Endophytic fungal communities and their biotechnological implications for agro-environmental sustainability
Language English Country United States Media print-electronic
Document type Journal Article, Review
Grant support
Development of Microbial Consortium as Bio-inoculants for Drought
Department of Environment, Science and Technology
Low Temperature Growing Crops for Organic Farming in Himachal Pradesh
Department of Environment, Science and Technology
PubMed
35122218
DOI
10.1007/s12223-021-00939-0
PII: 10.1007/s12223-021-00939-0
Knihovny.cz E-resources
- MeSH
- Ascomycota * metabolism MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Endophytes MeSH
- Fungi metabolism MeSH
- Mycobiome * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
See more in PubMed
Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25:107–123. https://doi.org/10.1016/j.ejpe.2015.03.011 DOI
Adhikari P, Pandey A (2019) Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere 9:2–9. https://doi.org/10.1016/j.rhisph.2018.11.002 DOI
Agrawal PK, Upadhyay P, Shrivastava R, Sharma S, Garlapati VK (2021) Evaluation of the ability of endophytic fungi from Cupressus torulosa to decolorize synthetic textile dyes. J Hazard Toxic Radioact Waste 25:06020005. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000569 DOI
Agrawal SCPK (2017) Decolorization of textile dye by laccase from newly isolated endophytic fungus Daldinia sp. Kavaka 48:33–41
Ahmad N, Hamayun M, Khan SA, Khan AL, Lee I-J, Shin D-H (2010) Gibberellin-producing endophytic fungi isolated from Monochoria vaginalis. J Microbiol Biotechnol 20:1744–1749. https://doi.org/10.4014/jmb.1005.05018 PubMed DOI
Akintokun A, Akande G, Akintokun P, Popoola T, Babalola A (2007) Solubilization of insoluble phosphate by organic acid-producing fungi isolated from Nigerian soil. Int J Soil Sci 2:301–307 DOI
Al-Ani LKT (2019) Recent patents on endophytic fungi and their international market. In: Singh H, Keswani C, Singh S (eds) Intellectual property issues in microbiology. Springer, Singapore, pp 271–284. https://doi.org/10.1007/978-981-13-7466-1_14 DOI
Ali R, Gul H, Hamayun M, Rauf M, Iqbal A, Shah M et al (2021) Aspergillus awamori ameliorates the physicochemical characteristics and mineral profile of mung bean under salt stress. Chem Biol Technol Agric 8:9. https://doi.org/10.1186/s40538-021-00208-9 DOI
Alina M, Azrina A, Mohd Yunus A, Mohd Zakiuddin S, Mohd Izuan Effendi H, Muhammad Rizal R (2012) Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int Food Res J 19:135–140
Alvarez A, Saez JM, Costa JSD, Colin VL, Fuentes MS, Cuozzo SA et al (2017) Actinobacteria: current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 166:41–62. https://doi.org/10.1016/j.chemosphere.2016.09.070 PubMed DOI
Alves L, Oliveira VL, Silva Filho GN (2010) Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt. Braz J Microbiol 41:676–684. https://doi.org/10.1590/S1517-83822010000300018 DOI
Amoozegar MA, Hajighasemi M, Hamedi J, Asad S, Ventosa A (2011) Azo dye decolorization by halophilic and halotolerant microorganisms. Ann Microbiol 61:217–230. https://doi.org/10.1007/s13213-010-0144-y DOI
Andrews SC, Robinson AK, Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS Microbiol Rev 27:215–237. https://doi.org/10.1016/S0168-6445(03)00055-X PubMed DOI
Aramsirirujiwet Y, Gumlangmak C, Kitpreechavanich V (2016) Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from Hottuynia cordata Thunb and screening for siderophore and indole-3-acetic acid production. Asia Pac J Sci Technol 21:55–66. https://doi.org/10.14456/kkurj.2016.5 DOI
Arey J, Atkinson R (2003) Photochemical reactions of PAHs in the atmosphere. In: Douben PET (ed) PAHs: an ecotoxicological perspective. Wiley, West Sussex, UK, pp 47–63. https://doi.org/10.1002/0470867132.ch4 DOI
Armah FA, Quansah R, Luginaah I (2014) A systematic review of heavy metals of anthropogenic origin in environmental media and biota in the context of gold mining in Ghana. Int Sch Res Notices 2014:1–37. https://doi.org/10.1155/2014/252148 DOI
Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112:970–978. https://doi.org/10.1289/ehp.6895 PubMed DOI
Aziz L, Hamayun M, Rauf M, Iqbal A, Arif M, Husssin A et al (2021a) Endophytic Aspergillus niger reprograms the physicochemical traits of tomato under cadmium and chromium stress. Environ Exp Bot 186:104456. https://doi.org/10.1016/j.envexpbot.2021.104456 DOI
Aziz L, Hamayun M, Rauf M, Iqbal A, Husssin A, Khan SA et al (2021b) Aspergillus Flavus reprogrammed morphological and chemical attributes of Solanum lycopersicum through SlGSH1 and SlPCS1 genes modulation under heavy metal stress. J Plant Interact 16:104–115. https://doi.org/10.1080/17429145.2021.1903105 DOI
Barranco FT, Saalfield SL, Tenbus FJ, Shedd BP (2012) Subsurface fate and transport of chemicals. In: Gulliver J (ed) Transport and fate of chemicals in the environment. Springer, New York, pp 335–368. https://doi.org/10.1007/978-1-4614-5731-2_13 DOI
Batzer JC, Mueller DS (2020) Soybean fungal endophytes Alternaria and Diaporthe spp are differentially impacted by fungicide application. Plant Dis 104:52–59. https://doi.org/10.1094/PDIS-05-19-1001-RE PubMed DOI
Ben Rhouma M, Kriaa M, Ben Nasr Y, Mellouli L, Kammoun R (2020) A new endophytic Fusarium oxysporum gibberellic acid: optimization of production using combined strategies of experimental designs and potency on tomato growth under stress condition. BioMed Res Int 2020:1–14. https://doi.org/10.1155/2020/4587148 DOI
Bhagat J, Kaur A, Sharma M, Saxena A, Chadha B (2012) Molecular and functional characterization of endophytic fungi from traditional medicinal plants. World J Microbiol Biotechnol 28:963–971. https://doi.org/10.1007/s11274-011-0894-0 PubMed DOI
Bhagyasree S, Ghosh S, Thippaiah M, Rajgopal N (2018) Survey on natural occurrence of endophytes in maize (Zea mays L) ecosystem. Int J Curr Microbiol App Sci 7:2526–2533. https://doi.org/10.20546/ijcmas.2018.701.303 DOI
Bhuiyan MAH, Suruvi NI, Dampare SB, Islam M, Quraishi SB, Ganyaglo S et al (2011) Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environ Monit Assess 175:633–649. https://doi.org/10.1007/s10661-010-1557-6 PubMed DOI
Biale J (1940) Effect of emanations from several species of fungi on respiration and color development of citrus fruits. Science 91:458–459 DOI
Bilal L, Asaf S, Hamayun M, Gul H, Iqbal A, Ullah I et al (2018) Plant growth promoting endophytic fungi Aspergillus fumigatus TS1 and Fusarium proliferatum BRL1 produce gibberellins and regulates plant endogenous hormones. Symbiosis 76:117–127. https://doi.org/10.1007/s13199-018-0545-4 DOI
Bilal S, Khan AL, Shahzad R, Asaf S, Kang S-M, Lee I-J (2017) Endophytic Paecilomyces formosus LHL10 augments Glycine max L. adaptation to Ni-contamination through affecting endogenous phytohormones and oxidative stress. Front Plant Sci 8:870. https://doi.org/10.3389/fpls.2017.00870 PubMed DOI
Bilal S, Shahzad R, Imran M, Jan R, Kim KM, Lee I-J (2020) Synergistic association of endophytic fungi enhances Glycine max L resilience to combined abiotic stresses: heavy metals, high temperature and drought stress. Ind Crops Prod 143:111931. https://doi.org/10.1016/j.indcrop.2019.111931 DOI
Bisby GR, Ainsworth GC (1943) The numbers of fungi. Trans Br Mycol Soc 26:16–19
Bulla LMC, Polonio JC, de Brito Portela-Castro AL, Kava V, Azevedo JL, Pamphile JA (2017) Activity of the endophytic fungi Phlebia sp. and Paecilomyces formosus in decolourisation and the reduction of reactive dyes’ cytotoxicity in fish erythrocytes. Environ Monit Assess 189:88. https://doi.org/10.1007/s10661-017-5790-0 PubMed DOI
Bungtongdee N, Sopalun K, Laosripaiboon W, Iamtham S (2019) The chemical composition, antifungal, antioxidant and antimutagenicity properties of bioactive compounds from fungal endophytes associated with Thai orchids. J Phytopathol 167:56–64. https://doi.org/10.1111/jph.12773 DOI
Burton EM, Knight J (2005) Survival of Penicillium bilaiae inoculated on canola seed treated with Vitavax RS and Extender. Biol Fert Soils 42:54–59. https://doi.org/10.1007/s00374-005-0862-7 DOI
Caruso G, Abdelhamid MT, Kalisz A, Sekara A (2020) Linking endophytic fungi to medicinal plants therapeutic activity. A Case Study on Asteraceae Agriculture 10:286. https://doi.org/10.3390/agriculture10070286 DOI
Chabukdhara M, Nema AK (2012) Assessment of heavy metal contamination in Hindon River sediments: a chemometric and geochemical approach. Chemosphere 87:945–953. https://doi.org/10.1016/j.chemosphere.2012.01.055 PubMed DOI
Chen Y, Xie X-G, Ren C-G, Dai C-C (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Biores Technol 129:568–574. https://doi.org/10.1016/j.biortech.2012.11.100 DOI
Choo J, Sabri NBM, Tan D, Mujahid A, Müller M (2015) Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park. Ocean Sci J 50:445–453. https://doi.org/10.1007/s12601-015-0040-2 DOI
Choudhary M, Kumar R, Datta A, Nehra V, Garg N (2017) Bioremediation of heavy metals by microbes. In: Arora S, Singh AK, Singh YP (eds) Bioremediation of salt affected soils: an Indian perspective. Springer International Publishing, Cham, pp 233–255. https://doi.org/10.1007/978-3-319-48257-6_12 DOI
Cirelli DP (1978) Patterns of pentachlorophenol usage in the United States of America — an overview. In: Rao KR (ed) Pentachlorophenol: chemistry, pharmacology, and environmental toxicology. Springer US, Boston, MA, pp 13–18. https://doi.org/10.1007/978-1-4615-8948-8_2 DOI
Cortés D, Barrios-González J, Tomasini A (2002) Pentachlorophenol tolerance and removal by Rhizopus nigricans in solid-state culture. Process Biochem 37:881–884. https://doi.org/10.1016/S0032-9592(01)00295-3 DOI
Dai C-C, Tian L-S, Zhao Y-T, Chen Y, Xie H (2010) Degradation of phenanthrene by the endophytic fungus Ceratobasidum stevensii found in Bischofia polycarpa. Biodegradation 21:245–255. https://doi.org/10.1007/s10532-009-9297-4 PubMed DOI
de Oliveira MG, de Freitas ALM, Pereira OL, da Silva IR, Vassilev NB, Costa MD (2014) Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann Microbiol 64:239–249. https://doi.org/10.1007/s13213-013-0656-3 DOI
de Souza LT, Cnossen-Fassoni A, Pereira OL, Mizubuti ESG, de Araújo EF, de Queiroz MV (2013) Novel and highly diverse fungal endophytes in soybean revealed by the consortium of two different techniques. J Microbiol 51:56–69. https://doi.org/10.1007/s12275-013-2356-x DOI
Deng Z, Cao L (2017) Fungal endophytes and their interactions with plants in phytoremediation: a review. Chemosphere 168:1100–1106. https://doi.org/10.1016/j.chemosphere.2016.10.097 PubMed DOI
Deng Z, Cao L, Huang H, Jiang X, Wang W, Shi Y et al (2011) Characterization of Cd-and Pb-resistant fungal endophyte Mucor sp. CBRF59 isolated from rapes (Brassica chinensis) in a metal-contaminated soil. J Hazard Mater 185:717–724. https://doi.org/10.1016/j.jhazmat.2010.09.078 PubMed DOI
Deng Z, Cao L, Zhang R, Wang W, Shi Y, Tan H et al (2014a) Enhanced phytoremediation of multi-metal contaminated soils by interspecific fusion between the protoplasts of endophytic Mucor sp CBRF59 and Fusarium sp CBRF14. Soil Biol Biochem 77:31–40. https://doi.org/10.1016/j.soilbio.2014.06.005 DOI
Deng Z, Zhang R, Shi Y, La Hu, Tan H, Cao L (2014b) Characterization of Cd-, Pb-, Zn-resistant endophytic Lasiodiplodia sp MXSF31 from metal accumulating Portulaca oleracea and its potential in promoting the growth of rape in metal-contaminated soils. Environ Sci Pollut Res 21:2346–2357. https://doi.org/10.1007/s11356-013-2163-2 DOI
Devi R, Kaur T, Guleria G, Rana KL, Kour D, Yadav N et al (2020a) Fungal secondary metabolites and their biotechnological applications for human health. In: Rastegari AA, Yadav AN, Yadav N (eds) New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, Amsterdam, pp 147–161. https://doi.org/10.1016/B978-0-12-820528-0.00010-7 DOI
Devi R, Kaur T, Kour D, Rana KL, Yadav A, Yadav AN (2020b) Beneficial fungal communities from different habitats and their roles in plant growth promotion and soil health. Microbial Biosystems 5:21–47. https://doi.org/10.21608/mb.2020.32802.1016 DOI
Ding X, Liu K, Deng B, Chen W, Li W, Liu F (2013) Isolation and characterization of endophytic fungi from Camptotheca acuminata. World J Microbiol Biotechnol 29:1831–1838. https://doi.org/10.1007/s11274-013-1345-x PubMed DOI
Dreyfuss MM, Chapela IH (1994) Potential of fungi in the discovery of novel, low-molecular weight pharmaceuticals. In: Gullo VP (ed) Discovery of novel natural products with therapeutic potential. Newnes, Boston, pp 49–80. https://doi.org/10.1016/B978-0-7506-9003-4.50009-5 DOI
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR et al (2005) Global consequences of land use. Science 309:570–574. https://doi.org/10.1126/science.1111772 PubMed DOI
Franz A, Burgstaller W, Schinner F (1991) Leaching with Penicillium simplicissimum: influence of metals and buffers on proton extrusion and citric acid production. Appl Environ Microbiol 57:769–774. https://doi.org/10.1128/aem.57.3.769-774.1991 PubMed DOI
Fu W, Xu M, Sun K, Hu L, Cao W, Dai C et al (2018) Biodegradation of phenanthrene by endophytic fungus Phomopsis liquidambari in vitro and in vivo. Chemosphere 203:160–169. https://doi.org/10.1016/j.chemosphere.2018.03.164 PubMed DOI
Fukushima M, Tatsumi K (2007) Degradation of pentachlorophenol in contaminated soil suspensions by potassium monopersulfate catalyzed oxidation by a supramolecular complex between tetra (p-sulfophenyl) porphineiron (III) and hydroxypropyl-β-cyclodextrin. J Hazard Mater 144:222–228. https://doi.org/10.1016/j.jhazmat.2006.10.013 PubMed DOI
Gamit D, Tank S (2014) Effect of siderophore producing microorganism on plant growth of Cajanus cajan (Pigeon pea). Int J Res Pure Appl Microbiol 4:20–27
Gane R (1934) Production of ethylene by some ripening fruits. Nature 134:1008–1008. https://doi.org/10.1038/1341008a0 DOI
Gao T, Qin D, Zuo S, Peng Y, Xu J, Yu B et al (2020) Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresour Bioprocess 7:53. https://doi.org/10.1186/s40643-020-00340-8 DOI
Garyali S, Kumar A, Reddy MS (2013) Taxol production by an endophytic fungus, Fusarium redolens, isolated from Himalayan yew. J Microbiol Biotechnol 23:1372–1380. https://doi.org/10.4014/jmb.1305.05070 PubMed DOI
Gaur AC, Mathur R (1990) Organic manures. In: Kumar V, Shotriya GC, Kaore SV (eds) Soil fertility and fertilizer use, vol IV. Nutrient management and supply system for sustaining agriculture. Indian Farmers Fertiliser Cooperative Limited, New Delhi, pp 149–159
Ghorbani A, Omran VOG, Razavi SM, Pirdashti H, Ranjbar M (2019) Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill) through amelioration of nutrient accumulation, K PubMed DOI
Ghorbani A, Tafteh M, Roudbari N, Pishkar L, Zhang W, Wu C (2021) Piriformospora indica augments arsenic tolerance in rice (Oryza sativa) by immobilizing arsenic in roots and improving iron translocation to shoots. Ecotoxicol Environ Safe 209:111793. https://doi.org/10.1016/j.ecoenv.2020.111793 DOI
Ghosh SK, Banerjee S, Sengupta C (2017) Bioassay, characterization and estimation of siderophores from some important antagonistic fungi. J Biopestic 10:105–112
Giri B, Giang PH, Kumari R, Prasad R, Varma A (2005) Microbial diversity in soils. In: Varma A, Buscot F (eds) Microorganisms in soils: roles in genesis and functions. Springer, Berlin, Heidelberg, pp 19–55. https://doi.org/10.1007/3-540-26609-7_2 DOI
Gond SK, Mishra A, Sharma VK, Verma SK, Kumar J, Kharwar RN et al (2012) Diversity and antimicrobial activity of endophytic fungi isolated from Nyctanthes arbor-tristis, a well-known medicinal plant of India. Mycoscience 53:113–121. https://doi.org/10.1007/s10267-011-0146-z DOI
González-Teuber M, Vilo C, Guevara-Araya MJ, Salgado-Luarte C, Gianoli E (2020) Leaf resistance traits influence endophytic fungi colonization and community composition in a South American temperate rainforest. J Ecol 108:1019–1029. https://doi.org/10.1111/1365-2745.13314 DOI
Gurjeet P, Kothiyal N, Kumar V (2014) Bioremediation of some polycyclic aromatic hydrocarbons (PAH) from soil using Sphingobium indicum, Sphingobium japonicum and Stenotrophomonas maltophilia bacterial strains under aerobic conditions. J Environ Res Dev 8:395–404
Hajong S, Kapoor R (2020) An amalgam of pathogenic and beneficial endophytic fungi colonizing four Dendrobium species from Meghalaya, India. J Basic Microbiol 60:415–423. https://doi.org/10.1002/jobm.201900631 PubMed DOI
Hamayun M, Hussain A, Iqbal A, Khan SA, Khan MA, Lee IJ (2021) An endophytic fungus Gliocladium cibotii regulates metabolic and antioxidant system of Glycine max and Helianthus annuus under heat stress. Polish J Environ Stud 30:1631–1640. https://doi.org/10.15244/pjoes/125770 DOI
Hamayun M, Hussain A, Khan SA, Kim HY, Khan AL, Waqas M et al (2017) Gibberellins producing endophytic fungus Porostereum spadiceum AGH786 rescues growth of salt affected soybean. Front Microbiol 8:686. https://doi.org/10.3389/fmicb.2017.00686 PubMed DOI
Hamayun M, Khan SA, Ahmad N, Tang D-S, Kang S-M, Na C-I et al (2009a) Cladosporium sphaerospermum as a new plant growth-promoting endophyte from the roots of Glycine max (L.) Merr. World J Microbiol Biotechnol 25:627–632. https://doi.org/10.1007/s11274-009-9982-9 DOI
Hamayun M, Khan SA, Iqbal I, Ahmad B, Lee I-J (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207. https://doi.org/10.4014/jmb.0905.05040 PubMed DOI
Hamayun M, Khan SA, Khan AL, Rehman G, Sohn E-Y, Shah AA et al (2009b) Phoma herbarum as a new gibberellin-producing and plant growth-promoting fungus. J Microbiol Biotechnol 19:1244–1249. https://doi.org/10.4014/jmb.0901.030 PubMed DOI
Hamilton CE (2014) Exploring the utilization of complex algal communities to address algal pond crash and increase annual biomass production for algal biofuels. US Dept of Energy (DOE), Washington, DC. https://doi.org/10.2172/1220809 DOI
Hamzah TNT, Lee SY, Hidayat A, Terhem R, Faridah-Hanum I, Mohamed R (2018) Diversity and characterization of endophytic fungi isolated from the tropical mangrove species Rhizophora mucronata and identification of potential antagonists against the soil-borne fungus Fusarium solani. Front Microbiol 9:1707. https://doi.org/10.3389/fmicb.2018.01707 PubMed DOI
Hassan SE-D (2017) Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L. J Adv Res 8:687–695. https://doi.org/10.1016/j.jare.2017.09.001 PubMed DOI
Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude significance and conservation. Mycol Res 95(6):641–655. https://doi.org/10.1016/S0953-7562(09)80810-1
Hawksworth DL (2004) Fungal diversity and its implications for genetic resource collections. Stud Mycol 50:9–18
He W, Megharaj M, Wu C-Y, Subashchandrabose SR, Dai C-C (2020) Endophyte-assisted phytoremediation: mechanisms and current application strategies for soil mixed pollutants. Crit Rev Biotechnol 40:31–45. https://doi.org/10.1080/07388551.2019.1675582 PubMed DOI
Husna HA, Shah M, Hamayun M, Qadir M, Iqbal A (2021) Heavy metal tolerant endophytic fungi Aspergillus welwitschiae improves growth, ceasing metal uptake and strengthening antioxidant system in Glycine max L. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-16640-1 DOI
Impullitti A, Malvick D (2013) Fungal endophyte diversity in soybean. J Appl Microbiol 114:1500–1506. https://doi.org/10.1111/jam.12164 PubMed DOI
Iovdijová A, Bencko V (2010) Potential risk of exposure to selected xenobiotic residues and their fate in the food chain-Part I: Classification of xenobiotics. Ann Agric Environ Med 17:183–192 PubMed
Ismail HM, Hussain A, Iqbal A, Khan SA, Ahmad A et al (2021) Aspergillus foetidus regulated the biochemical characteristics of soybean and sunflower under heat stress condition: role in sustainability. Sustainability 13:7159. https://doi.org/10.3390/su13137159 DOI
Jaber LR (2018) Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta 248:1525–1535. https://doi.org/10.1007/s00425-018-2991-x PubMed DOI
Juybari HZ, Tajick Ghanbary MA, Rahimian H, Karimi K, Arzanlou M (2019) Seasonal, tissue and age influences on frequency and biodiversity of endophytic fungi of Citrus sinensis in Iran. For Pathol 49:e12559. https://doi.org/10.1111/efp.12559 DOI
Kannangara S, Ambadeniya P, Undugoda L, Abeywickrama K (2016) Polyaromatic hydrocarbon degradation of moss endophytic fungi isolated from Macromitrium sp. in Sri Lanka. J Agric Sci Technol A 6:171–182. https://doi.org/10.17265/2161-6256/2016.03.004 DOI
Katoch M, Pull S (2017) Endophytic fungi associated with Monarda citriodora, an aromatic and medicinal plant and their biocontrol potential. Pharm Biol 55:1528–1535. https://doi.org/10.1080/13880209.2017.1309054 PubMed DOI
Kaul S, Gupta S, Ahmed M, Dhar MK (2012) Endophytic fungi from medicinal plants: a treasure hunt for bioactive metabolites. Phytochem Rev 11:487–505. https://doi.org/10.1007/s11101-012-9260-6 DOI
Kaur T, Devi R, Kour D, Yadav A, Yadav AN, Dikilitas M et al (2021) Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia 76:2687–2709. https://doi.org/10.1007/s11756-021-00806-w DOI
Kavroulakis N, Ntougias S, Zervakis GI, Ehaliotis C, Haralampidis K, Papadopoulou KK (2007) Role of ethylene in the protection of tomato plants against soil-borne fungal pathogens conferred by an endophytic Fusarium solani strain. J Exp Bot 58:3853–3864. https://doi.org/10.1093/jxb/erm230 PubMed DOI
Keyser CA, Jensen B, Meyling NV (2016) Dual effects of Metarhizium spp. and Clonostachys rosea against an insect and a seed-borne pathogen in wheat. Pest Manag Sci 72:517–526. https://doi.org/10.1002/ps.4015 PubMed DOI
Khalmuratova I, Kim H, Nam Y-J, Oh Y, Jeong M-J, Choi H-R et al (2015) Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 43:373–383. https://doi.org/10.5941/MYCO.2015.43.4.373 PubMed DOI
Khan AL, Al-Harrasi A, Al-Rawahi A, Al-Farsi Z, Al-Mamari A, Waqas M et al (2016) Endophytic fungi from Frankincense tree improves host growth and produces extracellular enzymes and indole acetic acid. PLoS ONE 11:e0158207. https://doi.org/10.1371/journal.pone.0158207 PubMed DOI
Khan AL, Hamayun M, Kang S-M, Kim Y-H, Jung H-Y, Lee J-H et al (2012) Endophytic fungal association via gibberellins and indole acetic acid can improve plant growth under abiotic stress: an example of Paecilomyces formosus LHL10. BMC Microbiol 12:3. https://doi.org/10.1186/1471-2180-12-3 PubMed DOI
Khan AL, Hamayun M, Kim Y-H, Kang S-M, Lee J-H, Lee I-J (2011) Gibberellins producing endophytic Aspergillus fumigatus sp. LH02 influenced endogenous phytohormonal levels, isoflavonoids production and plant growth in salinity stress. Process Biochem 46:440–447. https://doi.org/10.1016/j.procbio.2010.09.013 DOI
Khan AL, Lee I-J (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L growth during copper stress. BMC Plant Biol 13:86. https://doi.org/10.1186/1471-2229-13-86 PubMed DOI
Khan AR, Ullah I, Waqas M, Park G-S, Khan AL, Hong S-J et al (2017a) Host plant growth promotion and cadmium detoxification in Solanum nigrum, mediated by endophytic fungi. Ecotoxicol Environ Safe 136:180–188. https://doi.org/10.1016/j.ecoenv.2016.03.014 DOI
Khan AR, Ullah I, Waqas M, Shahzad R, Hong S-J, Park G-S et al (2015) Plant growth-promoting potential of endophytic fungi isolated from Solanum nigrum leaves. World J Microbiol Biotechnol 31:1461–1466. https://doi.org/10.1007/s11274-015-1888-0 PubMed DOI
Khan AR, Waqas M, Ullah I, Khan AL, Khan MA, Lee I-J et al (2017b) Culturable endophytic fungal diversity in the cadmium hyperaccumulator Solanum nigrum L and their role in enhancing phytoremediation. Environ Exp Bot 135:126–135. https://doi.org/10.1016/j.envexpbot.2016.03.005 DOI
Khan SA, Hamayun M, Kim HY, Yoon HJ, Lee IJ, Kim JG (2009) Gibberellin production and plant growth promotion by a newly isolated strain of Gliomastix murorum. World J Microbiol Biotechnol 25:829–833. https://doi.org/10.1007/s11274-009-9981-x DOI
Khatabi B, Molitor A, Lindermayr C, Pfiffi S, Durner J, Von Wettstein D et al (2012) Ethylene supports colonization of plant roots by the mutualistic fungus Piriformospora indica. PLoS ONE 7:e35502. https://doi.org/10.1371/journal.pone.0035502 PubMed DOI
Khiralla A, Spina R, Yagi S, Mohamed L, Laurain-Mattar D (2016) Endophytic fungi: occurrence, classification, function and natural products. In: Hughes E (ed) Endophytic fungi: diversity, characterization and biocontrol. Nova Science Publishers, New York, pp 1–38
Kieber JJ (2002) Tribute to Folke Skoog: recent advances in our understanding of cytokinin biology. J Plant Growth Regul 21:1–2. https://doi.org/10.1007/s003440010059 PubMed DOI
Kim KY, Jordan D, Krishnan HB (1997) Rahnella aquatilis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277. https://doi.org/10.1111/j.1574-6968.1997.tb12585.x DOI
Kothe E, Dimkpa C, Haferburg G, Schmidt A, Schmidt A, Schütze E (2010) Streptomycete heavy metal resistance: extracellular and intracellular mechanisms. In: Ekonomou L, Karampelas P (eds) Electricity distribution. energy systems. Springer, Berlin, Heidelberg, pp 225–235. https://doi.org/10.1007/978-3-662-49434-9_12 DOI
Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D et al (2021a) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Poll Res 28:24917–24939. https://doi.org/10.1007/s11356-021-13252-7 DOI
Kour D, Rana KL, Kaur T, Yadav N, Yadav AN, Kumar M et al (2021b) Biodiversity, current developments and potential biotechnological applications of phosphorus-solubilizing and -mobilizing microbes: a review. Pedosphere 31:43–75. https://doi.org/10.1016/S1002-0160(20)60057-1 DOI
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V et al (2020) Microbial biofertilizers: bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatal Agric Biotechnol 23:101487. https://doi.org/10.1016/j.bcab.2019.101487 DOI
Krishnamurthy YL, Naik BS (2017) Endophytic fungi bioremediation. In: Maheshwari DK, Annapurna K (eds) Endophytes: crop productivity and protection, vol 2. Springer International Publishing, Cham, pp 47–60. https://doi.org/10.1007/978-3-319-66544-3_3 DOI
Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8:e71805. https://doi.org/10.1371/journal.pone.0071805 PubMed DOI
Kumar A, Yadav AN, Mondal R, Kour D, Subrahmanyam G, Shabnam AA et al (2021) Myco-remediation: a mechanistic understanding of contaminants alleviation from natural environment and future prospect. Chemosphere 284:131325. https://doi.org/10.1016/j.chemosphere.2021.131325 PubMed DOI
Kumar M, Prasad R, Goyal P, Teotia P, Tuteja N, Varma A et al (2017) Environmental biodegradation of xenobiotics: role of potential microflora. In: Hashmi MZ, Kumar V, Varma A (eds) Xenobiotics in the soil environment: monitoring, toxicity and management. Springer International Publishing, Cham, pp 319–334. https://doi.org/10.1007/978-3-319-47744-2_21 DOI
Kumar S, Kaushik N (2013) Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. PLoS ONE 8:e56202. https://doi.org/10.1371/journal.pone.0056202 PubMed DOI
Kumaran RS, Kim HJ, Hur B-K (2010) Taxol promising fungal endophyte, Pestalotiopsis species isolated from Taxus cuspidata. J Biosci Bioeng 110:541–546. https://doi.org/10.1016/j.jbiosc.2010.06.007 PubMed DOI
Kusari S, Zühlke S, Spiteller M (2011) Effect of artificial reconstitution of the interaction between the plant Camptotheca acuminata and the fungal endophyte Fusarium solani on camptothecin biosynthesis. J Nat Prod 74:764–775. https://doi.org/10.1021/np1008398 PubMed DOI
Li P, Yang G, Qiu Y, Lin L, Dong F (2015) Paeonol produced by Chaetomium sp., an endophytic fungus isolated from Paeonia suffruticosa. Phytochem Lett 13:334–342. https://doi.org/10.1016/j.phytol.2015.07.019 DOI
Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochim Cosmochim Acta 72:87–98. https://doi.org/10.1016/j.gca.2007.10.005 DOI
Lin X, Huang YJ, Zheng ZH, Su WJ, Qian XM, Shen YM (2010) Endophytes from the pharmaceutical plant, Annona squamosa: isolation, bioactivity, identification and diversity of its polyketide synthase gene. Fungal Diver 41:41–51. https://doi.org/10.1007/s13225-010-0017-5 DOI
Ling OM, Teen LP, Mujahid A, Proksch P, Muller M (2016) Initial screening of mangrove endophytic fungi for antimicrobial compounds and heavy metal biosorption potential. Sains Malays 45:1063–1070
Liu K, Ding X, Deng B, Chen W (2009) Isolation and characterization of endophytic taxol-producing fungi from Taxus chinensis. J Ind Microbiol Biotechnol 36:1171. https://doi.org/10.1007/s10295-009-0598-8 PubMed DOI
Lopes-Assad ML, Avansini SH, Rosa MM, De Carvalho JR, Ceccato-Antonini SR (2010) The solubilization of potassium-bearing rock powder by Aspergillus niger in small-scale batch fermentations. Can J Microbiol 56:598–605. https://doi.org/10.1139/W10-044 PubMed DOI
M’rassi AG, Bensalah F, Gury J, Duran R (2015) Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. Environ Sci Pollut Res 22:15332–15346. https://doi.org/10.1007/s11356-015-4343-8 DOI
Mahdi SS, Hassan G, Samoon S, Rather H, Dar SA, Zehra B (2010) Bio-Fertilizers in Organic Agriculture J Phytol 2:42–54
Man B, Wang H, Yun Y, Xiang X, Wang R, Duan Y et al (2018) Diversity of fungal communities in Heshang Cave of central China revealed by mycobiome-sequencing. Front Microbiol 9:1400. https://doi.org/10.3389/fmicb.2018.01400 PubMed DOI
Manoharachary C, Sridhar K, Singh R, Adholeya A, Suryanarayanan T, Rawat S et al (2005) Fungal biodiversity: distribution, conservation and prospecting of fungi from India. Curr Sci 89:58–71
Martin GW (1951) The numbers of fungi. Proc Iowa Acad Sci 58:175–178
Martin S, Griswold W (2009) Human health effects of heavy metals. Environ Sci Technol 15:1–6
Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 35:133–141. https://doi.org/10.1016/S0038-0717(02)00247-X DOI
Masih A, Taneja A (2006) Polycyclic aromatic hydrocarbons (PAHs) concentrations and related carcinogenic potencies in soil at a semi-arid region of India. Chemosphere 65:449–456. https://doi.org/10.1016/j.chemosphere.2006.01.062 PubMed DOI
Mehmood A, Hussain A, Irshad M, Hamayun M, Iqbal A, Khan N (2019) In vitro production of IAA by endophytic fungus Aspergillus awamori and its growth promoting activities in Zea mays. Symbiosis 77:225–235. https://doi.org/10.1007/s13199-018-0583-y DOI
Meiser A, Bálint M, Schmitt I (2014) Meta-analysis of deep-sequenced fungal communities indicates limited taxon sharing between studies and the presence of biogeographic patterns. New Phytol 201:623–635. https://doi.org/10.1111/nph.12532 PubMed DOI
Mercado-Blanco J, Lugtenberg BJJ (2014) Biotechnological applications of bacterial endophytes. Curr Biotechnol 3:60–75 DOI
Moore JW, Ramamoorthy S (1984) Nickel. In: Moore JW, Ramamoorthy S (eds) Heavy metals in natural waters. Springer, New York, pp 161–181. https://doi.org/10.1007/978-1-4612-5210-8_8 DOI
Nagda V, Gajbhiye A, Kumar D (2017) Isolation and characterization of endophytic fungi from Calotropis procera for their antioxidant activity. Asian J Pharm Clin Res 10:254–258. https://doi.org/10.22159/ajpcr.2017.v10i3.16125 DOI
Naik BS, Shashikala J, Krishnamurthy Y (2009) Study on the diversity of endophytic communities from rice (Oryza sativa L.) and their antagonistic activities in vitro. Microbiol Res 164:290–296. https://doi.org/10.1016/j.micres.2006.12.003 PubMed DOI
Nath R, Sharma G, Barooah M (2012) Efficiency of tricalcium phosphate solubilization by two different endophytic Penicillium sp. isolated from tea (Camellia sinensis L). Eur J Exp Biol 2:1354–1358
Navada KK, Sanjeev G, Kulal A (2018) Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeterior Biodegradation 132:241–250. https://doi.org/10.1016/j.ibiod.2018.04.012 DOI
Ngieng NS, Zulkharnain A, Roslan HA, Husaini A (2013) Decolourisation of synthetic dyes by endophytic fungal flora isolated from senduduk plant (Melastoma malabathricum). Int Sch Res Notices 2013:1–7. https://doi.org/10.5402/2013/260730 DOI
Numponsak T, Kumla J, Suwannarach N, Matsui K, Lumyong S (2018) Biosynthetic pathway and optimal conditions for the production of indole-3-acetic acid by an endophytic fungus, Colletotrichum fructicola CMU-A109. PLoS ONE 13:e0205070. https://doi.org/10.1371/journal.pone.0205070 PubMed DOI
Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390:53–57. https://doi.org/10.1016/j.scitotenv.2007.09.031 PubMed DOI
Oberegger H, Schoeser M, Zadra I, Abt B, Haas H (2001) SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans. Mol Microbiol 41:1077–1089. https://doi.org/10.1046/j.1365-2958.2001.02586.x PubMed DOI
Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P et al (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS ONE 7:e34847. https://doi.org/10.1371/journal.pone.0034847 PubMed DOI
Owen NL, Hundley N (2004) Endophytes—the chemical synthesizers inside plants. Sci Prog 87:79–99. https://doi.org/10.3184/F003685004783238553 PubMed DOI
Pal S, Singh H, Farooqui A, Rakshit A (2015) Fungal biofertilizers in Indian agriculture: perception, demand and promotion. J Eco-Friendly Agric 10:101–113
Palem PP, Kuriakose GC, Jayabaskaran C (2015) An endophytic fungus, Talaromyces radicus, isolated from Catharanthus roseus, produces vincristine and vinblastine, which induce apoptotic cell death. PLoS ONE 10:e0144476. https://doi.org/10.1371/journal.pone.0144476 PubMed DOI
Park J-H, Choi GJ, Lee HB, Kim KM, Jung HS, Lee SW et al (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117
Parthasarathy R, Shanmuganathan R, Pugazhendhi A (2020) Vinblastine production by the endophytic fungus Curvularia verruculosa from the leaves of Catharanthus roseus and its in vitro cytotoxicity against HeLa cell line. Anal Biochem 593:113530. https://doi.org/10.1016/j.ab.2019.113530 PubMed DOI
Potshangbam M, Devi SI, Sahoo D, Strobel GA (2017) Functional characterization of endophytic fungal community associated with Oryza sativa L and Zea mays L. Front Microbiol 8:325. https://doi.org/10.3389/fmicb.2017.00325 PubMed DOI
Pu X, Qu X, Chen F, Bao J, Zhang G, Luo Y (2013) Camptothecin-producing endophytic fungus Trichoderma atroviride LY357: isolation, identification, and fermentation conditions optimization for camptothecin production. Appl Microbiol Biotechnol 97:9365–9375. https://doi.org/10.1007/s00253-013-5163-8 PubMed DOI
Qadri M, Johri S, Shah BA, Khajuria A, Sidiq T, Lattoo SK et al (2013) Identification and bioactive potential of endophytic fungi isolated from selected plants of the Western Himalayas. Springerplus 2:8. https://doi.org/10.1186/2193-1801-2-8 PubMed DOI
Ran X, Zhang G, Li S, Wang J (2017) Characterization and antitumor activity of camptothecin from endophytic fungus Fusarium solani isolated from Camptotheca acuminate. Afr Health Sci 17:566–574. https://doi.org/10.4314/ahs.v17i2.34 PubMed DOI
Rana KL, Kour D, Kaur T, Devi R, Negi C, Yadav AN et al (2020a) Endophytic fungi from medicinal plants: biodiversity and biotechnological applications. In: Kumar A, Radhakrishnan E (eds) Microbial endophytes. Woodhead Publishing, Cambridge, MA, pp 273–305. https://doi.org/10.1016/B978-0-12-819654-0.00011-9 DOI
Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020b) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107. https://doi.org/10.1007/s10482-020-01429-y PubMed DOI
Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN et al (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and enzymes perspectives. Springer, Switzerland, pp 1–62. https://doi.org/10.1007/978-3-030-10480-1_1 DOI
Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V et al (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances inendophytic fungal research: present status and future challenges. Springer International Publishing, Cham, pp 105–144. https://doi.org/10.1007/978-3-030-03589-1_6 DOI
Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162
Rastegari AA, Yadav AN, Yadav N (2020) New and future developments in microbial biotechnology and bioengineering: trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Amsterdam
Rauf M, Awais M, Din AU, Ali K, Gul H, Rahman MM et al (2020) Molecular mechanisms of the 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing Trichoderma asperellum MAP1 in enhancing wheat tolerance to waterlogging stress. Front Plant Sci 11:2213. https://doi.org/10.3389/fpls.2020.614971 DOI
Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5:182–189. https://doi.org/10.1016/S2221-1691(15)30003-4 DOI
Riccardi C, Di Filippo P, Pomata D, Di Basilio M, Spicaglia S, Buiarelli F (2013) Identification of hydrocarbon sources in contaminated soils of three industrial areas. Sci Total Environ 450–451:13–21. https://doi.org/10.1016/j.scitotenv.2013.01.082 PubMed DOI
Rinu K, Sati P, Pandey A (2014) Trichoderma gamsii (NFCCI 2177): a newly isolated endophytic, psychrotolerant, plant growth promoting, and antagonistic fungal strain. J Basic Microbiol 54:408–417. https://doi.org/10.1002/jobm.201200579 PubMed DOI
Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59. https://doi.org/10.1017/S0269915X04002010 DOI
Rivera-Orduña FN, Suarez-Sanchez RA, Flores-Bustamante ZR, Gracida-Rodriguez JN, Flores-Cotera LB (2011) Diversity of endophytic fungi of Taxus globosa (Mexican yew). Fungal Diver 47:65–74. https://doi.org/10.1007/s13225-010-0045-1 DOI
Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999. https://doi.org/10.1007/s11356-015-4294-0 DOI
Salazar-Ramírez G, Flores-Vallejo RdC, Rivera-Leyva JC, Tovar-Sánchez E, Sánchez-Reyes A, Mena-Portales J et al (2020) Characterization of fungal endophytes isolated from the metal hyperaccumulator plant Vachellia farnesiana growing in mine tailings. Microorganisms 8:226. https://doi.org/10.3390/microorganisms8020226 DOI
Saleem H, Mohsin H, Tanvir R, Rehman Y (2020) Culturable endophytic fungal communities associated with cereal crops and their role in plant growth promotion. In: Yadav AN, Singh J, Rastegari AA, Yadav N (eds) Plant microbiomes for sustainable agriculture. Springer International Publishing, Cham, pp 53–77. https://doi.org/10.1007/978-3-030-38453-1_2 DOI
Schön ME, Nieselt K, Garnica S (2018) Belowground fungal community diversity and composition associated with Norway spruce along an altitudinal gradient. PLoS ONE 13:e0208493. https://doi.org/10.1371/journal.pone.0208493 PubMed DOI
Schulz B, Boyle C (2005) The endophytic continuum. Mycol Res 109:661–686 DOI
Schulz B, Boyle C, Draeger S, Römmert A-K, Krohn K (2002) Endophytic fungi: a source of novel biologically active secondary metabolites. Mycol Res 106:996–1004. https://doi.org/10.1017/S0953756202006342 DOI
Selim KA, Nagia M, Ghwas DEE (2017) Endophytic fungi are multifunctional biosynthesizers: ecological role and chemical diversity. In: Hughes E (ed) Endophytic fungi: diversity, characterization and biocontrol. Nova Publishers, New York The United States, pp 39–91
Shahabivand S, Parvaneh A, Aliloo AA (2017) Root endophytic fungus Piriformospora indica affected growth, cadmium partitioning and chlorophyll fluorescence of sunflower under cadmium toxicity. Ecotoxicol Environ Safe 145:496–502. https://doi.org/10.1016/j.ecoenv.2017.07.064 DOI
Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D. Don. 3 Biotech 6:210. https://doi.org/10.1007/s13205-016-0518-3 PubMed DOI
Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2:587. https://doi.org/10.1186/2193-1801-2-587 PubMed DOI
Shi Y, Xie H, Cao L, Zhang R, Xu Z, Wang Z et al (2017) Effects of Cd- and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environ Sci Pollut Res 24:417–426. https://doi.org/10.1007/s11356-016-7693-y DOI
Shweta S, Zuehlke S, Ramesha B, Priti V, Kumar PM, Ravikanth G et al (2010) Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E Mey ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 71:117–122. https://doi.org/10.1016/j.phytochem.2009.09.030 PubMed DOI
Sim CSF, Cheow YL, Ng SL, Ting ASY (2018) Discovering metal-tolerant endophytic fungi from the phytoremediator plant phragmites. Water Air Soil Pollut 229:68. https://doi.org/10.1007/s11270-018-3733-1 DOI
Singh A, Kumar R, Yadav AN, Mishra S, Sachan S, Sachan SG (2020) Tiny microbes, big yields: microorganisms for enhancing food crop production sustainable development. In: Rastegari AA, Yadav AN, Yadav N (eds) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Amsterdam, pp 1–15. https://doi.org/10.1016/B978-0-12-820526-6.00001-4 DOI
Somjaipeng S, Medina A, Kwaśna H, Ordaz Ortiz J, Magan N (2015) Isolation, identification, and ecology of growth and taxol production by an endophytic strain of Paraconiothyrium variabile from English yew trees (Taxus baccata). Fungal Biol 119:1022–1031. https://doi.org/10.1016/j.funbio.2015.07.007 PubMed DOI
Spagnoletti FN, Tobar N, Di Pardo AF, Chiocchio VM, Lavado RS (2017) Dark septate endophytes present different potential to solubilize calcium, iron and aluminum phosphates. Appl Soil Ecol 111:25–32. https://doi.org/10.1016/j.apsoil.2016.11.010 DOI
Srinivasa Gowd S, Ramakrishna Reddy M, Govil PK (2010) Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J Hazard Mater 174:113–121. https://doi.org/10.1016/j.jhazmat.2009.09.024 PubMed DOI
Srivastav S, Yadav K, Kundu B (2004) Prospects of using phosphate solubilizing Pseudomonas as biofungicide. Indian J Microbiol 44:91–94
Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216. https://doi.org/10.1126/science.8097061 PubMed DOI
Subba Roa N (2001) An appraisal of biofertilizers in India. In: Kannaiyan S (ed) The biotechnology of biofertilizers. Narosa Pub. House, New Delhi
Suebrasri T, Harada H, Jogloy S, Ekprasert J, Boonlue S (2020) Auxin-producing fungal endophytes promote growth of sunchoke. Rhizosphere 16:100271. https://doi.org/10.1016/j.rhisph.2020.100271 DOI
Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, vol 1. Research perspectives. Springer India, New Delhi, pp 117–143. https://doi.org/10.1007/978-81-322-2647-5_7 DOI
Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Diver 54:19–30. https://doi.org/10.1007/s13225-012-0168-7 DOI
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K et al (2021) Himalayan microbiomes for agro-environmental sustainability: current perspectives and future challenges. Microb Ecol. https://doi.org/10.1007/s00248-021-01849-x PubMed DOI
Talbot JM, Bruns TD, Taylor JW, Smith DP, Branco S, Glassman SI et al (2014) Endemism and functional convergence across the North American soil mycobiome. Proceed Natl Acad Sci 111:6341–6346. https://doi.org/10.1073/pnas.1402584111 DOI
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R et al (2014) Global diversity and geography of soil fungi. Science 346:1256688. https://doi.org/10.1126/science.1256688 PubMed DOI
Tenguria RK, Firodiya A (2013) Diversity of endophytic fungi in leaves of Glycine max (L) merr from central region of Madhya Pradesh. World J Pharm Pharm Sci 2:5928–5934
Tian H, Ma YJ, Li WY, Wang JW (2018) Efficient degradation of triclosan by an endophytic fungus Penicillium oxalicum B4. Environ Sci Pollut Res 25:8963–8975. https://doi.org/10.1007/s11356-017-1186-5 DOI
Tian L-S, Dai C, Zhao Y, Zhao M, Yong Y, Wang X (2007) The degradation of phenanthrene by endophytic fungi Phomopsis sp single and co-cultured with rice. China Environ Sci 27:757–762
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN (2020) Phytohormones producing fungal communities: metabolic engineering for abiotic stress tolerance in crops. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, vol 1. Perspective for diversity and crop productivity. Springer, Cham, pp 1–25. https://doi.org/10.1007/978-3-030-45971-0_8 DOI
Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal phytohormones. In: Osiewacz HD (ed) Industrial applications. Springer, Berlin, Heidelberg, pp 183–211. https://doi.org/10.1007/978-3-662-10378-4_9 DOI
Venkateswarulu N, Shameer S, Bramhachari P, Basha ST, Nagaraju C, Vijaya T (2018) Isolation and characterization of plumbagin (5-hydroxyl-2-methylnaptalene-1, 4-dione) producing endophytic fungi Cladosporium delicatulum from endemic medicinal plants. Biotechnol Rep 20:e00282. https://doi.org/10.1016/j.btre.2018.e00282 DOI
Verma A, Johri B, Prakash A (2014) Antagonistic evaluation of bioactive metabolite from endophytic fungus, Aspergillus flavipes KF671231. J Mycol 2014:5
Verma P, Verma P, Sagar R (2013) Variations in N mineralization and herbaceous species diversity due to sites, seasons, and N treatments in a seasonally dry tropical environment of India. For Ecol Manag 297:15–26. https://doi.org/10.1016/j.foreco.2013.02.006 DOI
Verma SK, Kumar A, Lal M, Debnath M (2015) Biodegradation of synthetic dye by endophytic fungal isolate in Calotropis procera root. Int J Appl Sci Biotechnol 3:373–380. https://doi.org/10.3126/ijasbt.v3i3.13136 DOI
Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium spp closely associated with wheat roots. Biol Fert Soils 40:36–43. https://doi.org/10.1007/s00374-004-0750-6 DOI
Wang Y, Zeng QG, Zhang ZB, Yan RM, Wang LY, Zhu D (2011) Isolation and characterization of endophytic huperzine A-producing fungi from Huperzia serrata. J Ind Microbiol Biotechnol 38:1267–1278. https://doi.org/10.1007/s10295-010-0905-4 PubMed DOI
Waqas M, Khan AL, Hamayun M, Shahzad R, Kang S-M, Kim J-G et al (2015) Endophytic fungi promote plant growth and mitigate the adverse effects of stem rot: an example of Penicillium citrinum and Aspergillus terreus. J Plant Interact 10:280–287. https://doi.org/10.1080/17429145.2015.1079743 DOI
Waqas M, Khan AL, Kamran M, Hamayun M, Kang S-M, Kim Y-H et al (2012) Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules 17:10754–10773. https://doi.org/10.3390/molecules170910754 PubMed DOI
Waqas M, Khan AL, Kang S-M, Kim Y-H, Lee I-J (2014) Phytohormone-producing fungal endophytes and hardwood-derived biochar interact to ameliorate heavy metal stress in soybeans. Biol Fert Soils 50:1155–1167. https://doi.org/10.1007/s00374-014-0937-4 DOI
Whitelaw MA (1999) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151. https://doi.org/10.1016/S0065-2113(08)60948-7 DOI
Winkelmann G (2007) Ecology of siderophores with special reference to the fungi. Biometals 20:379. https://doi.org/10.1007/s10534-006-9076-1 PubMed DOI
Wu B, Hussain M, Zhang W, Stadler M, Liu X, Xiang M (2019) Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology 10:127–140. https://doi.org/10.1080/21501203.2019.1614106 PubMed DOI
Wu Q, Leung JYS, Geng X, Chen S, Huang X, Li H et al (2015) Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals. Sci Total Environ 506–507:217–225. https://doi.org/10.1016/j.scitotenv.2014.10.121 PubMed DOI
Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecol 2011:1–20. https://doi.org/10.5402/2011/402647 DOI
Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L et al (2010) Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Biores Technol 101:1668–1674. https://doi.org/10.1016/j.biortech.2009.09.083 DOI
Xing HQ, Ma JC, Xu BL, Zhang SW, Wang J, Cao L et al (2018) Mycobiota of maize seeds revealed by rDNA-ITS sequence analysis of samples with varying storage times. MicrobiologyOpen 7:e00609. https://doi.org/10.1002/mbo3.609 PubMed DOI
Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4
Yadav AN (2019) Endophytic fungi for plant growth promotion and adaptation under abiotic stress conditions. Acta Sci Agric 3:91–93
Yadav AN, Kour D, Kaur T, Devi R, Yadav A, Dikilitas M et al (2021) Biodiversity, and biotechnological contribution of beneficial soil microbiomes for nutrient cycling, plant growth improvement and nutrient uptake. Biocatal Agric Biotechnol 33:102009. https://doi.org/10.1016/j.bcab.2021.102009 DOI
Yadav AN, Kour D, Kaur T, Devi R, Yadav N (2020) Functional annotation of agriculturally important fungi for crop protection: current research and future challenges. In: Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (eds) Agriculturally important fungi for sustainable agriculture, vol 2. Functional annotation for crop protection. Springer International Publishing, Cham, pp 347–356. https://doi.org/10.1007/978-3-030-48474-3_12 DOI
Yadav AN, Verma P, Kumar V, Sangwan P, Mishra S, Panjiar N et al (2018) Biodiversity of the genus Penicillium in different habitats. In: Gupta V, Rodriguez-Couto S (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier, USA, pp 3–18. https://doi.org/10.1016/B978-0-444-63501-3.00001-6 DOI
Yadav R, Singh AV, Joshi S, Kumar M (2015) Antifungal and enzyme activity of endophytic fungi isolated from Ocimum sanctum and Aloe vera. Afr J Microbiol Res 9:1783–1788. https://doi.org/10.5897/AJMR2015.7451 DOI
Yadav R, Tarafdar J (2003) Phytase and phosphatase producing fungi in arid and semi-arid soils and their efficiency in hydrolyzing different organic P compounds. Soil Biol Biochem 35:745–751. https://doi.org/10.1016/S0038-0717(03)00089-0 DOI
Yan L, Zhao H, Zhao X, Xu X, Di Y, Jiang C et al (2018) Production of bioproducts by endophytic fungi: chemical ecology, biotechnological applications, bottlenecks, and solutions. Appl Microbiol Biotechnol 102:6279–6298. https://doi.org/10.1007/s00253-018-9101-7 PubMed DOI
Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103:3327–3340. https://doi.org/10.1007/s00253-019-09713-2 PubMed DOI
Yihui B, Zhouying X, Yurong Y, ZHANG H, Hui C, Ming T, (2017) Effect of dark septate endophytic fungus Gaeumannomyces cylindrosporus on plant growth, photosynthesis and Pb tolerance of maize (Zea mays L). Pedosphere 27:283–292. https://doi.org/10.1016/S1002-0160(17)60316-3 DOI
You X, Feng S, Luo S, Cong D, Yu Z, Yang Z et al (2013) Studies on a rhein-producing endophytic fungus isolated from Rheum palmatum L. Fitoterapia 85:161–168. https://doi.org/10.1016/j.fitote.2012.12.010 PubMed DOI
You Y-H, Kwak TW, Kang S-M, Lee M-C, Kim J-G (2015) Aspergillus clavatus Y2H0002 as a new endophytic fungal strain producing gibberellins isolated from Nymphoides peltata in fresh water. Mycobiology 43:87–91. https://doi.org/10.5941/MYCO.2015.43.1.87 PubMed DOI
Yousaf MJ, Hussain A, Hamayun M, Iqbal A, Irshad M, Kim H-Y et al (2021) Transformation of endophytic Bipolaris spp. into biotrophic pathogen under auxin cross-talk with brassinosteroids and abscisic acid. Front Bioeng Biotechnol 9:647. https://doi.org/10.3389/fbioe.2021.657635 DOI
Yuan J, Sun K, Deng-Wang M-Y, Dai C-C (2016) The mechanism of ethylene signaling induced by endophytic fungus Gilmaniella sp. AL12 mediating sesquiterpenoids biosynthesis in Atractylodes lancea. Front Plant Sci 7:361. https://doi.org/10.3389/fpls.2016.00361 PubMed DOI
Yuan Y, Feng H, Wang L, Li Z, Shi Y, Zhao L et al (2017) Potential of endophytic fungi isolated from cotton roots for biological control against Verticillium wilt disease. PLoS ONE 12:e0170557. https://doi.org/10.1371/journal.pone.0170557 PubMed DOI
Zafari D, Leylaiee S, Tajick MA (2020) Isolation and identification of vinblastine from the fungus of Chaetomium globosum Cr95 isolated from Catharanthus roseus plant. Biol J Microorganism 32:1–14. https://doi.org/10.22108/bjm.2018.107927.1095 DOI
Zahoor M, Irshad M, Rahman H, Qasim M, Afridi SG, Qadir M et al (2017) Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L by endophytic Mucor sp MHR-7. Ecotoxicol Environ Safe 142:139–149. https://doi.org/10.1016/j.ecoenv.2017.04.005 DOI
Zaidi A, Khan M, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284. https://doi.org/10.1556/amicr.56.2009.3.6 PubMed DOI
Zaiyou J, Li M, Xiqiao H (2017) An endophytic fungus efficiently producing paclitaxel isolated from Taxus wallichiana var mairei. Medicine 96:e7406. https://doi.org/10.1097/FMD.0000000000007406 PubMed DOI
Zhang F, Wang M, Zheng Y, Liu H, Zhang X, Wu S (2015) Isolation and characterzation of endophytic Huperzine A-producing fungi from Phlegmariurus phlegmaria. Microbiology 84:701–709. https://doi.org/10.1134/S0026261715050185 DOI
Zhang Y, Ge S, Jiang M, Jiang Z, Wang Z, Ma B (2014) Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10. Environ Sci Pollut Res 21:6234–6238. https://doi.org/10.1007/s11356-013-2410-6 DOI
Zhao J, Shan T, Mou Y, Zhou L (2011) Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem 11:159–168. https://doi.org/10.2174/138955711794519492 PubMed DOI
Zheng Y-K, Miao C-P, Chen H-H, Huang F-F, Xia Y-M, Chen Y-W et al (2017) Endophytic fungi harbored in Panax notoginseng: diversity and potential as biological control agents against host plant pathogens of root-rot disease. J Ginseng Res 41:353–360. https://doi.org/10.1016/j.jgr.2016.07.005 PubMed DOI