Collective behavior of magnetic microrobots through immuno-sandwich assay: On-the-fly COVID-19 sensing
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media print-electronic
Document type Journal Article
PubMed
35018299
PubMed Central
PMC8739527
DOI
10.1016/j.apmt.2021.101337
PII: S2352-9407(21)00387-5
Knihovny.cz E-resources
- Keywords
- Biosensor, Covid19, Microrobots,
- Publication type
- Journal Article MeSH
Mobile self-propelled micro/nanorobots are mobile binding surface that improved the sensitivity of many biosensing system by "on-the-fly" identification and isolation of different biotargets. Proteins are powerful tools to predict infectious disease progression such as COVID-19. The main methodology used to COVID-19 detection is based on ELISA test by antibodies detection assays targeting SARS-CoV-2 virus spike protein and nucleocapside protein that represent an indirect SARS-CoV-2 detection with low sentitivy and specificity. Moreover ELISA test are limited to used external shaker to obtain homogenously immobilization of antibodies and protein on sensing platform. Here, we present magnetic microrobots that collective self-assembly through immuno-sandwich assay and they can be used as mobile platform to detect on-the-fly SARS-CoV-2 virus particle by its spike protein. The collective self-assembly of magnetic microrobots through immuno-sandwich assay enhanced its analytical performance in terms of sensitivity decreasing the detection limit of SARS-CoV-2 virus by one order of magnitude with respect to the devices previously reported. This proof-of-concept of microrobotics offer new ways to the detection of viruses and proteins of medical interest in general.
Chemistry Department College of Science King Saud University P O Box 2455 Riyadh 11451 Saudi Arabia
Veterinary Research Institute Hudcova 70 Brno CZ 62100 Czech Republic
See more in PubMed
Campuzano S., Esteban-Fernández de Ávila B., Yáñez-Sedeño P., Pingarrón J.M., Wang J. Nano/microvehicles for efficient delivery and (bio)sensing at the cellular level. Chem. Sci. 2017;8:6750–6763. PubMed PMC
Esteban-Fernández de Avila B., Martín A., Soto F., Lopez-Ramirez M.A., Campuzano S., Vásquez-Machado G.M., Gao W., Zhang L., Wang J. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano. 2015;9:6756–6764. PubMed
Mayorga-Martinez C.C., Pumera M. Self-propelled tags for protein detection. Adv. Funct. Mater. 2020;30
Pacheco M., Jurado-Sánchez B., Escarpa A. Sensitive monitoring of enterobacterial contamination of food using self-propelled Janus microsensors. Anal. Chem. 2018;90:2912–2917. PubMed
Pacheco M., López M.Á., Jurado-Sánchez B., Escarpa A. Self-propelled micromachines for analytical sensing: a critical review. Anal. Bioanal. Chem. 2019;411:6561–6573. PubMed
Yuan K., López M.Á., Jurado-Sánchez B., Escarpa A. Janus micromotors coated with 2D nanomaterials as dynamic interfaces for (bio)-sensing. ACS Appl. Mater. Interfaces. 2020;12:46588–46597. PubMed
Jurado-Sánchez B., Escarpa A. Milli, micro and nanomotors: novel analytical tools for real-world applications. Trends Anal. Chem. 2016;84:48–59.
Karshalev E., Esteban-Fernandez de Avíla B., Wang J. Micromotors for “chemistry-on-the-fly. J. Am. Chem. Soc. 2018;140:3810–3820. PubMed
Li J., Pumera M. 3D printing of functional microrobots. Chem. Soc. Rev. 2021;50:2794–2838. doi: 10.1039/D0CS01062F. PubMed DOI
Chen X.-.Z., Jang B., Ahmed D., Hu C., C De Marco, Hoop M., Mushtaq F., Nelson B.J., Pané S. Small-scale machines driven by external power sources. Adv. Mater. 2018;30 PubMed
Mayorga-Martinez C.C., Vyskočil J., Novotný F., Pumera M. Light-driven Ti3C2 MXene micromotors: self-propelled autonomous machines for photodegradation of nitroaromatic explosives. J. Mater. Chem. A. 2021;9:14904–14910.
Mushtaq F., Guerrero M., Sakar M.S., Hoop M., Lindo A., Sort J., Chen X., Nelson B.J., Pellicer E., Pané S. Magnetically driven Bi2O3/BiOCl-based hybrid microrobots for photocatalytic water remediation. J. Mater. Chem. A. 2015;3:23670–23679.
Li J., Li T., Xu T., Kiristi M., Liu W., Wu Z., Wang J. Magneto–acoustic hybrid nanomotor. Nano Lett. 2015;15:4814–4821. PubMed
Dong M., Wang X., Chen X.-.Z., Mushtaq F., Deng S., Zhu C., Torlakcik H., Terzopoulou A., Qin X.-.H., Xiao X., Puigmartí-Luis J., Choi H., Pêgo A.P., Shen Q.-.D., Nelson B.J., Pané S. 3D-Printed soft magnetoelectric microswimmers for delivery and differentiation of neuron-like cells. Adv. Funct. Mater. 2020;30
Jang B., Hong A., Kang H.E., Alcantara C., Charreyron S., Mushtaq F., Pellicer E., Büchel R., Sort J., Lee S.S., Nelson B.J., Pané S. Multiwavelength light-responsive Au/B-TiO2 Janus micromotors. ACS Nano. 2017;11:6146–6154. PubMed
Chatzipirpiridis G., de Marco C., Pellicer E., Ergeneman O., Sort J., Nelson B.J., Pané S. Template-assisted electroforming of fully semi-hard-magnetic helical microactuators. Adv. Eng. Mater. 2018;20
Gu H., Boehler Q., Cui H., Secchi E., Savorana G., De Marco C., Gervasoni S., Peyron Q., Huang T.Y., Pane S., Hirt A.M., Ahmed D., Nelson B.J. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 2020;11:2637. PubMed PMC
Alcantara C.C.J., Kim S., Lee S., Jang B., Thakolkaran P., Kim J.Y., Choi H., Nelson B.J., Pané S. 3D Fabrication of fully iron magnetic microrobots. Small. 2019;15 PubMed
Mundaca-Uribe R., Esteban-Fernández de Ávila B., Holay M., Venugopalan P.L., Nguyen B., Zhou J., Abbas A., Fang R.H., Zhang L., Wang J. Zinc microrocket pills: fabrication and characterization toward active oral delivery. Adv. Healthc. Mater. 2020;9 PubMed
Tang S., Zhang F., Gong H., Wei F., Zhuang J., Karshalev E., Esteban-Fernández de Ávila B., Huang C., Zhou Z., Li Z., Yin L., Dong H., Fang R.H., Zhang X., Zhang L., Wang J. Enzyme-powered Janus platelet cell robots for active and targeted drug delivery. Sci. Robot. 2020;5:eaba6137. PubMed
Esteban-Fernández de Ávila B., Lopez-Ramirez M.A., Mundaca-Uribe R., Wei X., Ramírez-Herrera D.E., Karshalev E., Nguyen B., Fang R.H., Zhang L., Wang J. Multicompartment tubular micromotors toward enhanced localized active delivery. Adv. Mater. 2020;32 PubMed
Soto F., Karshalev E., Zhang F., Fernandez de Avila B.E., Nourhani A., Wang J. Smart materials for microrobots. Chem. Rev. 2021 doi: 10.1021/acs.chemrev.0c00999. PubMed DOI
Wang H., Pumera M. Fabrication of micro/nanoscale motors. Chem. Rev. 2015;115:8704–8735. PubMed
Gao W., Sattayasamitsathit S., Manesh K.M., Weihs D., Wang J. Magnetically powered flexible metal nanowire motors. J. Am. Chem. Soc. 2010;132:14403–14405. PubMed
Ji T., Liu Z., Wang G.Q., Guo X., khan S.A., Lai C., Chen H., Huang S., Xia S., Chen B., Jia H., Chen Y., Zhou Q. Detection of COVID-19: a review of the current literature and future perspectives. Biosens. Bioelectron. 2020;166 PubMed PMC
Kumar K.P.A., Pumera M. 3D-Printing to Mitigate COVID-19 Pandemic. Adv. Funct. Mater. 2021;31(22) doi: 10.1002/adfm.202100450. PubMed DOI PMC
Zhou H., Mayorga-Martinez C.C., Pane S., Zhang L., Pumera M. Magnetically Driven Micro and Nanorobots. Chem. Rev. 2021;121(8):4999–5041. doi: 10.1021/acs.chemrev.0c01234. PubMed DOI PMC
Seo G., Lee G., Kim M.J., Baek S.H., Choi M., Ku K.B., Lee C.S., Jun S., Park D., Kim H.G., Kim S.J., Lee J.O., Kim B.T., Park E.C., Kim S.I. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5135–5142. PubMed
Vyskočil J., Mayorga-Martinez C.C., Jablonská E., Novotný F., Ruml T., Pumera M. Cancer cells microsurgery via asymmetric bent surface Au/Ag/Ni microrobotic scalpels through a transversal rotating magnetic field. ACS Nano. 2020;14:8247–8256. PubMed
Chia H.L., Mayorga-Martinez C.C., Gusmão R., Novotny F., Webster R.D., Pumera M. A highly sensitive enzyme-less glucose sensor based on pnictogens and silver shell–gold core nanorod composites. Chem. Commun. 2020;56:7909–7912. PubMed
Novotný F., Plutnar J., Pumera M. Plasmonic self-propelled nanomotors for explosives detection via solution-based surface enhanced Raman scattering. Adv. Funct. Mater. 2019;29
Stefanik M., Strakova P., Haviernik J., Miller A.D., Ruzek D., Eyer L. Antiviral activity of vacuolar ATPase blocker diphyllin against SARS-CoV-2. Microorganisms. 2021;9:471. PubMed PMC
Luo M., Li S., Wan J., Yang C., Chen B., Guan J. Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on janus magnetic microparticles. Langmuir. 2020 doi: 10.1021/acs.langmuir.9b03315. PubMed DOI
Villa K., Krejčová L., Novotný F., Heger Z., Sofer Z., Pumera M. Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater. 2019;28
Cox K.L., Devanarayan V., Kriauciunas A., Manetta J., Montrose C., Sittampalam Sitta, et al. In: Eli Lilly & Company and the National Center For Advancing Translational Sciences. Markossian S., Grossman A., Brimacombe K., et al., editors. 2004. Immunoassay Methods. PubMed
Arqué X., Andrés X., Mestre R., Ciraulo B., Arroyo J.O., Quidant R., Patiño T., Sánchez S. Ionic species affect the self-propulsion of urease-powered micromotors. Research. 2020;2020 PubMed PMC
Yu J., Jin D., Chan K.-.F., Wang Q., K.Yuan L.Zhang. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat Commun. 2019;10:5631. PubMed PMC
Bockris J.O'M., Potter E.C. The mechanism of the cathodic hydrogen evolution reaction. J. Electrochem. Soc. 1952;99:169–186.
Vesborg P.C.K., Seger B., Chorkendorff I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. Phys. Chem. Lett. 2015;6:951–957. PubMed
Mayorga-Martinez C.C., Khezri B., Eng A.Y.S., Sofer Z., Ulbrich P., Pumera M. Bipolar electrochemical synthesis of WS2 nanoparticles and their application in magneto-immunosandwich assay. Adv. Funct. Mater. 2016;26:4094–4098.
Kiese S., Papppenberger A., Friess W., Mahler H.-.C. Not stirred: mechanical stress testing of an IgG1 antibody. J. Pharm. Sci. 2008;10:4347–4366. PubMed
Pedersen N.C. A review of feline infectious peritonitis virus infection: 1963-2008. J. Feline Med. Surg. 2009;11:225. PubMed PMC
Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption
Biocompatible micromotors for biosensing