Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles

. 2022 Jan 21 ; 25 (1) : 103587. [epub] 20211209

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35005537
Odkazy

PubMed 35005537
PubMed Central PMC8718973
DOI 10.1016/j.isci.2021.103587
PII: S2589-0042(21)01557-1
Knihovny.cz E-zdroje

Trichodesmium, a globally important, N2-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply Trichodesmium with nutrients. Recently, we reported a selectivity in particle collection enabling Trichodesmium to center iron-rich minerals and optimize its nutrient utilization. In this follow-up study we examined if colonies select Phosphorus (P) minerals. We incubated 1,200 Trichodesmium colonies from the Red Sea with P-free CaCO3, P-coated CaCO3, and dust, over an entire bloom season. These colonies preferably interacted, centered, and retained P-coated CaCO3 compared with P-free CaCO3. In both studies, Trichodesmium clearly favored dust over all other particles tested, whereas nutrient-free particles were barely collected or retained, indicating that the colonies sense the particle composition and preferably collect nutrient-rich particles. This unique ability contributes to Trichodesmium's current ecological success and may assist it to flourish in future warmer oceans.

Zobrazit více v PubMed

Aguilar-Islas A.M., Wu J., Rember R., Johansen A.M., Shank L.M. Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction. Mar. Chem. 2010;120:25–33. doi: 10.1016/j.marchem.2009.01.011. DOI

Ammerman J.W., Hood R.R., Case D.A., Cotner J.B. Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union. 2003;84:165–170. doi: 10.1029/2003EO180001. DOI

Anderson L.D., Faul K.L., Paytan A. Phosphorus associations in aerosols: What can they tell us about P bioavailability? Mar. Chem. 2010;120:44–56. doi: 10.1016/j.marchem.2009.04.008. DOI

Barkley A.E., Prospero J.M., Mahowald N., Hamilton D.S., Popendorf K.J., Oehlert A.M., Pourmand A., Gatineau A., Panechou-Pulcherie K., Blackwelder P., Gaston C.J. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. U. S. A. 2019;116:16216–16221. doi: 10.1073/pnas.1906091116. PubMed DOI PMC

Basu S., Gledhill M., de Beer D., Prabhu Matondkar S.G., Shaked Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2019;2:1–8. doi: 10.1038/s42003-019-0534-z. PubMed DOI PMC

Basu S., Shaked Y. Mineral iron utilization by natural and cultured Trichodesmium and associated bacteria. Limnol. Oceanogr. 2018;63:2307–2320. doi: 10.1002/lno.10939. DOI

Bergman B., Sandh G., Lin S., Larsson J., Carpenter E.J. Trichodesmium a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013;37:286–302. doi: 10.1111/j.1574-6976.2012.00352.x. PubMed DOI PMC

Berman-Frank I., Lundgren P., Chen Y.B., Küpper H., Kolber Z., Bergman B., Falkowski P. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science. 2001;294:1534–1537. doi: 10.1126/science.1064082. PubMed DOI

Bif M.B., Yunes J.S. Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean. Aquat. Microb. Ecol. 2017;78:107–119. doi: 10.3354/ame01810. DOI

Bopp L., Resplandy L., Orr J.C., Doney S.C., Dunne J.P., Gehlen M., Halloran P., Heinze C., Ilyina T., Séférian R., et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10:6225–6245. doi: 10.5194/bg-10-6225-2013. DOI

Capone D.G., Carpenter E.J. Nitrogen fixation in the marine environment. Science. 1982;217:1140–1142. doi: 10.1016/B978-0-12-372522-6.00004-9. PubMed DOI

Capone D.G., Zehr J.P., Paerl H.W., Bergman B., Carpenter E.J. Trichodesmium, a globally significant marine cyanobacterium. Science. 1997;276:1221–1229. doi: 10.1126/science.276.5316.1221. DOI

Chappell P.D., Moffett J.W., Hynes A.M., Webb E.A. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J. 2012;6:1728–1739. doi: 10.1038/ismej.2012.13. PubMed DOI PMC

Chappell P.D., Webb E.A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol. 2010;12:13–27. doi: 10.1111/j.1462-2920.2009.02026.x. PubMed DOI

Chen Y., Mills S., Street J., Golan D., Post A., Jacobson M., Paytan A. Estimates of atmospheric dry deposition and associated input of nutrients to Gulf of Aqaba seawater. J. Geophys. Res. Atmos. 2007;112:1–14. doi: 10.1029/2006JD007858. DOI

Chen Y., Tovar-Sanchez A., Siefert R.L., Sañudo-Wilhelmy S.A., Zhuang G. Luxury uptake of aerosol iron by Trichodesmium in the western tropical North Atlantic. Geophys. Res. Lett. 2011;38 doi: 10.1029/2011GL048972. DOI

Chien C. Te, Mackey K.R.M., Dutkiewicz S., Mahowald N.M., Prospero J.M., Paytan A. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Glob. Biogeochem. Cycles. 2016;30:716–734. doi: 10.1002/2015GB005334. DOI

Deutsch C., Sarmiento J.L., Sigman D.M., Gruber N., Dunne J.P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature. 2007;445:163–167. doi: 10.1038/nature05392. PubMed DOI

Duce R.A., Tindale N.W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 1991;36:1715–1726.

Dyhrman S.T., Chappell P.D., Haley S.T., Moffett J.W., Orchard E.D., Waterbury J.B., Webb E.A. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature. 2006;439:68–71. doi: 10.1038/nature04203. PubMed DOI

Dyhrman S.T., Webb E.A., Anderson D.M., Moffett J.W., Waterbury J.B. Cell-specific detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnol. Oceanogr. 2002;47:1832–1836. doi: 10.4319/lo.2002.47.6.1832. DOI

Eichner M., Basu S., Gledhill M., de Beer D., Shaked Y. Hydrogen dynamics in Trichodesmium colonies and their potential role in mineral iron acquisition. Front. Microbiol. 2019;10:1565. doi: 10.3389/fmicb.2019.01565. PubMed DOI PMC

Eichner M., Basu S., Wang S., de Beer D., Shaked Y. Mineral iron dissolution in Trichodesmium colonies: The role of O2 and pH microenvironments. Limnol. Oceanogr. 2020;65:1149–1160. doi: 10.1002/lno.11377. DOI

Fernández A., Mouriño-Carballido B., Bode A., Varela M., Marañón E. Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosciences. 2010;7:3167–3176. doi: 10.5194/bg-7-3167-2010. DOI

Frischkorn K.R., Haley S.T., Dyhrman S.T. Coordinated gene expression between Trichodesmium and its microbiome over day-night cycles in the North Pacific Subtropical Gyre. ISME J. 2018;12:997–1007. doi: 10.1038/s41396-017-0041-5. PubMed DOI PMC

Fuller N.J., West N.J., Marie D., Yallop M., Rivlin T., Post A.F., Scanlan D.J. Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol. Oceanogr. 2005;50:363–375. doi: 10.4319/lo.2005.50.1.0363. DOI

Genga A., Siciliano T., Siciliano M., Aiello D., Tortorella C. Individual particle SEM-EDS analysis of atmospheric aerosols in rural, urban, and industrial sites of Central Italy. Environ. Monit. Assess. 2018;190:456. doi: 10.1007/s10661-018-6826-9. PubMed DOI

Gross A., Reichmann O., Zarka A., Weiner T., Be’eri-Shlevin Y., Angert A. Agricultural sources as major supplies of atmospheric phosphorus to Lake Kinneret. Atmos. Environ. 2020;224:117207. doi: 10.1016/j.atmosenv.2019.117207. DOI

Held N.A., Sutherland K.M., Webb E.A., McIlvin M.R., Cohen N.R., Devaux A.J., Hutchins D.A., Waterbury J.B., Hansel C.M., Saito M.A. Mechanisms and heterogeneity of mineral use by natural colonies of the cyanobacterium Trichodesmium. bioRxiv. 2020:1–13. doi: 10.1101/2020.09.24.295147. DOI

Held N.A., Webb E.A., McIlvin M.M., Hutchins D.A., Cohen N.R., Moran D.M., Kunde K., Lohan M.C., Mahaffey C., Malcolm E., Saito M.A. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences. 2020;17:2537–2551. doi: 10.5194/bg-17-2537-2020. DOI

Herut B., Rahav E., Tsagaraki T.M., Giannakourou A., Tsiola A., Psarra S., Lagaria A., Papageorgiou N., Mihalopoulos N., Theodosi C.N., et al. The potential impact of Saharan dust and polluted aerosols on microbial populations in the East Mediterranean Sea, an overview of a mesocosm experimental approach. Front. Mar. Sci. 2016;3:226. doi: 10.3389/fmars.2016.00226. DOI

Ho T.Y. Nickel limitation of nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 2013;58:112–120. doi: 10.4319/lo.2013.58.1.0112. DOI

Hynes A.M., Chappell P.D., Dyhrman S.T., Doney S.C., Webb E.A. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 2009;54:1438–1448. doi: 10.4319/lo.2009.54.5.1438. DOI

Jickells T.D., An Z.S., Andersen K.K., Baker A.R., Bergametti G., Brooks N., Cao J.J., Boyd P.W., Duce R.A., Hunter K.A., et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71. doi: 10.1126/science.1105959. PubMed DOI

Johnson M.S., Meskhidze N., Solmon F., Gassó S., Chuang P.Y., Gaiero D.M., Yantosca R.M., Wu S., Wang Y., Carouge C. Modeling dust and soluble iron deposition to the South Atlantic Ocean. J. Geophys. Res. Atmos. 2010;115:1–13. doi: 10.1029/2009JD013311. DOI

Karl D.M. Microbially mediated transformations of phosphorus in the sea: New views of an old cycle. Ann. Rev. Mar. Sci. 2014;6:279–337. doi: 10.1146/annurev-marine-010213-135046. PubMed DOI

Karl D.M. Phosphorus, the staff of life. Nature. 2000;406:31–33. doi: 10.1038/35017683. PubMed DOI

Kessler N., Armoza-Zvuloni R., Wang S., Basu S., Weber P.K., Stuart R.K., Shaked Y. Selective collection of iron-rich dust particles by natural Trichodesmium colonies. ISME J. 2020;14:91–103. doi: 10.1038/s41396-019-0505-x. PubMed DOI PMC

Kessler N., Kraemer S.M., Shaked Y., Schenkeveld W.D.C.C. Investigation of siderophore-promoted and reductive dissolution of dust in marine microenvironments such as Trichodesmium colonies. Front. Mar. Sci. 2020;7:1–15. doi: 10.3389/fmars.2020.00045. PubMed DOI

Kuhn A.M., Fennel K., Berman-Frank I. Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea. Biogeosciences. 2018;15:7379–7401. doi: 10.5194/bg-15-7379-2018. DOI

Langlois R.J., Mills M.M., Ridame C., Croot P., LaRoche J. Diazotrophic bacteria respond to Saharan dust additions. Mar. Ecol. Prog. Ser. 2012;470:1–14. doi: 10.3354/meps10109. DOI

Lenes J.M., Darrow B.A., Walsh J.J., Prospero J.M., He R., Weisberg R.H., Vargo G.A., Heil C.A. Saharan dust and phosphatic fidelity: A three-dimensional biogeochemical model of Trichodesmium as a nutrient source for red tides on the West Florida Shelf. Cont. Shelf Res. 2008;28:1091–1115. doi: 10.1016/j.csr.2008.02.009. DOI

Mackey K.R.M., Labiosa R.G., Calhoun M., Street J.H., Post A.F., Paytan A. Phosphorus availability, phytoplankton community dynamics, and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea. Limnol. Oceanogr. 2007;52:873–885. doi: 10.4319/lo.2007.52.2.0873. DOI

MacKey K.R.M., Roberts K., Lomas M.W., Saito M.A., Post A.F., Paytan A. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure. Environ. Sci. Technol. 2012;46:10438–10446. doi: 10.1021/es3007996. PubMed DOI

Mahowald N., Jickells T.D., Baker A.R., Artaxo P., Benitez-Nelson C.R., Bergametti G., Bond T.C., Chen Y., Cohen D.D., Herut B., et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles. 2008;22 doi: 10.1029/2008GB003240. DOI

Mahowald N.M., Baker A.R., Bergametti G., Brooks N., Duce R.A., Jickells T.D., Kubilay N., Prospero J.M., Tegen I. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles. 2005;19 doi: 10.1029/2004GB002402. DOI

Marcotte A.R., Anbar A.D., Majestic B.J., Herckes P. Mineral dust and iron solubility: Effects of composition, particle size, and surface area. Atmosphere (Basel) 2020;11 doi: 10.3390/atmos11050533. DOI

Markaki Z., Loÿe-Pilot M.D., Violaki K., Benyahya L., Mihalopoulos N. Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar. Chem. 2010;120:187–194. doi: 10.1016/j.marchem.2008.10.005. DOI

Martiny A.C., Lomas M.W., Fu W., Boyd P.W., Chen Y.ling L., Cutter G.A., Ellwood M.J., Furuya K., Hashihama F., Kanda J., et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 2019;5:eaax0341. doi: 10.1126/sciadv.aax0341. PubMed DOI PMC

Mather R.L., Reynolds S.E., Wolff G.A., Williams R.G., Torres-Valdes S., Woodward E.M.S., Landolfi A., Pan X., Sanders R., Achterberg E.P. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 2008;1:439–443. doi: 10.1038/ngeo232. DOI

Mélançon J., Levasseur M., Lizotte M., Scarratt M., Tremblay J.É., Tortell P., Yang G.P., Shi G.Y., Gao H., Semeniuk D., et al. Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters. Biogeosciences. 2016;13:1677–1692. doi: 10.5194/bg-13-1677-2016. DOI

Meskhidze N., Chameides W.L., Nenes A. Dust and pollution: A recipe for enhanced ocean fertilization? J. Geophys. Res. D Atmos. 2005;110:1–23. doi: 10.1029/2004JD00508. DOI

Mills M.M., Ridame C., Davey M., La Roche J., Geider R.J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature. 2004;429:292–294. doi: 10.1038/nature02550. PubMed DOI

Moore C.M., Mills M.M., Achterberg E.P., Geider R.J., LaRoche J., Lucas M.I., McDonagh E.L., Pan X., Poulton A.J., Rijkenberg M.J.A., et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2009;2:867–871. doi: 10.1038/ngeo667. DOI

Moore C.M., Mills M.M., Langlois R., Milne A., Achterberg E.P., La Roche J., Geider R.J. Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr. 2008;53:291–305. doi: 10.4319/lo.2008.53.1.0291. DOI

Murphy J., Riley J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962;27:31–36.

Okin G.S., Mahowald N., Chadwick O.A., Artaxo P. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles. 2004;18 doi: 10.1029/2003GB002145. DOI

Orchard E.D., Ammerman J.W., Lomas M.W., Dyhrman S.T. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: The importance of phosphorus ester in the Sargasso Sea. Limnol. Oceanogr. 2010;55:1390–1399. doi: 10.4319/lo.2010.55.3.1390. DOI

Orchard E.D., Benitez-Nelson C.R., Pellechia P.J., Lomas M.W., Dyhrman S.T. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol. Oceanogr. 2010;55:2161–2169. doi: 10.4319/lo.2010.55.5.2161. DOI

Orchard E.D., Webb E.A., Dyhrman S.T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ. Microbiol. 2009;11:2400–2411. doi: 10.1111/j.1462-2920.2009.01968.x. PubMed DOI

Paytan A., Mackey K.R.M., Chen Y., Lima I.D., Doney S.C., Mahowald N., Labiosa R., Post A.F. Toxicity of atmospheric aerosols on marine phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 2009;106:4601–4605. doi: 10.1073/pnas.0811486106. PubMed DOI PMC

Polyviou D., Hitchcock A., Baylay A.J., Moore C.M., Bibby T.S. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ. Microbiol. Rep. 2015;7:824–830. doi: 10.1111/1758-2229.12308. PubMed DOI

Pulido-Villena E., Rrolle V., Guieu C. Transient fertilizing effect of dust in P-deficient LNLC surface ocean. Geophys. Res. Lett. 2010;37 doi: 10.1029/2009GL041415. DOI

Ramos A.G., Martel A., Codd G.A., Soler E., Coca J., Redondo A., Morrison L.F., Metcalf J.S., Ojeda A., Suárez S., Petit M. Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the Northwest African Upwelling. Mar. Ecol. Prog. Ser. 2005;301:303–305.

Rivero-Calle S., Del Castillo C.E., Gnanadesikan A., Dezfuli A., Zaitchik B., Johns D.G. Interdecadal Trichodesmium variability in cold North Atlantic waters. Glob. Biogeochem. Cycles. 2016;30:1620–1638. doi: 10.1002/2015GB005361. DOI

Rubin M., Berman-Frank I., Shaked Y. Dust-and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 2011;4:529–534. doi: 10.1038/ngeo1181. DOI

Rueter J.G., Hutchins D.A., Smith R.W., Unsworth N.L. In: Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Carpenter E.J., Capone D.G., Rueter J.G., editors. Kluwer Academic; 1992. Iron nutrition in Trichodesmium; pp. 289–306.

Sañudo-Wilhelmy S.A., Kustka A.B., Gobler C.J., Hutchins D.A., Yang M., Lwiza K., Burns J., Capone D.G., Raven J.A., Carpenter E.J. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature. 2001;411:66–69. doi: 10.1038/35075041. PubMed DOI

Sañudo-Wilhelmy S.A., Tovar-Sanchez A., Fu F.X., Capone D.G., Carpenter E.J., Hutchins D.A. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature. 2004;432:897–901. doi: 10.1038/nature03125. PubMed DOI

Sarthou G., Baker A.R., Blain S., Achterberg E.P., Boye M., Bowie A.R., Croot P., Laan P., De Baar H.J.W., Jickells T.D., Worsfold P.J. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep. Res. Part I. 2003;50:1339–1352. doi: 10.1016/S0967-0637(03)00126-2. DOI

Shoenfelt E.M., Winckler G., Lamy F., Anderson R.F., Bostick B.C. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc. Natl. Acad. Sci. U. S. A. 2018;115:11180–11185. doi: 10.1073/pnas.1809755115. PubMed DOI PMC

Sohm J.A., Mahaffey C., Capone D.G. Assessment of relative phosphorus limitation of Trichodesmium spp. in the North Pacific, North Atlantic, and the North coast of Australia. Limnol. Oceanogr. 2008;53:2495–2502. doi: 10.4319/lo.2008.53.6.2495. DOI

Stihl A., Sommer U., Post A.F. Alkaline phosphatase activities among populations of the colony-forming diazotrophic cyanobacterium Trichodesmium spp. (cyanobacteria) in the red sea. J. Phycol. 2001;37:310–317. doi: 10.1046/j.1529-8817.2001.037002310.x. DOI

Stockdale A., Krom M.D., Mortimer R.J.G., Benning L.G., Carslaw K.S., Herbert R.J., Shi Z., Myriokefalitakis S., Kanakidou M., Nenes A. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proc. Natl. Acad. Sci. U. S. A. 2016;113:14639–14644. doi: 10.1073/pnas.1608136113. PubMed DOI PMC

Sunda W.G., Huntsman S.A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 1995;50:189–206. doi: 10.1016/0304-4203(95)00035-P. DOI

Tang W., Cerdán-García E., Berthelot H., Polyviou D., Wang S., Baylay A., Whitby H., Planquette H., Mowlem M., Robidart J., Cassar N. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 2020;14:2514–2526. doi: 10.1038/s41396-020-0703-6. PubMed DOI PMC

Thingstad T.F., Krom M.D., Mantoura R.F.C., Flaten C.A.F., Groom S., Herut B., Kress N., Law C.S., Pasternak A., Pitta P., et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science. 2005;309:1068–1071. doi: 10.1126/science.1112632. PubMed DOI

Torfstein A., Kienast S.S., Yarden B., Rivlin A., Isaacs S., Shaked Y. Bulk and export production fluxes in the Gulf of Aqaba, Northern Red Sea. ACS Earth Sp. Chem. 2020;4:1461–1479. doi: 10.1021/acsearthspacechem.0c00079. DOI

Torfstein A., Teutsch N., Tirosh O., Shaked Y., Rivlin T., Zipori A., Stein M., Lazar B., Erel Y. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010. Geochim. Cosmochim. Acta. 2017;211:373–393. doi: 10.1016/j.gca.2017.06.007. DOI

Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature. 1999;400:525–531. doi: 10.1038/22941. DOI

Van Mooy B.A.S., Fredricks H.F., Pedler B.E., Dyhrman S.T., Karl D.M., Koblížek M., Lomas M.W., Mincer T.J., Moore L.R., Moutin T., et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72. doi: 10.1038/nature07659. PubMed DOI

Walsby A.E. In: Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Carpenter E.J., Capone D.G., Rueter J.G., editors. Kluwer Academic; 1992. The gas vesicles and buoyancy of Trichodesmium; pp. 141–161. DOI

Wang R., Balkanski Y., Boucher O., Ciais P., Peñuelas J., Tao S. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 2015;8:48–54. doi: 10.1038/ngeo2324. DOI

Wu J., Sunda W., Boyle E.A., Karl D.M. Phosphate depletion in the western North Atlantic Ocean. Science. 2000;289:759–762. doi: 10.1126/science.289.5480.759. PubMed DOI

Zhang Z., Goldstein H.L., Reynolds R.L., Hu Y., Wang X., Zhu M. Phosphorus speciation and solubility in aeolian dust deposited in the interior American West. Environ. Sci. Technol. 2018;52:2658–2667. doi: 10.1021/acs.est.7b04729. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Recurrent association between Trichodesmium colonies and calcifying amoebae

. 2024 Jan ; 4 (1) : ycae137. [epub] 20241104

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...