Skin Lipids and Their Influence on Skin Microbiome and Skin Care

. 2025 Jul 15 ; 10 (27) : 28534-28546. [epub] 20250702

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40686980

Skin lipids are essential components that play crucial roles in maintaining the skin barrier, preventing transepidermal water loss, and protecting against external agents. The specific composition of lipids may vary according to factors, such as age, diet, and environmental conditions. They are found predominantly in the stratum corneum, the outermost layer of the epidermis, with lipids originating from epidermal lipids and also from the sebaceous glands. The diversity of lipids, including ceramides, cholesterol, free fatty acids, sphingolipids, phospholipids, triglycerides, and waxes, reflects the complexity of their functions. Understanding the properties and biosynthesis of skin lipids is fundamental for advancing dermatology, developing treatments for various skin conditions, and maintaining the integrity of the skin barrier. Skin microbiome could affect skin lipid composition, and this topic has yet to be completely understood. This literature review aims to understand the properties of lipids found in the skin, the function and importance of fatty acids for skin maintenance and integrity, and their correlations that influence homeostasis: pH, the role of lipids in the microbiota, and finally, daily care practices that can influence the health of the skin and also the microbiome.

Zobrazit více v PubMed

Rajkumar J., Chandan N., Lio P., Shi V.. The Skin Barrier and Moisturization: Function, Disruption, and Mechanisms of Repair. Skin Pharmacol. Physiol. 2023;36(4):174–185. doi: 10.1159/000534136. PubMed DOI

Knox S., O’Boyle N. M.. Skin Lipids In Health And Disease: A Review. Chem. Phys. Lipids. 2021;236:105055. doi: 10.1016/j.chemphyslip.2021.105055. PubMed DOI

Kurokawa I., Danby F. W., Ju Q., Wang X., Xiang L. F., Xia L., Chen W., Nagy I., Picardo M., Suh D. H.. et al. New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 2009;18(10):821–832. doi: 10.1111/j.1600-0625.2009.00890.x. PubMed DOI

Proksch E., Brandner J. M., Jensen J. M.. The skin: An indispensable barrier. Exp. Dermatol. 2008;17(12):1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x. PubMed DOI

Elias P. M.. Stratum corneum defensive functions: An integrated view. J. Invest. Dermatol. 2005;125(2):183–200. doi: 10.1111/j.0022-202X.2005.23668.x. PubMed DOI

Madison K. C.. Barrier function of the skin: “la raison d’être” of the epidermis. J. Invest. Dermatol. 2003;121(2):231–241. doi: 10.1046/j.1523-1747.2003.12359.x. PubMed DOI

Feingold K. R.. Thematic review series: Skin lipids. The role of epidermal lipids in cutaneous permeability barrier homeostasis. J. Lipid Res. 2007;48(12):2531–2546. doi: 10.1194/jlr.R700013-JLR200. PubMed DOI

Boncheva M.. The physical chemistry of the stratum corneum lipids. Int. J. Cosmet Sci. 2014;36(6):505–515. doi: 10.1111/ics.12162. PubMed DOI

Cha H. J., He C., Zhao H., Dong Y., An I. S., An S.. Intercellular and intracellular functions of ceramides and their metabolites in skin (Review) Int. J. Mol. Med. 2016;38(1):16–22. doi: 10.3892/ijmm.2016.2600. PubMed DOI

Bouwstra J. A., Ponec M.. The skin barrier in healthy and diseased state. Biochim. Biophys. Acta, Biomembr. 2006;1758(12):2080–2095. doi: 10.1016/j.bbamem.2006.06.021. PubMed DOI

Uchida Y., Park K.. Ceramides in Skin Health and Disease: An Update. Am. J. Clin. Dermatol. 2021;22(6):853–866. doi: 10.1007/s40257-021-00619-2. PubMed DOI

Murphy B., Grimshaw S., Hoptroff M., Paterson S., Arnold D., Cawley A., Adams S. E., Falciani F., Dadd T., Eccles R., Mitchell A., Lathrop W. F., Marrero D., Yarova G., Villa A., Bajor J. S., Feng L., Mihalov D., Mayes A. E.. Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin. Sci. Rep. 2022;12(1):5223. doi: 10.1038/s41598-022-09231-8. PubMed DOI PMC

Downing D. T., Stewart M. E., Wertz P. W., Colton S. W., Abraham W., Strauss J. S.. Skin surface lipids: An update. J. Invest. Dermatol. 1987;88:2s–6s. doi: 10.1111/1523-1747.ep12468850. PubMed DOI

Schurer N. Y., Elias P. M.. The biochemistry and function of stratum corneum lipids. Adv. Lipid Res. 1991;24:27–56. doi: 10.1016/B978-0-12-024924-4.50006-7. PubMed DOI

Zouboulis C. C.. Sebaceous gland as a target for treatment of acne. Clin. Dermatol. 2009;27(1):14–23.

Yang M., Zhou M., Song L.. A review of fatty acids influencing skin condition. J. Cosmet. Dermatol. 2020;19(12):3199–3204. doi: 10.1111/jocd.13616. PubMed DOI

Elias P. M., Feingold K. R.. Lipids and the epidermal water barrier: Metabolism, regulation, and pathophysiology. Semin. Dermatol. 1992;11(2):176–182. PubMed

Proksch E., Jensen J. M., Elias P. M.. Skin lipids and epidermal differentiation in atopic dermatitis. Clin. Dermatol. 2003;21(2):134–144. doi: 10.1016/S0738-081X(02)00370-X. PubMed DOI

Rawlings A. V., Harding C. R.. Moisturization and skin barrier function. Dermatol. Ther. 2004;17(Suppl 1):43–48. doi: 10.1111/j.1396-0296.2004.04s1005.x. PubMed DOI

Kovács D., Camera E., Póliska S., Cavallo A., Maiellaro M., Dull K., Gruber F., Zouboulis C. C., Szegedi A., Törőcsik D.. Linoleic Acid Induced Changes in SZ95 Sebocytes-Comparison with Palmitic Acid and Arachidonic Acid. Nutrients. 2023;15(15):3315. doi: 10.3390/nu15153315. PubMed DOI PMC

Boelsma E., van de Vijver L. P. L., Goldbohm R. A., Klöpping-Ketelaars I. A., Hendriks H. F., Roza L.. Human skin condition and its associations with nutrient concentrations in serum and diet. Am. J. Clin. Nutr. 2003;77(2):348–355. doi: 10.1093/ajcn/77.2.348. PubMed DOI

Naik A., Pechtold L. A. R. M., Potts R. O., Guy R. H.. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. J. Controlled Release. 1995;37(3):299–306. doi: 10.1016/0168-3659(95)00088-7. DOI

Ziboh V. A., Miller C. C., Cho Y.. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: Generation of antiinflammatory and antiproliferative metabolites. Am. J. Clin. Nutr. 2000;71(1 Suppl):361S–366S. doi: 10.1093/ajcn/71.1.361s. PubMed DOI

Bouwstra J. A., de Graaff A., Gooris G. S., Nijsse J., Wiechers J. W., van Aelst A. C.. Water distribution and related morphology in human stratum corneum at different hydration levels. J. Invest. Dermatol. 2003;120(5):750–758. doi: 10.1046/j.1523-1747.2003.12128.x. PubMed DOI

Simard M., Tremblay A., Morin S., Martin C., Julien P., Fradette J., Flamand N., Pouliot R.. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater. 2022;140:261–274. doi: 10.1016/j.actbio.2021.11.021. PubMed DOI

Calder P. C.. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006;83(6):1505S–1519S. doi: 10.1093/ajcn/83.6.1505S. PubMed DOI

Ge L., Gordon J. S., Hsuan C., Stenn K., Prouty S. M.. Identification of the delta-6 desaturase of human sebaceous glands: Expression and enzyme activity. J. Invest. Dermatol. 2003;120(5):707–714. doi: 10.1046/j.1523-1747.2003.12123.x. PubMed DOI

Morello A. M., Downing D. T., Strauss J. S.. Octadecadienoic acids in the skin surface lipids of acne patients and normal subjects. J. Invest. Dermatol. 1976;66(5):319–323. doi: 10.1111/1523-1747.ep12482300. PubMed DOI

Ottaviani M., Camera E., Picardo M.. Lipid mediators in acne. Mediators Inflammation. 2010;2010:858176. doi: 10.1155/2010/858176. PubMed DOI PMC

Fischer C. L., Drake D. R., Dawson D. V., Blanchette D. R., Brogden K. A., Wertz P. W.. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother. 2012;56(3):1157–1161. doi: 10.1128/AAC.05151-11. PubMed DOI PMC

Neumann Y., Ohlsen K., Donat S., Engelmann S., Kusch H., Albrecht D., Cartron M., Hurd A., Foster S. J.. The effect of skin fatty acids on Staphylococcus aureus. Arch. Microbiol. 2015;197(2):245–267. doi: 10.1007/s00203-014-1048-1. PubMed DOI PMC

Moran J. C., Alorabi J. A., Horsburgh M. J.. Comparative Transcriptomics Reveals Discrete Survival Responses of S. aureus and S. epidermidis to Sapienic Acid. Front. Microbiol. 2017;8:33. doi: 10.3389/fmicb.2017.00033. PubMed DOI PMC

Hoxha M., Barbonetti A., Zappacosta B.. Arachidonic Acid Pathways and Male Fertility: A Systematic Review. Int. J. Mol. Sci. 2023;24(9):8207. doi: 10.3390/ijms24098207. PubMed DOI PMC

Iversen L., Kragballe K.. Arachidonic acid metabolism in skin health and disease. Prostaglandins Other Lipid Mediat. 2000;63(1–2):25–42. doi: 10.1016/S0090-6980(00)00095-2. PubMed DOI

Smith W. L., Ziboh V. A.. Eicosanoids: Prostaglandins, thromboxanes, leukotrienes, and hydroxyeicosatetraenoic acids. J. Invest. Dermatol. 1983;80(S1):7s–12s.

AbouSamra M. M., Farouk F., Abdelhamed F. M., Emam K. A. F., Abdeltawab N. F., Salama A. H.. Synergistic approach for acne vulgaris treatment using glycerosomes loaded with lincomycin and lauric acid: Formulation, in silico, in vitro, LC-MS/MS skin deposition assay and in vivo evaluation. Int. J. Pharm. 2023;646:123487. doi: 10.1016/j.ijpharm.2023.123487. PubMed DOI

Kabara J. J., Swieczkowski D. M., Conley A. J., Truant J. P.. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972;2(1):23–28. doi: 10.1128/AAC.2.1.23. PubMed DOI PMC

Borges, F. ; Scorza, F. . Therapeutics in aesthetics, Phorte: São Paulo, 2016.

Denda M.. Epidermal barrier function and its recovery by synthetic pseudo-ceramides. Biochim. Biophys. Acta, Mol. Cell Biol. Lipids. 2013;1841(3):453–458.

Verdier-Sévrain S., Bonté F.. Skin hydration: A review on its molecular mechanisms. J. Cosmet. Dermatol. 2007;6(2):75–82. doi: 10.1111/j.1473-2165.2007.00300.x. PubMed DOI

Peer R. P., Burli A., Maibach H. I.. Did human evolution in skin of color enhance the TEWL barrier? Arch. Dermatol. Res. 2022;314(2):121–132. doi: 10.1007/s00403-021-02197-z. PubMed DOI

Schmid-Wendtner M. H., Korting H. C.. The pH of the skin surface and its impact on the barrier function. Skin Pharmacol. Physiol. 2006;19(6):296–302. doi: 10.1159/000094670. PubMed DOI

Ali S. M., Yosipovitch G.. Skin pH: From basic science to basic skin care. Acta Derm.-Venereol. 2013;93(3):261–267. doi: 10.2340/00015555-1531. PubMed DOI

Ryguła I., Pikiewicz W., Grabarek B. O., Wójcik M., Kaminiów K.. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int. J. Mol. Sci. 2024;25(4):1984. doi: 10.3390/ijms25041984. PubMed DOI PMC

Li R., Rodrigues M., Li L., Winget J., Wang Y., Wang C., Smith E., Wei K.. Association Between Skin Acid Mantle, Natural Moisturizing Factors, and Antibacterial Activity Against S. aureus in the Stratum Corneum. Clin. Cosmet. Investig. Dermatol. 2023;16:1595–1606. doi: 10.2147/CCID.S409534. PubMed DOI PMC

Lee H. J., Kim M.. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022;23(21):13071. doi: 10.3390/ijms232113071. PubMed DOI PMC

Schade H., Marchionini A.. Der Säuremantel der Haut (nach Gaskettenmessung) Klin. Wochenschr. 1928;7:12–14. doi: 10.1007/BF01711684. DOI

Surber C., Humbert P., Abels C., Maibach H.. The Acid Mantle: A Myth or an Essential Part of Skin Health? Curr. Probl. Dermatol. 2018;54:1–10. doi: 10.1159/000489512. PubMed DOI

Bouwstra J. A., Gooris G. S., Dubbelaar F. E., Weerheim A. M., Ijzerman A. P., Ponec M.. Role of ceramide 1 in the molecular organization of the stratum corneum lipids. J. Lipid Res. 1998;39(1):186–196. doi: 10.1016/S0022-2275(20)34214-0. PubMed DOI

Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R.. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. U. S. A. 2010;107(26):11971–11975. doi: 10.1073/pnas.1002601107. PubMed DOI PMC

Chu D. M., Ma J., Prince A. L., Antony K. M., Seferovic M. D., Aagaard K. M.. Maturation of the infant microbiome community structure and function across multiple body sites and in relation to mode of delivery. Nat. Med. 2017;23(3):314–326. doi: 10.1038/nm.4272. PubMed DOI PMC

Schommer N. N., Gallo R. L.. Structure and function of the human skin microbiome. Trends Microbiol. 2013;21(12):660–668. doi: 10.1016/j.tim.2013.10.001. PubMed DOI PMC

Prescott S. L., Larcombe D. L., Logan A. C., West C., Burks W., Caraballo L., Levin M., Etten E. V., Horwitz P., Kozyrskyj A., Campbell D. E.. The skin microbiome: Impact of modern environments on skin ecology, barrier integrity, and systemic immune programming. World Allergy Organ J. 2017;10(1):29. doi: 10.1186/s40413-017-0160-5. PubMed DOI PMC

Grice E. A., Kong H. H., Renaud G., Young A. C., Bouffard G. G., Blakesley R. W., Wolfsberg T. G., Turner M. L., Segre J. A.. A diversity profile of the human skin microbiota. Genome Res. 2008;18(7):1043–1050. doi: 10.1101/gr.075549.107. PubMed DOI PMC

Nakatsuji T., Kao M. C., Zhang L., Zouboulis C. C., Gallo R. L., Huang C. M.. Sebum free fatty acids enhance the innate immune defense of human sebocytes by upregulating beta-defensin-2 expression. J. Invest. Dermatol. 2010;130(4):985–994. doi: 10.1038/jid.2009.384. PubMed DOI PMC

Georgel P., Radosavljevic M., Macquin C., Bahram S.. The non-conventional MHC class I molecule H2-M3 controls the expression of a novel antibacterial peptide in skin. J. Immunol. 2005;175(3):1611–1615.

Agak G. W., Qin M., Nobe J., Kim M. H., Krutzik S. R., Tristan G. R., Elashoff D., Garbán H. J., Kim J.. Propionibacterium acnes Induces an IL-17 Response in Acne Vulgaris that Is Regulated by Vitamin A and Vitamin D. J. Invest. Dermatol. 2014;134(2):366–373. doi: 10.1038/jid.2013.334. PubMed DOI PMC

Benhadou F., Mintoff D., Schnebert B., Thio H. B.. Psoriasis and Microbiota: A Systematic Review. Diseases. 2018;6(2):47. doi: 10.3390/diseases6020047. PubMed DOI PMC

Edslev S. M., Agner T., Andersen P. S.. Skin Microbiome in Atopic Dermatitis. Acta Derm.-Venereol. 2020;100(12):358–366. doi: 10.2340/00015555-3514. PubMed DOI PMC

Maher A., Staunton K., Kavanagh K.. Analysis of the effect of temperature on protein abundance in Demodex-associated Bacillus oleronius. Pathog. Dis. 2018;76(4):fty032. doi: 10.1093/femspd/fty032. PubMed DOI

Zheng Y., Hunt R. L., Villaruz A. E., Fisher E. L., Liu R., Liu Q., Cheung G. Y. C., Li M., Otto M.. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. 2022;30(3):P301–313.E9. doi: 10.1016/j.chom.2022.01.004. PubMed DOI PMC

Chen H., Zhao Q., Zhong Q., Duan C., Krutmann J., Wang J., Xia J.. Skin Microbiome, Metabolome and Skin Phenome, from the Perspectives of Skin as an Ecosystem. Phenomics. 2022;2(6):363–382. doi: 10.1007/s43657-022-00073-y. PubMed DOI PMC

Christensen G. J. M., Brüggemann H.. Bacterial skin commensals and their role as host guardians. Benefic. Microbes. 2014;5(2):201–215. doi: 10.3920/BM2012.0062. PubMed DOI

Youn S. H., Choi C. W., Choi J. W., Youn S. W.. The skin surface pH and its different influence on the development of acne lesion according to gender and age. Skin. Res. Technol. 2013;19(2):131–136. doi: 10.1111/srt.12023. PubMed DOI

Bomar L., Brugger S. D., Yost B. H., Davies S. S., Lemon K. P.. Corynebacterium accolens Releases Antipneumococcal Free Fatty Acids from Human Nostril and Skin Surface Triacylglycerols. mBio. 2016;7(1):e01725–15. doi: 10.1128/mBio.01725-15. PubMed DOI PMC

Nakatsuji T., Chen T. H., Butcher A. M., Trzoss L. L., Nam S. J., Shirakawa K. T., Zhou W., Oh J., Otto M., Fenical W., Gallo R. L.. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 2018;4(2):eaao4502. doi: 10.1126/sciadv.aao4502. PubMed DOI PMC

Wang Y., Kuo S., Shu M., Yu J., Huang S., Dai A., Two A., Gallo R. L., Huang C. M.. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Appl. Microbiol. Biotechnol. 2014;98(1):411–424. doi: 10.1007/s00253-013-5394-8. PubMed DOI PMC

Cogen A. L., Yamasaki K., Sanchez K. M., Dorschner R. A., Lai Y., MacLeod D. T., Torpey J. W., Otto M., Nizet V., Kim J. E., Gallo R. L.. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 2010;130(1):192–200. doi: 10.1038/jid.2009.243. PubMed DOI PMC

O’Neill A. M., Nakatsuji T., Hayachi A., Williams M. R., Mills R. H., Gonzalez D. J., Gallo R. L.. Identification of a Human Skin Commensal Bacterium that Selectively Kills Cutibacterium acnes. J. Invest. Dermatol. 2020;140(8):P1619–1628.E2. doi: 10.1016/j.jid.2019.12.026. PubMed DOI PMC

Janek D., Zipperer A., Kulik A., Krismer B., Peschel A.. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors. PLoS Pathog. 2016;12(8):e1005812. doi: 10.1371/journal.ppat.1005812. PubMed DOI PMC

Han J. H., Kim H. S.. Skin Deep: The Potential of Microbiome Cosmetics. J. Microbiol. 2024;62(3):181–199. doi: 10.1007/s12275-024-00128-x. PubMed DOI

Candi E., Schmidt R., Melino G.. The cornified envelope: A model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 2005;6(4):328–340. doi: 10.1038/nrm1619. PubMed DOI

Sánchez-Pellicer P., Navarro-Moratalla L., Núñez-Delegido E., Ruzafa-Costas B., Agüera-Santos J., Navarro-López V.. Acne, Microbiome, and Probiotics: The Gut-Skin Axis. Microorganisms. 2022;10(7):1303. doi: 10.3390/microorganisms10071303. PubMed DOI PMC

Bowe W., Patel N. B., Logan A. C.. Acne vulgaris, probiotics and the gut-brain-skin axis: From anecdote to translational medicine. Benefic. Microbes. 2014;5(2):185–199. doi: 10.3920/BM2012.0060. PubMed DOI

Tremaroli V., Bäckhed F.. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489(7415):242–249. doi: 10.1038/nature11552. PubMed DOI

Buhaş M. C., Candrea R., Gavrilaş L. I., Miere D., Tătaru A., Boca A., Cătinean A.. Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches. Int. J. Mol. Sci. 2023;24(13):11225. doi: 10.3390/ijms241311225. PubMed DOI PMC

Mahmud M. R., Akter S., Tamanna S. K., Mazumder L., Esti I. Z., Banerjee S., Akter S., Hasan M. R., Acharjee M., Hossain M. S., Pirttilä A. M.. Impact of gut microbiome on skin health: Gut-skin axis observed through the lenses of therapeutics and skin diseases. Gut Microbes. 2022;14(1):2096995. doi: 10.1080/19490976.2022.2096995. PubMed DOI PMC

Cogen A. L., Nizet V., Gallo R. L.. Skin microbiota: A source of disease or defence? Br. J. Dermatol. 2008;158(3):442–455. doi: 10.1111/j.1365-2133.2008.08437.x. PubMed DOI PMC

Cani, P. D. ; Van Hul, M. . Gut microbiota and gut barrier: Mechanisms and consequences. In Comprehensive Gut Microbiota, Elsevier, 2015; pp. 153–168.

Leung M. H., Chan K. C., Lee L. H., Tang Y. C.. Skin microbiota: A review of the roles of modern technologies in unveiling the complexities. Int. J. Mol. Sci. 2018;19(4):984.

Aguilar-Toalá J. E., Garcia-Varela R., Garcia H. S., Mata-Haro V., González-Córdova A. F., Vallejo-Cordoba B., Hernández-Mendoza A.. Postbiotics: An evolving term within the functional foods field. Trends Food Sci. Technol. 2018;75:105–114. doi: 10.1016/j.tifs.2018.03.009. DOI

Coppola S., Avagliano C., Sacchi A., Laneri S., Calignano A., Voto L., Luzzetti A., Berni Canani R.. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules. 2022;27(6):1849. doi: 10.3390/molecules27061849. PubMed DOI PMC

Cui H., Guo C., Wang Q., Feng C., Duan Z.. A pilot study on the efficacy of topical lotion containing anti-acne postbiotic in subjects with mild -to -moderate acne. Front Med. 2022;9:1064460. doi: 10.3389/fmed.2022.1064460. PubMed DOI PMC

Kurokawa I., Danby F. W., Ju Q., Wang X., Xiang L. F., Xia L., Chen W., Nagy I., Picardo M., Suh D. H., Ganceviciene R., Schagen S., Tsatsou F., Zouboulis C. C.. New developments in our understanding of acne pathogenesis and treatment. Exp. Dermatol. 2009;18:821–832. doi: 10.1111/j.1600-0625.2009.00890.x. PubMed DOI

Chen G. H., Zhang K. Y., Tian G., Bai S. P., Ding X. M., Wang J. P., Lv L., Xuan Y., Zeng Q. F.. Effects of a high-fat diet on the growth performance, lipid metabolism, and the fatty acids composition of liver and skin fat in Pekin ducks aged from 10 to 40 days. Poult. Sci. 2023;102(3):102429. doi: 10.1016/j.psj.2022.102429. PubMed DOI PMC

Pilkington S. M., Watson R. E., Nicolaou A., Rhodes L. E.. Omega-3 polyunsaturated fatty acids: Photoprotective macronutrients. Exp. Dermatol. 2011;20(7):537–543. doi: 10.1111/j.1600-0625.2011.01294.x. PubMed DOI

Calder P. C.. Abnormal fatty acid profiles occur in atopic dermatitis but what do they mean? Clin. Exp. Allergy. 2006;36(2):138–141. doi: 10.1111/j.1365-2222.2006.02433.x. PubMed DOI

Thiele J. J., Hsieh S. N., Ekanayake-Mudiyanselage S.. Vitamin E: Critical review of its current use in cosmetic and clinical dermatology. Dermatol. Surg. 2005;31(7 Pt 2):805–813. doi: 10.1111/j.1524-4725.2005.31724. PubMed DOI

Brosche T., Platt D.. The biological significance of linoleic acid in the skin. J. Am. Oil Chem. Soc. 2000;77(5):463–467.

Logan, A. C. Omega-3 fatty acids and skin health. Handbook Of Nutraceuticals And Functional Foods, CRC press, 2016, pp. 560.

Sharma N., Chaudhary S. M., Khungar N., Aulakh S. K., Idris H., Singh A., Sharma K.. Dietary Influences on Skin Health in Common Dermatological Disorders. Cureus. 2024;16(2):e55282. doi: 10.7759/cureus.55282. PubMed DOI PMC

Bek-Thomsen M., Lomholt H. B., Scavenius C., Enghild J. J., Brüggemann H.. Proteome analysis of human sebaceous follicle infundibula extracted from healthy and acne-affected skin. PLoS One. 2014;9(9):e107908. doi: 10.1371/journal.pone.0107908. PubMed DOI PMC

Beylot C., Auffret N., Poli F., Claudel J. P., Leccia M. T., Del Giudice P., Dreno B.. Propionibacterium acnes: An update on its role in the pathogenesis of acne. J. Eur. Acad. Dermatol. Venereol. 2014;28(3):271–278. doi: 10.1111/jdv.12224. PubMed DOI

Hu X., He H.. A review of cosmetic skin delivery. J. Cosmet. Dermatol. 2021;20(7):2020–2030. doi: 10.1111/jocd.14037. PubMed DOI

Shibagaki N., Suda W., Clavaud C., Bastien P., Takayasu L., Iioka E., Kurokawa R., Yamashita N., Hattori Y., Shindo C., Breton L., Hattori M.. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci. Rep. 2017;7(1):10567. doi: 10.1038/s41598-017-10834-9. PubMed DOI PMC

Howard B., Bascom C. C., Hu P., Binder R. L., Fadayel G., Huggins T. G., Jarrold B. B., Osborne R., Rocchetta H. L., Swift D.. et al. Aging-Associated Changes in the Adult Human Skin Microbiome and the Host Factors that Affect Skin Microbiome Composition. J. Invest. Dermatol. 2022;142(7):P1934–1946.E21. doi: 10.1016/j.jid.2021.11.029. PubMed DOI

Jugé R., Rouaud-Tinguely P., Breugnot J., Servaes K., Grimaldi C., Roth M. P., Coppin H., Closs B.. Shift in skin microbiota of Western European women across aging. J. Appl. Microbiol. 2018;125(3):907–916. doi: 10.1111/jam.13929. PubMed DOI

Lodén M.. The clinical benefit of moisturizers. J. Eur. Acad. Dermatol. Venereol. 2005;19(6):672–688. doi: 10.1111/j.1468-3083.2005.01326.x. PubMed DOI

Rogers J., Harding C., Mayo A.. et al. Stratum corneum lipids: The effect of ageing and the seasons. Arch. Dermatol. Res. 1996;288:765–770. doi: 10.1007/BF02505294. PubMed DOI

Danby S. G., Andrew P. V., Taylor R. N., Kay L. J., Chittock J., Pinnock A., Ulhaq I., Fasth A., Carlander K., Holm T., Cork M. J.. Different types of emollient cream exhibit diverse physiological effects on the skin barrier in adults with atopic dermatitis. Clin. Exp. Dermatol. 2022;47(6):1154–1164. doi: 10.1111/ced.15141. PubMed DOI PMC

Fuchs J., Groth N., Herrling T.. Cutaneous tolerance to nitroxide free radicals in human skin. Free Radical Biol. Med. 1998;24(4):643–648. doi: 10.1016/S0891-5849(97)00322-5. PubMed DOI

Schild J., Kalvodová A., Zbytovská J., Farwick M., Pyko C.. The role of ceramides in skin barrier function and the importance of their correct formulation for skincare applications. Int. J. Cosmet Sci. 2024;46:526–543. doi: 10.1111/ics.12972. PubMed DOI

Ananthapadmanabhan K. P., Moore D. J., Subramanyan K., Misra M., Meyer F.. Cleansing without compromise: The impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol. Ther. 2004;17:16–25. doi: 10.1111/j.1396-0296.2004.04S1002.x. PubMed DOI

Lee C. H.. Sodium lauryl sulfate-modified stratum corneum: An IR investigation of molecular structure. J. Dermatol. Sci. 2000;23(1):54–60.

Nafisi S.. Interaction of sodium dodecyl sulfate with human serum albumin. J. Photochem. Photobiol., B. 2007;87(1):105–111.

Effendy I., Maibach H. I.. Surfactants and experimental irritant contact dermatitis. Contact Dermatitis. 1995;33(4):217–225. doi: 10.1111/j.1600-0536.1995.tb00470.x. PubMed DOI

Kraft J. N.. et al. Cutaneous irritant and allergic contact dermatitis in patients with a history of atopic dermatitis. Dermatol. Ther. 2005;18(1):40–47.

Schild J., Kalvodova A., Zbytovska J., Farwick M., Pyko C.. The role of ceramides in skin barrier function and the importance of their correct formulation for skincare applications. Int J Cosmet Sci. 2024;46:526–543. doi: 10.1111/ics.12972. PubMed DOI

Yong T. L., Zaman R., Rehman N., Tan C. K.. Ceramides and Skin Health: New Insights. Exp Dermatol. 2025;34:e70042. doi: 10.1111/exd.70042. PubMed DOI

Hannun Y. A., Obeid L. M.. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol. 2008;9:139–150. doi: 10.1038/nrm2329. PubMed DOI

Nakatsuji T., Kao M. C., Fang J.-Y., Zouboulis C. C., Zhang L., Gallo R. L., Huang C.-M.. Antimicrobial property of lauric acid against Propionibacterium acnes: its therapeutic potential for inflammatory acne vulgaris. J Invest Dermatol. 2009;129:2480–2488. doi: 10.1038/jid.2009.93. PubMed DOI PMC

Alonso-Castro A. J., Serrano-Vega R., Perez Gutierrez S., Isiordia-Espinoza M. A., Solorio-Alvarado C. R.. Myristic acid reduces skin inflammation and nociception. J Food Biochem. 2022;46:e14013. doi: 10.1111/jfbc.14013. PubMed DOI

Banov D., Banov F., Bassani A. S.. Case series: the effectiveness of Fatty acids from pracaxi oil in a topical silicone base for scar and wound therapy. Dermatol Ther (Heidelb) 2014;4:259–269. doi: 10.1007/s13555-014-0065-y. PubMed DOI PMC

Stahlberg S., Skolova B., Madhu P. K., Vogel A., Vavrova K., Huster D.. Probing the role of the ceramide acyl chain length and sphingosine unsaturation in model skin barrier lipid mixtures by (2)H solid-state NMR spectroscopy. Langmuir. 2015;31:4906–4915. doi: 10.1021/acs.langmuir.5b00751. PubMed DOI

Tsuji S., Sano-Kawamura T., Ariga T., Miyatake T.. Metabolism of [17,18-3H2]­hexacosanoic acid and [15,16-3H2]­lignoceric acid in cultured skin fibroblasts from patients with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN) J Neurol Sci. 1985;71:359. doi: 10.1016/0022-510X(85)90074-7. PubMed DOI

Kim Y.-G., Lee J.-H., Lee J.. Antibiofilm activities of fatty acids including myristoleic acid against Cutibacterium acnes via reduced cell hydrophobicity. Phytomedicine. 2021;91:153710. doi: 10.1016/j.phymed.2021.153710. PubMed DOI

Downing D. T., Stewart M. E., Wertz P. W., Strauss J. S.. Essential fatty acids and acne. J Am Acad Dermatol. 1986;14:221–225. doi: 10.1016/S0190-9622(86)70025-X. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...