Glycol porphyrin derivatives and temoporfin elicit resistance to photodynamic therapy by different mechanisms

. 2017 Mar 15 ; 7 () : 44497. [epub] 20170315

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28295025

The development of drug resistance is a major problem which often occurs during anticancer chemotherapies. Photodynamic therapy (PDT) has been studied as an alternative treatment modality for drug-resistant tumors, however the question of resistance to PDT and potential cross-resistance with chemotherapy has yet to be fully answered. To investigate the mechanism of resistance to PDT, we developed an in vitro experimental model system in a mouse mammary carcinoma cell line 4T1. We used two ethylene glycol derivatives of tetraphenylporphyrin, and tetraphenylchlorin derivative, temoporfin, as photosensitizers (PS). PDT-resistant clones were obtained by exposure to a set concentration of PS followed by irradiation with increasing light doses. PDT resistance to soluble glycol porphyrins was mediated mainly by increased drug efflux through ABCB1 (P-glycoprotein) as we demonstrated by specific ABCB1 knockdown experiments, which in turn rescued the sensitivity of resistant cells to PDT. In contrast, resistance raised to temoporfin, which is generally more lipophilic than glycol porphyrins, elicited mechanism based on sequestration of the drug to lysosomes. The resistance that is acquired from a particular PS could be overcome by using a different PS, which is not susceptible to the same mechanism(s) of resistance. Elucidation of the underlying mechanisms in various types of resistance might facilitate improvements in PDT treatment design.

Zobrazit více v PubMed

Lage H. An overview of cancer multidrug resistance: a still unsolved problem. Cell Mol Life Sci 65, 3145–3167, doi: 10.1007/s00018-008-8111-5 (2008). PubMed DOI PMC

Casas A., Di Venosa G., Hasan T. & Al B. Mechanisms of resistance to photodynamic therapy. Curr Med Chem 18, 2486–2515 (2011). PubMed PMC

Casas A., Perotti C., Di Venosa G. & Batlle A. In Resistance to photodynamic therapy in cancer. (eds Rapozzi V. & Jori G.) Ch. 2, 29–63 (Springer, 2015).

Spring B. Q., Rizvi I., Xu N. & Hasan T. The role of photodynamic therapy in overcoming cancer drug resistance. Photochem Photobiol Sci 14, 1476–1491, doi: 10.1039/c4pp00495g (2015). PubMed DOI PMC

Moorehead R. A., Armstrong S. G., Wilson B. C. & Singh G. Cross-resistance to cisplatin in cells resistant to photofrin-mediated photodynamic therapy. Cancer Res 54, 2556–2559 (1994). PubMed

Kessel D. & Erickson C. Porphyrin photosensitization of multi-drug resistant cell types. Photochem Photobiol 55, 397–399 (1992). PubMed

Robey R. W., Steadman K., Polgar O. & Bates S. E. ABCG2-mediated transport of photosensitizers: potential impact on photodynamic therapy. Cancer Biol Ther 4, 187–194 (2005). PubMed

Schmidt-Erfurth U. et al.. Photodynamic therapy with verteporfin for choroidal neovascularization caused by age-related macular degeneration: results of retreatments in a phase 1 and 2 study. Arch Ophthalmol 117, 1177–1187 (1999). PubMed

Karakullukcu B. et al.. Photodynamic therapy of early stage oral cavity and oropharynx neoplasms: an outcome analysis of 170 patients. Eur Arch Otorhinolaryngol 268, 281–288, doi: 10.1007/s00405-010-1361-5 (2011). PubMed DOI PMC

Sharom F. J. The P-glycoprotein multidrug transporter. Essays Biochem 50, 161–178, doi: 10.1042/bse0500161 (2011). PubMed DOI

Chen Z. et al.. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett 370, 153–164, doi: 10.1016/j.canlet.2015.10.010 (2016). PubMed DOI

Chufan E. E., Sim H. M. & Ambudkar S. V. Molecular basis of the polyspecificity of P-glycoprotein (ABCB1): recent biochemical and structural studies. Adv Cancer Res 125, 71–96, doi: 10.1016/bs.acr.2014.10.003 (2015). PubMed DOI PMC

Palasuberniam P. et al.. ABCG2 transporter inhibitor restores the sensitivity of triple negative breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 5, 13298, doi: 10.1038/srep13298 (2015). PubMed DOI PMC

Zamarron A. et al.. Isolation and characterization of PDT-resistant cancer cells. Photochem Photobiol Sci 14, 1378–1389, doi: 10.1039/c4pp00448e (2015). PubMed DOI

Busch T. M. & Hahn S. M. Commentary: Mutidrug resistance in photodynamic therapy. Cancer Biol Ther 4, 203–204, doi: 10.4161/bt.4.2.1463 (2005). PubMed DOI

Huang Z. et al.. Photodynamic therapy of cancer — Challenges of multidrug resistance. J Innov Opt Health Sci 8, 1530002-1530001–1530013, doi: 10.1142/S1793545815300025 (2015). DOI

Seebacher N., Lane D. J., Richardson D. R. & Jansson P. J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic Biol Med 96, 432–445, doi: 10.1016/j.freeradbiomed.2016.04.201 (2016). PubMed DOI

Kralova J. et al.. Glycol porphyrin derivatives as potent photodynamic inducers of apoptosis in tumor cells. J Med Chem 51, 5964–5973, doi: 10.1021/jm8002119 (2008). PubMed DOI

Kralova J., Dvorak M., Koc M. & Kral V. p38 MAPK plays an essential role in apoptosis induced by photoactivation of a novel ethylene glycol porphyrin derivative. Oncogene 27, 3010–3020, doi: 1210960 [pii]10.1038/sj.onc.1210960 (2008). PubMed

Tan I. B. et al.. Temoporfin-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study. Head Neck 32, 1597–1604, doi: 10.1002/hed.21368 (2010). PubMed DOI

Chen M., Pennathur A. & Luketich J. D. Role of photodynamic therapy in unresectable esophageal and lung cancer. Lasers Surg Med 38, 396–402, doi: 10.1002/lsm.20364 (2006). PubMed DOI

Nemcova-Furstova V. et al.. Characterization of acquired paclitaxel resistance of breast cancer cells and involvement of ABC transporters. Toxicol Appl Pharmacol 310, 215–228, doi: 10.1016/j.taap.2016.09.020 (2016). PubMed DOI

Pavlikova N., Bartonova I., Dincakova L., Halada P. & Kovar J. Differentially expressed proteins in human breast cancer cells sensitive and resistant to paclitaxel. Int J Oncol 45, 822–830, doi: 10.3892/ijo.2014.2484 (2014). PubMed DOI

Juselius J. & Sundholm D. The aromatic pathways of porphins, chlorins and bacteriochlorins. Phys Chem Chem Phys 2, 2145–2151, doi: 10.1039/B000260G (2000). PubMed DOI

Grahn M. F. et al.. Intracellular uptake, absorption spectrum and stability of the bacteriochlorin photosensitizer 5,10,15,20-tetrakis(m-hydroxyphenyl) bacteriochlorin (mTHPBC). Comparison with 5,10,15,20-tetrakis(m-hydroxyphenyl) chlorin (mTHPC). J Photoch Photobio B 37, 261–266, doi: 10.1016/S1011-1344(96)07421-0 (1997). DOI

Senge M. O. & Brandt J. C. Temoporfin (Foscan (R), 5,10,15,20-Tetra(m-hydroxyphenyl)chlorin)-A Second-generation Photosensitizer. Photochem Photobiol 87, 1240–1296, doi: 10.1111/j.1751-1097.2011.00986.x (2011). PubMed DOI

Hornung R. et al.. m-THPC-mediated photodynamic therapy (PDT) does not induce resistance to chemotherapy, radiotherapy or PDT on human breast cancer cells in vitro. Photochem Photobiol 68, 569–574, doi: 10.1111/j.1751-1097.1998.tb02515.x (1998). PubMed DOI

Jansen E. J. & Martens G. J. Novel insights into V-ATPase functioning: distinct roles for its accessory subunits ATP6AP1/Ac45 and ATP6AP2/(pro) renin receptor. Curr Protein Pept Sci 13, 124–133, doi: 10.2174/138920312800493160 (2012). PubMed DOI

Di Venosa G., Perotti C., Batlle A. & Casas A. The role of cytoskeleton and adhesion proteins in the resistance to photodynamic therapy. Possible therapeutic interventions. Photochem Photobiol Sci 14, 1451–1464, doi: 10.1039/c4pp00445k (2015). PubMed DOI

Pacheco-Soares C., Maftou-Costa M., Da Cunha Menezes Costa C. G., De Siqueira Silva A. C. & Moraes K. C. Evaluation of photodynamic therapy in adhesion protein expression. Oncol Lett 8, 714–718, doi: 10.3892/ol.2014.2149 (2014). PubMed DOI PMC

Schreiber S. et al.. Local photodynamic therapy (PDT) of rat C6 glioma xenografts with Pd-bacteriopheophorbide leads to decreased metastases and increase of animal cure compared with surgery. Int J Cancer 99, 279–285, doi: 10.1002/ijc.10299 (2002). PubMed DOI

Rousset N. et al.. Effects of photodynamic therapy on adhesion molecules and metastasis. J Photochem Photobiol B 52, 65–73 (1999). PubMed

Belichenko I., Morishima N. & Separovic D. Caspase-resistant vimentin suppresses apoptosis after photodynamic treatment with a silicon phthalocyanine in Jurkat cells. Arch Biochem Biophys 390, 57–63, doi: 10.1006/abbi.2001.2365 (2001). PubMed DOI

Buytaert E. et al.. Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells. Oncogene 27, 1916–1929, doi: 10.1038/sj.onc.1210825 (2008). PubMed DOI

Xu Z. Y. et al.. The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells. Ultrasonics 53, 232–238, doi: 10.1016/j.ultras.2012.06.005 (2013). PubMed DOI

Natarajan K., Xie Y., Baer M. R. & Ross D. D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem Pharmacol 83, 1084–1103, doi: 10.1016/j.bcp.2012.01.002 (2012). PubMed DOI PMC

Usuda J. et al.. Breast cancer resistant protein (BCRP) is a molecular determinant of the outcome of photodynamic therapy (PDT) for centrally located early lung cancer. Lung Cancer 67, 198–204, doi: 10.1016/j.lungcan.2009.04.002 (2010). PubMed DOI

Bacellar I. O., Tsubone T. M., Pavani C. & Baptista M. S. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death. Int J Mol Sci 16, 20523–20559, doi: 10.3390/ijms160920523 (2015). PubMed DOI PMC

Draberova E., Draber P., Havlicek F. & Viklicky V. A common antigenic determinant of vimentin and desmin defined by monoclonal antibody. Folia Biol (Praha) 32, 295–303 (1986). PubMed

Kralova J. et al.. Novel porphyrin conjugates with a potent photodynamic antitumor effect: differential efficacy of mono- and bis-beta-cyclodextrin derivatives in vitro and in vivo. Photochem Photobiol 82, 432–438, doi: 10.1562/2005-05-06-RA-516 (2006). PubMed DOI

Musilkova J. & Kovar J. Additive stimulatory effect of extracellular calcium and potassium on non-transferrin ferric iron uptake by HeLa and K562 cells. Biochim Biophys Acta 1514, 117–126 (2001). PubMed

Irizarry R. A. et al.. Summaries of affymetrix GeneChip probe level data. Nucleic Acids Res 31, doi: ARTN e1510.1093/nar/gng015 (2003). PubMed PMC

Carvalho B. S. & Irizarry R. A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367, doi: 10.1093/bioinformatics/btq431 (2010). PubMed DOI PMC

Gentleman R. C. et al.. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5, doi: ARTN R80, doi 10.1186/gb-2004-5-10-r80 (2004). PubMed DOI PMC

Smyth G. K. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3, Article3, doi: 10.2202/1544-6115.1027 (2004). PubMed DOI

Storey J. D. & Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci USA 100, 9440–9445, doi: 10.1073/pnas.1530509100 (2003). PubMed DOI PMC

Kolesnikov N. et al.. ArrayExpress update–simplifying data submissions. Nucleic Acids Res 43, D1113–1116, doi: 10.1093/nar/gku1057 (2015). PubMed DOI PMC

Pavlikova N. et al.. Differentially expressed proteins in human MCF-7 breast cancer cells sensitive and resistant to paclitaxel. Exp Cell Res 333, 1–10, doi: 10.1016/j.yexcr.2014.12.005 (2015). PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace