Colonies of the marine cyanobacterium Trichodesmium optimize dust utilization by selective collection and retention of nutrient-rich particles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35005537
PubMed Central
PMC8718973
DOI
10.1016/j.isci.2021.103587
PII: S2589-0042(21)01557-1
Knihovny.cz E-zdroje
- Klíčová slova
- Ecology, Geomicrobiology, Microbiology,
- Publikační typ
- časopisecké články MeSH
Trichodesmium, a globally important, N2-fixing, and colony-forming cyanobacterium, employs multiple pathways for acquiring nutrients from air-borne dust, including active dust collection. Once concentrated within the colony core, dust can supply Trichodesmium with nutrients. Recently, we reported a selectivity in particle collection enabling Trichodesmium to center iron-rich minerals and optimize its nutrient utilization. In this follow-up study we examined if colonies select Phosphorus (P) minerals. We incubated 1,200 Trichodesmium colonies from the Red Sea with P-free CaCO3, P-coated CaCO3, and dust, over an entire bloom season. These colonies preferably interacted, centered, and retained P-coated CaCO3 compared with P-free CaCO3. In both studies, Trichodesmium clearly favored dust over all other particles tested, whereas nutrient-free particles were barely collected or retained, indicating that the colonies sense the particle composition and preferably collect nutrient-rich particles. This unique ability contributes to Trichodesmium's current ecological success and may assist it to flourish in future warmer oceans.
Israel Limnology and Oceanography Research Haifa Israel
The Interuniversity Institute for Marine Sciences in Eilat Eilat Israel
Zobrazit více v PubMed
Aguilar-Islas A.M., Wu J., Rember R., Johansen A.M., Shank L.M. Dissolution of aerosol-derived iron in seawater: Leach solution chemistry, aerosol type, and colloidal iron fraction. Mar. Chem. 2010;120:25–33. doi: 10.1016/j.marchem.2009.01.011. DOI
Ammerman J.W., Hood R.R., Case D.A., Cotner J.B. Phosphorus deficiency in the Atlantic: An emerging paradigm in oceanography. Eos, Trans. Am. Geophys. Union. 2003;84:165–170. doi: 10.1029/2003EO180001. DOI
Anderson L.D., Faul K.L., Paytan A. Phosphorus associations in aerosols: What can they tell us about P bioavailability? Mar. Chem. 2010;120:44–56. doi: 10.1016/j.marchem.2009.04.008. DOI
Barkley A.E., Prospero J.M., Mahowald N., Hamilton D.S., Popendorf K.J., Oehlert A.M., Pourmand A., Gatineau A., Panechou-Pulcherie K., Blackwelder P., Gaston C.J. African biomass burning is a substantial source of phosphorus deposition to the Amazon, Tropical Atlantic Ocean, and Southern Ocean. Proc. Natl. Acad. Sci. U. S. A. 2019;116:16216–16221. doi: 10.1073/pnas.1906091116. PubMed DOI PMC
Basu S., Gledhill M., de Beer D., Prabhu Matondkar S.G., Shaked Y. Colonies of marine cyanobacteria Trichodesmium interact with associated bacteria to acquire iron from dust. Commun. Biol. 2019;2:1–8. doi: 10.1038/s42003-019-0534-z. PubMed DOI PMC
Basu S., Shaked Y. Mineral iron utilization by natural and cultured Trichodesmium and associated bacteria. Limnol. Oceanogr. 2018;63:2307–2320. doi: 10.1002/lno.10939. DOI
Bergman B., Sandh G., Lin S., Larsson J., Carpenter E.J. Trichodesmium a widespread marine cyanobacterium with unusual nitrogen fixation properties. FEMS Microbiol. Rev. 2013;37:286–302. doi: 10.1111/j.1574-6976.2012.00352.x. PubMed DOI PMC
Berman-Frank I., Lundgren P., Chen Y.B., Küpper H., Kolber Z., Bergman B., Falkowski P. Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science. 2001;294:1534–1537. doi: 10.1126/science.1064082. PubMed DOI
Bif M.B., Yunes J.S. Distribution of the marine cyanobacteria Trichodesmium and their association with iron-rich particles in the South Atlantic Ocean. Aquat. Microb. Ecol. 2017;78:107–119. doi: 10.3354/ame01810. DOI
Bopp L., Resplandy L., Orr J.C., Doney S.C., Dunne J.P., Gehlen M., Halloran P., Heinze C., Ilyina T., Séférian R., et al. Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences. 2013;10:6225–6245. doi: 10.5194/bg-10-6225-2013. DOI
Capone D.G., Carpenter E.J. Nitrogen fixation in the marine environment. Science. 1982;217:1140–1142. doi: 10.1016/B978-0-12-372522-6.00004-9. PubMed DOI
Capone D.G., Zehr J.P., Paerl H.W., Bergman B., Carpenter E.J. Trichodesmium, a globally significant marine cyanobacterium. Science. 1997;276:1221–1229. doi: 10.1126/science.276.5316.1221. DOI
Chappell P.D., Moffett J.W., Hynes A.M., Webb E.A. Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J. 2012;6:1728–1739. doi: 10.1038/ismej.2012.13. PubMed DOI PMC
Chappell P.D., Webb E.A. A molecular assessment of the iron stress response in the two phylogenetic clades of Trichodesmium. Environ. Microbiol. 2010;12:13–27. doi: 10.1111/j.1462-2920.2009.02026.x. PubMed DOI
Chen Y., Mills S., Street J., Golan D., Post A., Jacobson M., Paytan A. Estimates of atmospheric dry deposition and associated input of nutrients to Gulf of Aqaba seawater. J. Geophys. Res. Atmos. 2007;112:1–14. doi: 10.1029/2006JD007858. DOI
Chen Y., Tovar-Sanchez A., Siefert R.L., Sañudo-Wilhelmy S.A., Zhuang G. Luxury uptake of aerosol iron by Trichodesmium in the western tropical North Atlantic. Geophys. Res. Lett. 2011;38 doi: 10.1029/2011GL048972. DOI
Chien C. Te, Mackey K.R.M., Dutkiewicz S., Mahowald N.M., Prospero J.M., Paytan A. Effects of African dust deposition on phytoplankton in the western tropical Atlantic Ocean off Barbados. Glob. Biogeochem. Cycles. 2016;30:716–734. doi: 10.1002/2015GB005334. DOI
Deutsch C., Sarmiento J.L., Sigman D.M., Gruber N., Dunne J.P. Spatial coupling of nitrogen inputs and losses in the ocean. Nature. 2007;445:163–167. doi: 10.1038/nature05392. PubMed DOI
Duce R.A., Tindale N.W. Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 1991;36:1715–1726.
Dyhrman S.T., Chappell P.D., Haley S.T., Moffett J.W., Orchard E.D., Waterbury J.B., Webb E.A. Phosphonate utilization by the globally important marine diazotroph Trichodesmium. Nature. 2006;439:68–71. doi: 10.1038/nature04203. PubMed DOI
Dyhrman S.T., Webb E.A., Anderson D.M., Moffett J.W., Waterbury J.B. Cell-specific detection of phosphorus stress in Trichodesmium from the Western North Atlantic. Limnol. Oceanogr. 2002;47:1832–1836. doi: 10.4319/lo.2002.47.6.1832. DOI
Eichner M., Basu S., Gledhill M., de Beer D., Shaked Y. Hydrogen dynamics in Trichodesmium colonies and their potential role in mineral iron acquisition. Front. Microbiol. 2019;10:1565. doi: 10.3389/fmicb.2019.01565. PubMed DOI PMC
Eichner M., Basu S., Wang S., de Beer D., Shaked Y. Mineral iron dissolution in Trichodesmium colonies: The role of O2 and pH microenvironments. Limnol. Oceanogr. 2020;65:1149–1160. doi: 10.1002/lno.11377. DOI
Fernández A., Mouriño-Carballido B., Bode A., Varela M., Marañón E. Latitudinal distribution of Trichodesmium spp. and N2 fixation in the Atlantic Ocean. Biogeosciences. 2010;7:3167–3176. doi: 10.5194/bg-7-3167-2010. DOI
Frischkorn K.R., Haley S.T., Dyhrman S.T. Coordinated gene expression between Trichodesmium and its microbiome over day-night cycles in the North Pacific Subtropical Gyre. ISME J. 2018;12:997–1007. doi: 10.1038/s41396-017-0041-5. PubMed DOI PMC
Fuller N.J., West N.J., Marie D., Yallop M., Rivlin T., Post A.F., Scanlan D.J. Dynamics of community structure and phosphate status of picocyanobacterial populations in the Gulf of Aqaba, Red Sea. Limnol. Oceanogr. 2005;50:363–375. doi: 10.4319/lo.2005.50.1.0363. DOI
Genga A., Siciliano T., Siciliano M., Aiello D., Tortorella C. Individual particle SEM-EDS analysis of atmospheric aerosols in rural, urban, and industrial sites of Central Italy. Environ. Monit. Assess. 2018;190:456. doi: 10.1007/s10661-018-6826-9. PubMed DOI
Gross A., Reichmann O., Zarka A., Weiner T., Be’eri-Shlevin Y., Angert A. Agricultural sources as major supplies of atmospheric phosphorus to Lake Kinneret. Atmos. Environ. 2020;224:117207. doi: 10.1016/j.atmosenv.2019.117207. DOI
Held N.A., Sutherland K.M., Webb E.A., McIlvin M.R., Cohen N.R., Devaux A.J., Hutchins D.A., Waterbury J.B., Hansel C.M., Saito M.A. Mechanisms and heterogeneity of mineral use by natural colonies of the cyanobacterium Trichodesmium. bioRxiv. 2020:1–13. doi: 10.1101/2020.09.24.295147. DOI
Held N.A., Webb E.A., McIlvin M.M., Hutchins D.A., Cohen N.R., Moran D.M., Kunde K., Lohan M.C., Mahaffey C., Malcolm E., Saito M.A. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences. 2020;17:2537–2551. doi: 10.5194/bg-17-2537-2020. DOI
Herut B., Rahav E., Tsagaraki T.M., Giannakourou A., Tsiola A., Psarra S., Lagaria A., Papageorgiou N., Mihalopoulos N., Theodosi C.N., et al. The potential impact of Saharan dust and polluted aerosols on microbial populations in the East Mediterranean Sea, an overview of a mesocosm experimental approach. Front. Mar. Sci. 2016;3:226. doi: 10.3389/fmars.2016.00226. DOI
Ho T.Y. Nickel limitation of nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 2013;58:112–120. doi: 10.4319/lo.2013.58.1.0112. DOI
Hynes A.M., Chappell P.D., Dyhrman S.T., Doney S.C., Webb E.A. Cross-basin comparison of phosphorus stress and nitrogen fixation in Trichodesmium. Limnol. Oceanogr. 2009;54:1438–1448. doi: 10.4319/lo.2009.54.5.1438. DOI
Jickells T.D., An Z.S., Andersen K.K., Baker A.R., Bergametti G., Brooks N., Cao J.J., Boyd P.W., Duce R.A., Hunter K.A., et al. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 2005;308:67–71. doi: 10.1126/science.1105959. PubMed DOI
Johnson M.S., Meskhidze N., Solmon F., Gassó S., Chuang P.Y., Gaiero D.M., Yantosca R.M., Wu S., Wang Y., Carouge C. Modeling dust and soluble iron deposition to the South Atlantic Ocean. J. Geophys. Res. Atmos. 2010;115:1–13. doi: 10.1029/2009JD013311. DOI
Karl D.M. Microbially mediated transformations of phosphorus in the sea: New views of an old cycle. Ann. Rev. Mar. Sci. 2014;6:279–337. doi: 10.1146/annurev-marine-010213-135046. PubMed DOI
Karl D.M. Phosphorus, the staff of life. Nature. 2000;406:31–33. doi: 10.1038/35017683. PubMed DOI
Kessler N., Armoza-Zvuloni R., Wang S., Basu S., Weber P.K., Stuart R.K., Shaked Y. Selective collection of iron-rich dust particles by natural Trichodesmium colonies. ISME J. 2020;14:91–103. doi: 10.1038/s41396-019-0505-x. PubMed DOI PMC
Kessler N., Kraemer S.M., Shaked Y., Schenkeveld W.D.C.C. Investigation of siderophore-promoted and reductive dissolution of dust in marine microenvironments such as Trichodesmium colonies. Front. Mar. Sci. 2020;7:1–15. doi: 10.3389/fmars.2020.00045. PubMed DOI
Kuhn A.M., Fennel K., Berman-Frank I. Modelling the biogeochemical effects of heterotrophic and autotrophic N2 fixation in the Gulf of Aqaba (Israel), Red Sea. Biogeosciences. 2018;15:7379–7401. doi: 10.5194/bg-15-7379-2018. DOI
Langlois R.J., Mills M.M., Ridame C., Croot P., LaRoche J. Diazotrophic bacteria respond to Saharan dust additions. Mar. Ecol. Prog. Ser. 2012;470:1–14. doi: 10.3354/meps10109. DOI
Lenes J.M., Darrow B.A., Walsh J.J., Prospero J.M., He R., Weisberg R.H., Vargo G.A., Heil C.A. Saharan dust and phosphatic fidelity: A three-dimensional biogeochemical model of Trichodesmium as a nutrient source for red tides on the West Florida Shelf. Cont. Shelf Res. 2008;28:1091–1115. doi: 10.1016/j.csr.2008.02.009. DOI
Mackey K.R.M., Labiosa R.G., Calhoun M., Street J.H., Post A.F., Paytan A. Phosphorus availability, phytoplankton community dynamics, and taxon-specific phosphorus status in the Gulf of Aqaba, Red Sea. Limnol. Oceanogr. 2007;52:873–885. doi: 10.4319/lo.2007.52.2.0873. DOI
MacKey K.R.M., Roberts K., Lomas M.W., Saito M.A., Post A.F., Paytan A. Enhanced solubility and ecological impact of atmospheric phosphorus deposition upon extended seawater exposure. Environ. Sci. Technol. 2012;46:10438–10446. doi: 10.1021/es3007996. PubMed DOI
Mahowald N., Jickells T.D., Baker A.R., Artaxo P., Benitez-Nelson C.R., Bergametti G., Bond T.C., Chen Y., Cohen D.D., Herut B., et al. Global distribution of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic impacts. Glob. Biogeochem. Cycles. 2008;22 doi: 10.1029/2008GB003240. DOI
Mahowald N.M., Baker A.R., Bergametti G., Brooks N., Duce R.A., Jickells T.D., Kubilay N., Prospero J.M., Tegen I. Atmospheric global dust cycle and iron inputs to the ocean. Glob. Biogeochem. Cycles. 2005;19 doi: 10.1029/2004GB002402. DOI
Marcotte A.R., Anbar A.D., Majestic B.J., Herckes P. Mineral dust and iron solubility: Effects of composition, particle size, and surface area. Atmosphere (Basel) 2020;11 doi: 10.3390/atmos11050533. DOI
Markaki Z., Loÿe-Pilot M.D., Violaki K., Benyahya L., Mihalopoulos N. Variability of atmospheric deposition of dissolved nitrogen and phosphorus in the Mediterranean and possible link to the anomalous seawater N/P ratio. Mar. Chem. 2010;120:187–194. doi: 10.1016/j.marchem.2008.10.005. DOI
Martiny A.C., Lomas M.W., Fu W., Boyd P.W., Chen Y.ling L., Cutter G.A., Ellwood M.J., Furuya K., Hashihama F., Kanda J., et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 2019;5:eaax0341. doi: 10.1126/sciadv.aax0341. PubMed DOI PMC
Mather R.L., Reynolds S.E., Wolff G.A., Williams R.G., Torres-Valdes S., Woodward E.M.S., Landolfi A., Pan X., Sanders R., Achterberg E.P. Phosphorus cycling in the North and South Atlantic Ocean subtropical gyres. Nat. Geosci. 2008;1:439–443. doi: 10.1038/ngeo232. DOI
Mélançon J., Levasseur M., Lizotte M., Scarratt M., Tremblay J.É., Tortell P., Yang G.P., Shi G.Y., Gao H., Semeniuk D., et al. Impact of ocean acidification on phytoplankton assemblage, growth, and DMS production following Fe-dust additions in the NE Pacific high-nutrient, low-chlorophyll waters. Biogeosciences. 2016;13:1677–1692. doi: 10.5194/bg-13-1677-2016. DOI
Meskhidze N., Chameides W.L., Nenes A. Dust and pollution: A recipe for enhanced ocean fertilization? J. Geophys. Res. D Atmos. 2005;110:1–23. doi: 10.1029/2004JD00508. DOI
Mills M.M., Ridame C., Davey M., La Roche J., Geider R.J. Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic. Nature. 2004;429:292–294. doi: 10.1038/nature02550. PubMed DOI
Moore C.M., Mills M.M., Achterberg E.P., Geider R.J., LaRoche J., Lucas M.I., McDonagh E.L., Pan X., Poulton A.J., Rijkenberg M.J.A., et al. Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nat. Geosci. 2009;2:867–871. doi: 10.1038/ngeo667. DOI
Moore C.M., Mills M.M., Langlois R., Milne A., Achterberg E.P., La Roche J., Geider R.J. Relative influence of nitrogen and phosphorous availability on phytoplankton physiology and productivity in the oligotrophic sub-tropical North Atlantic Ocean. Limnol. Oceanogr. 2008;53:291–305. doi: 10.4319/lo.2008.53.1.0291. DOI
Murphy J., Riley J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta. 1962;27:31–36.
Okin G.S., Mahowald N., Chadwick O.A., Artaxo P. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob. Biogeochem. Cycles. 2004;18 doi: 10.1029/2003GB002145. DOI
Orchard E.D., Ammerman J.W., Lomas M.W., Dyhrman S.T. Dissolved inorganic and organic phosphorus uptake in Trichodesmium and the microbial community: The importance of phosphorus ester in the Sargasso Sea. Limnol. Oceanogr. 2010;55:1390–1399. doi: 10.4319/lo.2010.55.3.1390. DOI
Orchard E.D., Benitez-Nelson C.R., Pellechia P.J., Lomas M.W., Dyhrman S.T. Polyphosphate in Trichodesmium from the low-phosphorus Sargasso Sea. Limnol. Oceanogr. 2010;55:2161–2169. doi: 10.4319/lo.2010.55.5.2161. DOI
Orchard E.D., Webb E.A., Dyhrman S.T. Molecular analysis of the phosphorus starvation response in Trichodesmium spp. Environ. Microbiol. 2009;11:2400–2411. doi: 10.1111/j.1462-2920.2009.01968.x. PubMed DOI
Paytan A., Mackey K.R.M., Chen Y., Lima I.D., Doney S.C., Mahowald N., Labiosa R., Post A.F. Toxicity of atmospheric aerosols on marine phytoplankton. Proc. Natl. Acad. Sci. U. S. A. 2009;106:4601–4605. doi: 10.1073/pnas.0811486106. PubMed DOI PMC
Polyviou D., Hitchcock A., Baylay A.J., Moore C.M., Bibby T.S. Phosphite utilization by the globally important marine diazotroph Trichodesmium. Environ. Microbiol. Rep. 2015;7:824–830. doi: 10.1111/1758-2229.12308. PubMed DOI
Pulido-Villena E., Rrolle V., Guieu C. Transient fertilizing effect of dust in P-deficient LNLC surface ocean. Geophys. Res. Lett. 2010;37 doi: 10.1029/2009GL041415. DOI
Ramos A.G., Martel A., Codd G.A., Soler E., Coca J., Redondo A., Morrison L.F., Metcalf J.S., Ojeda A., Suárez S., Petit M. Bloom of the marine diazotrophic cyanobacterium Trichodesmium erythraeum in the Northwest African Upwelling. Mar. Ecol. Prog. Ser. 2005;301:303–305.
Rivero-Calle S., Del Castillo C.E., Gnanadesikan A., Dezfuli A., Zaitchik B., Johns D.G. Interdecadal Trichodesmium variability in cold North Atlantic waters. Glob. Biogeochem. Cycles. 2016;30:1620–1638. doi: 10.1002/2015GB005361. DOI
Rubin M., Berman-Frank I., Shaked Y. Dust-and mineral-iron utilization by the marine dinitrogen-fixer Trichodesmium. Nat. Geosci. 2011;4:529–534. doi: 10.1038/ngeo1181. DOI
Rueter J.G., Hutchins D.A., Smith R.W., Unsworth N.L. In: Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Carpenter E.J., Capone D.G., Rueter J.G., editors. Kluwer Academic; 1992. Iron nutrition in Trichodesmium; pp. 289–306.
Sañudo-Wilhelmy S.A., Kustka A.B., Gobler C.J., Hutchins D.A., Yang M., Lwiza K., Burns J., Capone D.G., Raven J.A., Carpenter E.J. Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature. 2001;411:66–69. doi: 10.1038/35075041. PubMed DOI
Sañudo-Wilhelmy S.A., Tovar-Sanchez A., Fu F.X., Capone D.G., Carpenter E.J., Hutchins D.A. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature. 2004;432:897–901. doi: 10.1038/nature03125. PubMed DOI
Sarthou G., Baker A.R., Blain S., Achterberg E.P., Boye M., Bowie A.R., Croot P., Laan P., De Baar H.J.W., Jickells T.D., Worsfold P.J. Atmospheric iron deposition and sea-surface dissolved iron concentrations in the eastern Atlantic Ocean. Deep. Res. Part I. 2003;50:1339–1352. doi: 10.1016/S0967-0637(03)00126-2. DOI
Shoenfelt E.M., Winckler G., Lamy F., Anderson R.F., Bostick B.C. Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods. Proc. Natl. Acad. Sci. U. S. A. 2018;115:11180–11185. doi: 10.1073/pnas.1809755115. PubMed DOI PMC
Sohm J.A., Mahaffey C., Capone D.G. Assessment of relative phosphorus limitation of Trichodesmium spp. in the North Pacific, North Atlantic, and the North coast of Australia. Limnol. Oceanogr. 2008;53:2495–2502. doi: 10.4319/lo.2008.53.6.2495. DOI
Stihl A., Sommer U., Post A.F. Alkaline phosphatase activities among populations of the colony-forming diazotrophic cyanobacterium Trichodesmium spp. (cyanobacteria) in the red sea. J. Phycol. 2001;37:310–317. doi: 10.1046/j.1529-8817.2001.037002310.x. DOI
Stockdale A., Krom M.D., Mortimer R.J.G., Benning L.G., Carslaw K.S., Herbert R.J., Shi Z., Myriokefalitakis S., Kanakidou M., Nenes A. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proc. Natl. Acad. Sci. U. S. A. 2016;113:14639–14644. doi: 10.1073/pnas.1608136113. PubMed DOI PMC
Sunda W.G., Huntsman S.A. Iron uptake and growth limitation in oceanic and coastal phytoplankton. Mar. Chem. 1995;50:189–206. doi: 10.1016/0304-4203(95)00035-P. DOI
Tang W., Cerdán-García E., Berthelot H., Polyviou D., Wang S., Baylay A., Whitby H., Planquette H., Mowlem M., Robidart J., Cassar N. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 2020;14:2514–2526. doi: 10.1038/s41396-020-0703-6. PubMed DOI PMC
Thingstad T.F., Krom M.D., Mantoura R.F.C., Flaten C.A.F., Groom S., Herut B., Kress N., Law C.S., Pasternak A., Pitta P., et al. Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean. Science. 2005;309:1068–1071. doi: 10.1126/science.1112632. PubMed DOI
Torfstein A., Kienast S.S., Yarden B., Rivlin A., Isaacs S., Shaked Y. Bulk and export production fluxes in the Gulf of Aqaba, Northern Red Sea. ACS Earth Sp. Chem. 2020;4:1461–1479. doi: 10.1021/acsearthspacechem.0c00079. DOI
Torfstein A., Teutsch N., Tirosh O., Shaked Y., Rivlin T., Zipori A., Stein M., Lazar B., Erel Y. Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010. Geochim. Cosmochim. Acta. 2017;211:373–393. doi: 10.1016/j.gca.2017.06.007. DOI
Tyrrell T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature. 1999;400:525–531. doi: 10.1038/22941. DOI
Van Mooy B.A.S., Fredricks H.F., Pedler B.E., Dyhrman S.T., Karl D.M., Koblížek M., Lomas M.W., Mincer T.J., Moore L.R., Moutin T., et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature. 2009;458:69–72. doi: 10.1038/nature07659. PubMed DOI
Walsby A.E. In: Marine Pelagic Cyanobacteria: Trichodesmium and Other Diazotrophs. Carpenter E.J., Capone D.G., Rueter J.G., editors. Kluwer Academic; 1992. The gas vesicles and buoyancy of Trichodesmium; pp. 141–161. DOI
Wang R., Balkanski Y., Boucher O., Ciais P., Peñuelas J., Tao S. Significant contribution of combustion-related emissions to the atmospheric phosphorus budget. Nat. Geosci. 2015;8:48–54. doi: 10.1038/ngeo2324. DOI
Wu J., Sunda W., Boyle E.A., Karl D.M. Phosphate depletion in the western North Atlantic Ocean. Science. 2000;289:759–762. doi: 10.1126/science.289.5480.759. PubMed DOI
Zhang Z., Goldstein H.L., Reynolds R.L., Hu Y., Wang X., Zhu M. Phosphorus speciation and solubility in aeolian dust deposited in the interior American West. Environ. Sci. Technol. 2018;52:2658–2667. doi: 10.1021/acs.est.7b04729. PubMed DOI