• This record comes from PubMed

Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing

. 2022 Mar ; 26 () : 101337. [epub] 20220107

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic

Document type Journal Article

Links

PubMed 35018299
PubMed Central PMC8739527
DOI 10.1016/j.apmt.2021.101337
PII: S2352-9407(21)00387-5
Knihovny.cz E-resources

Mobile self-propelled micro/nanorobots are mobile binding surface that improved the sensitivity of many biosensing system by "on-the-fly" identification and isolation of different biotargets. Proteins are powerful tools to predict infectious disease progression such as COVID-19. The main methodology used to COVID-19 detection is based on ELISA test by antibodies detection assays targeting SARS-CoV-2 virus spike protein and nucleocapside protein that represent an indirect SARS-CoV-2 detection with low sentitivy and specificity. Moreover ELISA test are limited to used external shaker to obtain homogenously immobilization of antibodies and protein on sensing platform. Here, we present magnetic microrobots that collective self-assembly through immuno-sandwich assay and they can be used as mobile platform to detect on-the-fly SARS-CoV-2 virus particle by its spike protein. The collective self-assembly of magnetic microrobots through immuno-sandwich assay enhanced its analytical performance in terms of sensitivity decreasing the detection limit of SARS-CoV-2 virus by one order of magnitude with respect to the devices previously reported. This proof-of-concept of microrobotics offer new ways to the detection of viruses and proteins of medical interest in general.

See more in PubMed

Campuzano S., Esteban-Fernández de Ávila B., Yáñez-Sedeño P., Pingarrón J.M., Wang J. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chem. Sci. 2017;8:6750–6763. PubMed PMC

Esteban-Fernández de Avila B., Martín A., Soto F., Lopez-Ramirez M.A., Campuzano S., Vásquez-Machado G.M., Gao W., Zhang L., Wang J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015;9:6756–6764. PubMed

Mayorga-Martinez C.C., Pumera M. Self-propelled tags for protein detection. Adv. Funct. Mater. 2020;30

Pacheco M., Jurado-Sánchez B., Escarpa A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 2018;90:2912–2917. PubMed

Pacheco M., López M.Á., Jurado-Sánchez B., Escarpa A. Self-propelled micromachines for analytical sensing: a critical review. Anal. Bioanal. Chem. 2019;411:6561–6573. PubMed

Yuan K., López M.Á., Jurado-Sánchez B., Escarpa A. Janus micromotors coated with 2D nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces. 2020;12:46588–46597. PubMed

Jurado-Sánchez B., Escarpa A. Milli, micro and nanomotors: novel analytical tools for real-world applications. Trends Anal. Chem. 2016;84:48–59.

Karshalev E., Esteban-Fernandez de Avíla B., Wang J. Micromotors for “chemistry-on-the-fly. J. Am. Chem. Soc. 2018;140:3810–3820. PubMed

Li J., Pumera M. 3D printing of functional microrobots. Chem. Soc. Rev. 2021;50:2794–2838. doi: 10.1039/D0CS01062F. PubMed DOI

Chen X.-.Z., Jang B., Ahmed D., Hu C., C De Marco, Hoop M., Mushtaq F., Nelson B.J., Pané S. Small-scale machines driven by external power sources. Adv. Mater. 2018;30 PubMed

Mayorga-Martinez C.C., Vyskočil J., Novotný F., Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910.

Mushtaq F., Guerrero M., Sakar M.S., Hoop M., Lindo A., Sort J., Chen X., Nelson B.J., Pellicer E., Pané S. Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J. Mater. Chem. A. 2015;3:23670–23679.

Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J. Magneto–acoustic hybrid nanomotor. Nano Lett. 2015;15:4814–4821. PubMed

Dong M., Wang X., Chen X.-.Z., Mushtaq F., Deng S., Zhu C., Torlakcik H., Terzopoulou A., Qin X.-.H., Xiao X., Puigmartí-Luis J., Choi H., Pêgo A.P., Shen Q.-.D., Nelson B.J., Pané S. 3D-Printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 2020;30

Jang B., Hong A., Kang H.E., Alcantara C., Charreyron S., Mushtaq F., Pellicer E., Büchel R., Sort J., Lee S.S., Nelson B.J., Pané S. Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano. 2017;11:6146–6154. PubMed

Chatzipirpiridis G., de Marco C., Pellicer E., Ergeneman O., Sort J., Nelson B.J., Pané S. Template-assisted electroforming of fully semi-hard-magnetic helical microactuators. Adv. Eng. Mater. 2018;20

Gu H., Boehler Q., Cui H., Secchi E., Savorana G., De Marco C., Gervasoni S., Peyron Q., Huang T.Y., Pane S., Hirt A.M., Ahmed D., Nelson B.J. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 2020;11:2637. PubMed PMC

Alcantara C.C.J., Kim S., Lee S., Jang B., Thakolkaran P., Kim J.Y., Choi H., Nelson B.J., Pané S. 3D Fabrication of fully iron magnetic microrobots. Small. 2019;15 PubMed

Mundaca-Uribe R., Esteban-Fernández de Ávila B., Holay M., Venugopalan P.L., Nguyen B., Zhou J., Abbas A., Fang R.H., Zhang L., Wang J. Zinc microrocket pills: fabrication and characterization toward active oral delivery. Adv. Healthc. Mater. 2020;9 PubMed

Tang S., Zhang F., Gong H., Wei F., Zhuang J., Karshalev E., Esteban-Fernández de Ávila B., Huang C., Zhou Z., Li Z., Yin L., Dong H., Fang R.H., Zhang X., Zhang L., Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020;5:eaba6137. PubMed

Esteban-Fernández de Ávila B., Lopez-Ramirez M.A., Mundaca-Uribe R., Wei X., Ramírez-Herrera D.E., Karshalev E., Nguyen B., Fang R.H., Zhang L., Wang J. Multicompartment tubular micromotors toward enhanced localized active delivery. Adv. Mater. 2020;32 PubMed

Soto F., Karshalev E., Zhang F., Fernandez de Avila B.E., Nourhani A., Wang J. Smart materials for microrobots. Chem. Rev. 2021 doi: 10.1021/acs.chemrev.0c00999. PubMed DOI

Wang H., Pumera M. Fabrication of micro/nanoscale motors. Chem. Rev. 2015;115:8704–8735. PubMed

Gao W., Sattayasamitsathit S., Manesh K.M., Weihs D., Wang J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 2010;132:14403–14405. PubMed

Ji T., Liu Z., Wang G.Q., Guo X., khan S.A., Lai C., Chen H., Huang S., Xia S., Chen B., Jia H., Chen Y., Zhou Q. Detection of COVID-19: a review of the current literature and future perspectives. Biosens. Bioelectron. 2020;166 PubMed PMC

Kumar K.P.A., Pumera M. 3D-Printing to Mitigate COVID-19 Pandemic. Adv. Funct. Mater. 2021;31(22) doi: 10.1002/adfm.202100450. PubMed DOI PMC

Zhou H., Mayorga-Martinez C.C., Pane S., Zhang L., Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021;121(8):4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC

Seo G., Lee G., Kim M.J., Baek S.H., Choi M., Ku K.B., Lee C.S., Jun S., Park D., Kim H.G., Kim S.J., Lee J.O., Kim B.T., Park E.C., Kim S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–5142. PubMed

Vyskočil J., Mayorga-Martinez C.C., Jablonská E., Novotný F., Ruml T., Pumera M. Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano. 2020;14:8247–8256. PubMed

Chia H.L., Mayorga-Martinez C.C., Gusmão R., Novotny F., Webster R.D., Pumera M. A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chem. Commun. 2020;56:7909–7912. PubMed

Novotný F., Plutnar J., Pumera M. Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced Raman scattering. Adv. Funct. Mater. 2019;29

Stefanik M., Strakova P., Haviernik J., Miller A.D., Ruzek D., Eyer L. Antiviral activity of vacuolar ATPase blocker diphyllin against SARS-CoV-2. Microorganisms. 2021;9:471. PubMed PMC

Luo M., Li S., Wan J., Yang C., Chen B., Guan J. Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on janus magnetic microparticles. Langmuir. 2020 doi: 10.1021/acs.langmuir.9b03315. PubMed DOI

Villa K., Krejčová L., Novotný F., Heger Z., Sofer Z., Pumera M. Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 2019;28

Cox K.L., Devanarayan V., Kriauciunas A., Manetta J., Montrose C., Sittampalam Sitta, et al. In: Eli Lilly & Company and the National Center For Advancing Translational Sciences. Markossian S., Grossman A., Brimacombe K., et al., editors. 2004. Immunoassay Methods. PubMed

Arqué X., Andrés X., Mestre R., Ciraulo B., Arroyo J.O., Quidant R., Patiño T., Sánchez S. Ionic species affect the self-propulsion of urease-powered micromotors. Research. 2020;2020 PubMed PMC

Yu J., Jin D., Chan K.-.F., Wang Q., K.Yuan L.Zhang. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun. 2019;10:5631. PubMed PMC

Bockris J.O'M., Potter E.C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 1952;99:169–186.

Vesborg P.C.K., Seger B., Chorkendorff I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. Phys. Chem. Lett. 2015;6:951–957. PubMed

Mayorga-Martinez C.C., Khezri B., Eng A.Y.S., Sofer Z., Ulbrich P., Pumera M. Bipolar electrochemical synthesis of WS2 nanoparticles and their application in magneto-immunosandwich assay. Adv. Funct. Mater. 2016;26:4094–4098.

Kiese S., Papppenberger A., Friess W., Mahler H.-.C. Not stirred: mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 2008;10:4347–4366. PubMed

Pedersen N.C. A review of feline infectious peritonitis virus infection: 1963-2008. J. Feline Med. Surg. 2009;11:225. PubMed PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...