties of ulvan, a polysaccharide from green seaweeds. Biomacromol 8:1765–1774. https://doi.org/10.1021/bm061185q DOI
Lakshmikanth M, Manohar S, Lalitha J (2009) Purification and characterization of β-agarase from agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochem 44:999–1003. https://doi.org/10.1016/j.procbio.2009.04.025 DOI
Lee CH, Lee CR, Hong SK (2019) Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Appl Microbiol Biotechnol 103:8403–8411. https://doi.org/10.1007/s00253-019-10056-1 DOI
Lee SI, Choi SH, Lee EY, Kim HS (2012) Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2. Appl Microbiol Biotechnol 95:1643–1653. https://doi.org/10.1007/s00253-012-4266-y DOI
Li J, Pan A, Xie M, Zhang P, Gu X (2019) Characterization of a thermostable κ-carrageenase from a hot spring bacterium and plant protection activity of the oligosaccharide enzymolysis product. J Sci Food Agric 99:1812–1819. https://doi.org/10.1002/jsfa.9374 DOI
Li JW, Dong S, Song J, Li CB, Chen XL, Xie BB, Zhang YZ (2011a) Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Mar Drugs 9:109–123
Li L, Jiang X, Guan H, Wang P (2011b) Preparation, purification and characterization of alginate oligosaccharides degraded by alginate lyase from Pseudomonas sp. HZJ 216. Carbohydr Res 346:794–800. https://doi.org/10.1016/j.carres.2011.01.023 DOI
Li M, Shang Q, Li G, Wang X, Yu G (2017a) Degradation of marine algae-derived carbohydrates by Bacteroidetes isolated from human gut microbiota. Mar Drugs 15:92. https://doi.org/10.3390/md15040092 DOI PMC
Li S, Hao J, Sun M (2017b) Cloning and characterization of a new cold-adapted and thermo-tolerant ι-carrageenase from marine bacterium Flavobacterium sp. YS-80-122. Int J Biol Macromol 102:1059–1065. https://doi.org/10.1016/j.ijbiomac.2017.04.070 DOI
Li S, Wang L, Han F, Gong Q, Yu W (2016) Cloning and characterization of the first polysaccharide lyase family 6 oligoalginate lyase from marine Shewanella sp. Kz7. J Biochem 159:77–86. https://doi.org/10.1093/jb/mvv076 DOI
Liao L, Xu XW, Jiang XW, Cao Y, Yi N, Huo YY et al (2011) Cloning, expression, and characterization of a new β-agarase from Vibrio sp. strain CN41. Appl Environ Microbiol 77:7077–7079
Liberato MV, Prates ET, Gonçalves TA et al (2021) Insights into the dual cleavage activity of the GH16 laminarinase enzyme class on β-1, 3 and β-1, 4 glycosidic bonds. J Biol Chem 296. https://doi.org/10.1016/j.jbc.2021.100385
Lin B, Liu Y, Lu G, Zhao M, Hu Z (2017) An agarase of glycoside hydrolase family 16 from marine bacterium Aquimarina agarilytica ZC1. FEMS Microbiol Lett 364:fnx012. https://doi.org/10.1093/femsle/fnx012
Lin B, Lu G, Zheng Y, Xie W, Li S, Hu Z (2012) Gene cloning, expression and characterization of a neoagarotetraose-producing β-agarase from the marine bacterium Agarivorans sp. HZ105. World J Microbiol Biotechnol 28:1691–1697. https://doi.org/10.1007/s11274-011-0977-y DOI
Liu GL, Li Y, Chi Z, Chi ZM (2011) Purification and characterization of κ-carrageenase from the marine bacterium Pseudoalteromonas porphyrae for hydrolysis of κ-carrageenan. Process Biochem 46:265–271. https://doi.org/10.1016/j.procbio.2010.08.021 DOI
Liu Z, Li G, Mo Z, Mou H (2013) Molecular cloning, characterization, and heterologous expression of a new κ-carrageenase gene from marine bacterium Zobellia sp. ZM-2. Appl Microbiol Biotechnol 97:10057–10067. https://doi.org/10.1007/s00253-013-5215-0 DOI
Lundqvist LC, Jam M, Barbeyron T, Czjzek M, Sandström C (2012) Substrate specificity of the recombinant alginate lyase from the marine bacteria Pseudomonas alginovora. Carbohydr Res 352:44–50. https://doi.org/10.1016/j.carres.2012.02.014 DOI
Ma C, Lu X, Shi C, Li J, Gu Y, Ma Y, Yu W (2007) Molecular cloning and characterization of a novel β-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J Biol Chem 282:3747–3754. https://doi.org/10.1074/jbc.M607888200 DOI
Ma LY, Chi ZM, Li J, Wu LF (2008) Overexpression of alginate lyase of Pseudoalteromonas elyakovii in Escherichia coli, purification, and characterization of the recombinant alginate lyase. World J Microbiol Biotechnol 24:89–96. https://doi.org/10.1007/s11274-007-9443-2 DOI
Ma S, Duan G, Chai W, Geng C, Tan Y, Wang L, Han F (2013) Purification, cloning, characterization and essential amino acid residues analysis of a new ι-carrageenase from Cellulophaga sp. QY3. PloS one 8:e64666. https://doi.org/10.1371/journal.pone.0064666
Ma YX, Dong SL, Jiang XL, Li J, MOU HJ (2010) Purification and characterization of κ-carrageenase from marine bacterium mutant strain Pseudoalteromonas sp. AJ5-13 and its degraded products. J Food Biochem 34:661–678. https://doi.org/10.1111/j.1745-4514.2009.00308.x DOI
Manivasagan P, Oh J (2015) Production of a novel fucoidanase for the green synthesis of gold nanoparticles by Streptomyces sp. and its cytotoxic effect on HeLa cells. Mar Drugs 13:6818–6837. https://doi.org/10.3390/md13116818 DOI PMC
McLean MW, Willianson FB (1979) χ-Carrageenase from Pseudomonas carrageenovora. Eur J Biochem 93:553–558. https://doi.org/10.1111/j.1432-1033.1979.tb12854.x DOI
Michel G, Chantalat L, Duee E et al (2001) The κ-carrageenase of P. carrageenovora features a tunnel-shaped active site: a novel insight in the evolution of Clan-B glycoside hydrolases. Structure 9:513–525. https://doi.org/10.1016/S0969-2126(01)00612-8 DOI
Miyanishi N, Iwamoto Y, Watanabe E, Odaz T (2003) Induction of TNF-α production from human peripheral blood monocytes with β-1, 3-glucan oligomer prepared from laminarin with β-1, 3-glucanase from Bacillus clausii NM-1. J Biosci Bioeng 95:192–195. https://doi.org/10.1016/s1389-1723(03)80128-7 DOI
Mondal R, Ohnishi K (2020) Characterization of Glaciecola sp. enzymes involved in the late steps of degradation of sulfated polysaccharide ulvan extracted from Ulva ohnoi. Biochem Biophys Res Commun 523:441–445. https://doi.org/10.1016/j.bbrc.2019.12.081 DOI
Mussatto SI, Mancilha IM (2007) Non-digestible oligosaccharides: A review. Carbohydr Polym 68:587–597. https://doi.org/10.1016/j.carbpol.2006.12.011 DOI
Nagao T, Arai Y, Yamaoka M, Komatsu F, Yagi H, Suzuki H, Ohshiro T (2018) Identification and characterization of the fucoidanase gene from Luteolibacter algae H18. J Biosci Bioeng 126:567–572. https://doi.org/10.1016/j.jbiosc.2018.05.016 DOI
Nunes N, Valente S, Ferraz S, Barreto MC, de Carvalho MAP (2020) Biochemical study of attached macroalgae from the Madeira Archipelago and beach-cast macroalgae from the Canary Islands: multivariate analysis to determine bioresource potential. Bot Mar 63:283–298. https://doi.org/10.1515/bot-2019-0022
Oh C, Nikapitiya C, Lee Y, Whang I, Kim SJ, Kang DH, Lee J (2010) Cloning, purification and biochemical characterization of beta agarase from the marine bacterium Pseudoalteromonas sp. AG4. J Ind Microbiol Biotechnol 37:483–494. https://doi.org/10.1007/s10295-010-0694-9 DOI
Ohta Y, Hatada Y (2006) A novel enzyme, λ-carrageenase, isolated from a deep-sea bacterium. J Biochem 140:475–481. https://doi.org/10.1093/jb/mvj180 DOI
Ohta Y, Hatada Y, Miyazaki M, Nogi Y, Ito S, Horikoshi K (2005) Purification and characterization of a novel α-agarase from a Thalassomonas sp. Curr Microbiol 50:212–216. https://doi.org/10.1007/s00284-004-4435-z DOI
Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Horikoshi K (2004) Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from a novel species of deep-sea Microbulbifer. Appl Microbiol Biotechnol 64:505–514. https://doi.org/10.1007/s00253-004-1573-y DOI
Osumi Y, Kawai M, Amano H, NODA H (2002) Physiological activities of oligosaccharides derived from marine algae Porphyra yezoensis Porphyran. Fish Sci 68(sup2):1441–1444. https://doi.org/10.2331/fishsci.68.sup2_1441 DOI
Patel S, Goyal A (2011) Functional oligosaccharides: production, properties and applications. World J Microbiol Biotechnol 27:1119–1128. https://doi.org/10.1007/s11274-010-0558-5 DOI
Pluvinage B, Fillo A, Massel P, Boraston AB (2017) Structural analysis of a family 81 glycoside hydrolase implicates its recognition of β-1, 3-glucan quaternary structure. Structure 25:1348–1359. https://doi.org/10.1016/j.str.2017.06.019 DOI
Potin P, Richard C, Rochas C, Kloareg B (1993) Purification and characterization of the α-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur J Biochem 214:599–607. https://doi.org/10.1111/j.1432-1033.1993.tb17959.x DOI
Potin P, Sanseau A, Le Gall Y, Rochas C, Kloareg B (1991) Purification and characterization of a new k-carrageenase from a marine Cytophaga-like bacterium. Eur J Biochem 201:241–247. https://doi.org/10.1111/j.1432-1033.1991.tb16280.x DOI
Przybylski C, Correc G, Fer M, Gonnet F, Helbert W, Daniel R (2015) MALDI-TOF MS and ESI-LTQ-Orbitrap tandem mass spectrometry reveal specific porphyranase activity from a Pseudoalteromonas atlantica bacterial extract. RSC Adv 5:80793–80803. https://doi.org/10.1039/C5RA14449C DOI
Qin HM, Gao D, Zhu M et al (2020) Biochemical characterization and structural analysis of ulvan lyase from marine Alteromonas sp. reveals the basis for its salt tolerance. Int J Biol Macromol 147:1309–1317. https://doi.org/10.1016/j.ijbiomac.2019.10.095 DOI
Qin HM, Miyakawa T, Inoue A et al (2017) Laminarinase from Flavobacterium sp. reveals the structural basis of thermostability and substrate specificity. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-11542-0 DOI
Qin HM, Xu P, Guo Q et al (2018) Biochemical characterization of a novel ulvan lyase from Pseudoalteromonas sp. strain PLSV. RSC Adv 8:2610–2615. https://doi.org/10.1039/C7RA12294B DOI
Reisky L, Stanetty C, Mihovilovic MD et al (2018) Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901 DOI
Sakai T, Kimura H, Kato I (2003) Purification of sulfated fucoglucuronomannan lyase from bacterial strain of Fucobacter marina and study of appropriate conditions for its enzyme digestion. Mar Biotechnol 5:380–387. https://doi.org/10.1007/s10126-002-0083-0 DOI
Salim S (2014) Oxidative stress and psychological disorders. Curr Neuropharmacol 12:140–147
Shen J, Chang Y, Dong S, Chen F (2017) Cloning, expression and characterization of a ι-carrageenase from marine bacterium Wenyingzhuangia fucanilytica: a biocatalyst for producing ι-carrageenan oligosaccharides. J Biotechnol 259:103–109. https://doi.org/10.1016/j.jbiotec.2017.07.034 DOI
Shen J, Chang Y, Zhang Y, Mei X, Xue C (2020) Discovery and characterization of an endo-1,3-fucanase from marine bacterium Wenyingzhuangia fucanilytica: a novel glycoside hydrolase family. Front Microbiol 11:1674. https://doi.org/10.3389/fmicb.2020.01674 DOI PMC
Silchenko AS, Kusaykin MI, Kurilenko VV et al (2013) Hydrolysis of fucoidan by fucoidanase isolated from the marine bacterium, Formosa algae. Mar Drugs 11:2413–2430. https://doi.org/10.3390/md11072413 DOI PMC
Silchenko AS, Ustyuzhanina NE, Kusaykin MI et al (2017) Expression and biochemical characterization and substrate specificity of the fucoidanase from Formosa algae. Glycobiology 27:254–263. https://doi.org/10.1093/glycob/cww138 DOI
Su Q, Jin T, Yu Y, Yang M, Mou H, Li L (2017) Extracellular expression of a novel β-agarase from Microbulbifer sp. Q7, isolated from the gut of sea cucumber. AMB Express 7:1–9. https://doi.org/10.1186/s13568-017-0525-8 DOI
Sun F, Ma Y, Wang Y, Liu Q (2010) Purification and characterization of novel κ-carrageenase from marine Tamlana sp. HC4. Chin J Oceanol Limnol 28:1139–1145. https://doi.org/10.1007/s00343-010-9012-7 DOI
Sun Y, Yang B, Wu Y et al (2015) Structural characterization and antioxidant activities of κ-carrageenan oligosaccharides degraded by different methods. Food Chem 178:311–318. https://doi.org/10.1016/j.foodchem.2015.01.105 DOI
Tanna B, Mishra A (2019) Nutraceutical potential of seaweed polysaccharides: structure, bioactivity, safety, and toxicity. Compr Rev Food Sci Food Saf 18:817–831. https://doi.org/10.1111/1541-4337.12441 DOI
Ulaganathan T, Banin E, Helbert W, Cygler M (2018) Structural and functional characterization of PL28 family ulvan lyase NLR48 from Nonlabens ulvanivorans. J Biol Chem 293:11564–11573. https://doi.org/10.1074/jbc.ra118.003659 DOI PMC
Vickers C, Liu F, Abe K et al (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to α-l-fucosidases from GH29. J Biol Chem 293:18296–18308. https://doi.org/10.1074/jbc.ra118.005134 DOI PMC
Vuillemin M, Silchenko AS, Cao HTT et al (2020) Functional characterization of a new GH107 endo-α-(1, 4)-fucoidanase from the mrine bacterium Formosa haliotis. Mar Drugs 18:562. https://doi.org/10.3390/md18110562 DOI PMC
Wang D, Kim DH, Yun EJ, Park YC, Seo JH, Kim KH (2017) The first bacterial β-1, 6-endoglucanase from Saccharophagus degradans 2–40 T for the hydrolysis of pustulan and laminarin. Appl Microbiol Biotechnol 101:197–204. https://doi.org/10.1007/s00253-016-7753-8 DOI
Wang J, Mou H, Jiang X, Guan H (2006a) Characterization of a novel β-agarase from marine Alteromonas sp. SY37–12 and its degrading products. Appl Microbiol Biotechnol 71:833–839. https://doi.org/10.1007/s00253-005-0207-3 DOI
Wang Y, Han F, Hu B, Li J, Yu W (2006b) In vivo prebiotic properties of alginate oligosaccharides prepared through enzymatic hydrolysis of alginate. Nutr Res 26:597–603. https://doi.org/10.1016/j.nutres.2006.09.015 DOI
Wu Q, Zhang M, Wu K, Liu B, Cai J, Pan R (2011) Purification and characteristics of fucoidanase obtained from Dendryphiella arenaria TM94. J Appl Phycol 23:197–203. https://doi.org/10.1007/s10811-010-9588-5 DOI
Xu F, Chen XL, Sun XH, Dong F et al (2020) Structural and molecular basis for the substrate positioning mechanism of a new PL7 subfamily alginate lyase from the arctic. J Biol Chem 295:16380–16392. https://doi.org/10.1074/jbc.ra120.015106 DOI PMC
Xu SY, Kan J, Hu Z, Liu Y, Du H, Pang GC, Cheong KL (2018) Quantification of neoagaro-oligosaccharide production through enzymatic hydrolysis and its anti-oxidant activities. Molecules 23:1354. https://doi.org/10.3390/molecules23061354 DOI PMC
Xu X, Li S, Yang X, Yu W, Han F (2015) Cloning and characterization of a new κ-carrageenase gene from marine bacterium Pseudoalteromonas sp. QY203. J Ocean Univ China 14:1082–1086. https://doi.org/10.1007/s11802-015-2652-7 DOI
Yamasaki M, Ogura K, Hashimoto W, Mikami B, Murata K (2005) A structural basis for depolymerization of alginate by polysaccharide lyase family-7. J Mol Biol 352:11–21. https://doi.org/10.1016/j.jmb.2005.06.075 DOI
Yang JH, Cho SS, Kim KM et al (2017) Neoagarooligosaccharides enhance the level and efficiency of LDL receptor and improve cholesterol homeostasis. J Funct Foods 38:529–539. https://doi.org/10.1016/j.jff.2017.09.053 DOI
Yang M, Yu Y, Yang S, Shi X, Mou H, Li L (2018) Expression and characterization of a new polyG-specific alginate lyase from marine bacterium Microbulbifer sp. Q7. Front Microbiol 9:2894
Yang X, Li S, Wu Y, Yu W, Han F (2016) Cloning and characterization of two thermo-and salt-tolerant oligoalginate lyases from marine bacterium Halomonas sp. FEMS Microbiol Lett 363:fnw079. https://doi.org/10.1093/femsle/fnw079
Yao Z, Wang F, Gao Z, Jin L, Wu H (2013) Characterization of a κ-carrageenase from marine Cellulophaga lytica strain N5–2 and analysis of its degradation products. Int J Mol Sci 14:24592–24602. https://doi.org/10.3390/ijms141224592 DOI PMC
Yoon HJ, Hashimoto W, Miyake O, Okamoto M, Mikami B, Murata K (2000) Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr Purif 19:84–90. https://doi.org/10.1006/prep.2000.1226 DOI
Youssef AS, Beltagy EA, El-Shenawy MA, El-Assar SA (2012) Production of k-carrageenase by Cellulosimicrobium cellulans isolated from Egyptian Mediterranean coast. Afr J Microbiol Res 6:6618–6628. https://doi.org/10.5897/AJMR12.517 DOI
Zeng C, Zhang L, Miao S, Zhang Y, Zeng S, Zheng B (2016) Preliminary characterization of a novel β-agarase from Thalassospira profundimonas. Springerplus 5:1–8. https://doi.org/10.1186/s40064-016-2748-6 DOI
Zeng J, An D, Jiao C, Xiao Q, Weng H, Yang Q, Xiao A (2019) Cloning, expression, and characterization of a new pH-and heat-stable alginate lyase from Pseudoalteromonas carrageenovora ASY5. J Food Biochem 43:e12886. https://doi.org/10.1111/jfbc.12886 DOI
Zhang C, Kim SK (2010) Research and application of marine microbial enzymes: status and prospects. Mar Drugs 8:1920–1934
Zhang W, Xu J, Liu D, Liu H, Lu X, Yu W (2018) Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl Microbiol Biotechnol 102:2203–2212. https://doi.org/10.1007/s00253-018-8762-6 DOI
Zhang Y, Chang Y, Shen J, Xue C (2019a) Expression and characterization of a novel β-porphyranase from marine bacterium Wenyingzhuangia fucanilytica: a biotechnological tool for degrading porphyran. J Agric Food Chem 67:9307–9313. https://doi.org/10.1021/acs.jafc.9b02941 DOI
Zhang Y, Lang B, Zeng D, Li Z, Yang J, Yan R et al (2019b) Truncation of κ-carrageenase for higher κ-carrageenan oligosaccharides yield with improved enzymatic characteristics. Int J Biol Macromol 130:958–968. https://doi.org/10.1016/j.ijbiomac.2019.02.109 DOI
Zhang YH, Shao Y, Jiao C, Yang QM, Weng HF, Xiao AF (2020) Characterization and application of an alginate lyase, Aly1281 from marine bacterium Pseudoalteromonas carrageenovora ASY5. Mar Drugs 18:95. https://doi.org/10.3390/md18020095 DOI PMC
Zhang Z, Yu G, Guan H, Zhao X, Du Y, Jiang X (2004) Preparation and structure elucidation of alginate oligosaccharides degraded by alginate lyase from Vibrio sp. 510. Carbohydr Res 339:1475–1481. https://doi.org/10.1016/j.carres.2004.03.010 DOI
Zhao Y, Zheng Y, Wang J, Ma S, Yu Y, White WL et al (2018) Fucoidan extracted from Undaria pinnatifida: source for nutraceuticals/functional foods. Mar Drugs 16:321
Zhu B, Chen M, Yin H, Du Y, Ning L (2016a) Enzymatic hydrolysis of alginate to produce oligosaccharides by a new purified endo-type alginate lyase. Mar Drugs 14:108. https://doi.org/10.3390/md14060108 DOI PMC
Zhu B, Hu F, Yuan H, Sun Y, Yao Z (2018a) Biochemical characterization and degradation pattern of a unique pH-stable polyM-specific alginate lyase from newly isolated Serratia marcescens NJ-07. Mar Drugs 16:129. https://doi.org/10.3390/md16040129 DOI PMC
Zhu B, Ni F, Ning L, Yao Z, Du Y (2018b) Cloning and biochemical characterization of a novel κ-carrageenase from newly isolated marine bacterium Pedobacter hainanensis NJ-02. Int J Biol Macromol 108:1331–1338. https://doi.org/10.1016/j.ijbiomac.2017.11.040 DOI
Zhu B, Ni F, Sun Y, Ning L, Yao Z (2019) Elucidation of degrading pattern and substrate recognition of a novel bifunctional alginate lyase from Flammeovirga sp. NJ-04 and its use for preparation alginate oligosaccharides. Biotechnol Biofuels 12:1–13. https://doi.org/10.1186/s13068-019-1352-8 DOI
Zhu B, Ning L (2016) Purification and characterization of a new κ-carrageenase from the marine bacterium Vibrio sp. NJ-2. J Microbiol Biotechnol 26:255–262. https://doi.org/10.4014/jmb.1507.07052 DOI
Zhu B, Ning L, Jiang Y, Ge L (2018c) Biochemical characterization and degradation pattern of a novel endo-type bifunctional alginate lyase AlyA from marine bacterium Isoptericola halotolerans. Mar Drugs 16:258. https://doi.org/10.3390/md16080258 DOI PMC
Zhu B, Sun Y, Ni F, Ning L, Yao Z (2018d) Characterization of a new endo-type alginate lyase from Vibrio sp. NJU-03. Int J Biol Macromol 108:1140–1147. https://doi.org/10.1016/j.ijbiomac.2017.10.164 DOI
Zhu B, Yin H (2015) Alginate lyase: Review of major sources and classification, properties, structure-function analysis and applications. Bioengineered 6:125–131. https://doi.org/10.1080/21655979.2015.1030543 DOI PMC
Zhu Y, Wu L, Chen Y, Ni H, Xiao A, Cai H (2016b) Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol Res 182:49–58. https://doi.org/10.1016/j.micres.2015.09.004 DOI