Lifetime risk of autosomal recessive neurodegeneration with brain iron accumulation (NBIA) disorders calculated from genetic databases
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
35180557
PubMed Central
PMC8856992
DOI
10.1016/j.ebiom.2022.103869
PII: S2352-3964(22)00053-6
Knihovny.cz E-resources
- Keywords
- Autosomal recessive NBIA disorders, CoPAN, Lifetime risk, Neurodegeneration, PKAN, PLAN,
- MeSH
- Databases, Genetic MeSH
- Child MeSH
- Nuclear Proteins MeSH
- Ubiquitin-Protein Ligase Complexes MeSH
- Humans MeSH
- Mitochondrial Proteins genetics MeSH
- Brain pathology MeSH
- Neuroaxonal Dystrophies * epidemiology genetics pathology MeSH
- Neurodegenerative Diseases * epidemiology genetics pathology MeSH
- Iron Metabolism Disorders * genetics pathology MeSH
- Calcium-Binding Proteins MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- C19orf12 protein, human MeSH Browser
- DCAF17 protein, human MeSH Browser
- Nuclear Proteins MeSH
- Ubiquitin-Protein Ligase Complexes MeSH
- Mitochondrial Proteins MeSH
- Calcium-Binding Proteins MeSH
- REPS1 protein, human MeSH Browser
BACKGROUND: Neurodegeneration with brain iron accumulation (NBIA) are a group of clinically and genetically heterogeneous diseases characterized by iron overload in basal ganglia and progressive neurodegeneration. Little is known about the epidemiology of NBIA disorders. In the absence of large-scale population-based studies, obtaining reliable epidemiological data requires innovative approaches. METHODS: All pathogenic variants were collected from the 13 genes associated with autosomal recessive NBIA (PLA2G6, PANK2, COASY, ATP13A2, CP, AP4M1, FA2H, CRAT, SCP2, C19orf12, DCAF17, GTPBP2, REPS1). The allele frequencies of these disease-causing variants were assessed in exome/genome collections: the Genome Aggregation Database (gnomAD) and our in-house database. Lifetime risks were calculated from the sum of allele frequencies in the respective genes under assumption of Hardy-Weinberg equilibrium. FINDINGS: The combined estimated lifetime risk of all 13 investigated NBIA disorders is 0.88 (95% confidence interval 0.70-1.10) per 100,000 based on the global gnomAD dataset (n = 282,912 alleles), 0.92 (0.65-1.29) per 100,000 in the European gnomAD dataset (n = 129,206), and 0.90 (0.48-1.62) per 100,000 in our in-house database (n = 44,324). Individually, the highest lifetime risks (>0.15 per 100,000) are found for disorders caused by variants in PLA2G6, PANK2 and COASY. INTERPRETATION: This population-genetic estimation on lifetime risks of recessive NBIA disorders reveals frequencies far exceeding previous population-based numbers. Importantly, our approach represents lifetime risks from conception, thus including prenatal deaths. Understanding the true lifetime risk of NBIA disorders is important in estimating disease burden, allocating resources and targeting specific interventions. FUNDING: This work was carried out in the framework of TIRCON ("Treat Iron-Related Childhood-Onset Neurodegeneration").
See more in PubMed
Di Meo I., Tiranti V. Classification and molecular pathogenesis of NBIA syndromes. Eur J Paediatr Neurol. 2018;22(2):272–284. EJPN: official journal of the European Paediatric Neurology Society. PubMed
Iankova V., Karin I., Klopstock T., Schneider S.A. Emerging disease-modifying therapies in neurodegeneration with brain iron accumulation (NBIA) disorders. Front Neurol. 2021;12 PubMed PMC
Levi S., Tiranti V. Neurodegeneration with brain iron accumulation disorders: valuable models aimed at understanding the pathogenesis of iron deposition. Pharmaceuticals. 2019;12(1) (Basel, Switzerland) PubMed PMC
Gregory A., Polster B.J., Hayflick S.J. Clinical and genetic delineation of neurodegeneration with brain iron accumulation. J Med Genet. 2009;46(2):73–80. PubMed PMC
Hayflick S.J., Westaway S.K., Levinson B., et al. Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med. 2003;348(1):33–40. PubMed
Arber C.E., Li A., Houlden H., Wray S. Review: insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol. 2016;42(3):220–241. PubMed PMC
Brezavar D., Bonnen PE. Incidence of PKAN determined by bioinformatic and population-based analysis of ∼140,000 humans. Mol Genet Metab. 2019;128(4):463–469. PubMed PMC
Sparber P., Krylova T., Repina S., et al. Retrospective analysis of 17 patients with mitochondrial membrane protein-associated neurodegeneration diagnosed in Russia. Parkinsonism Relat Disord. 2021;84:98–104. PubMed
Miyajima H., Nishimura Y., Mizoguchi K., Sakamoto M., Shimizu T., Honda N. Familial apoceruloplasmin deficiency associated with blepharospasm and retinal degeneration. Neurology. 1987;37(5):761–767. PubMed
Hogarth P. Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord. 2015;8(1):1–13. PubMed PMC
Jain V, Bijarnia-Mahay S, Vl R, Saxena R, Ic V. Fatty acid hydroxylase-associated neurodegeneration -a rare case of neurodegeneration with brain iron accumulation (NBIA). 2019.
Tan J., Wagner M., Stenton S.L., et al. Lifetime risk of autosomal recessive mitochondrial disorders calculated from genetic databases. EBioMedicine. 2020;54 PubMed PMC
Brunet T., Jech R., Brugger M., et al. De novo variants in neurodevelopmental disorders-experiences from a tertiary care center. Clin Genet. 2021 PubMed
Karczewski K.J., Francioli L.C., Tiao G., et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443. PubMed PMC
Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–424. PubMed PMC
Bras J., Verloes A., Schneider S.A., Mole S.E., Guerreiro R.J. Mutation of the Parkinsonism gene ATP13A2 causes neuronal ceroid-lipofuscinosis. Hum Mol Genet. 2012;21(12):2646–2650. PubMed PMC
Houlden H., Lincoln S., Farrer M., Cleland P.G., Hardy J., Orrell R.W. Compound heterozygous PANK2 mutations confirm HARP and Hallervorden-Spatz syndromes are allelic. Neurology. 2003;61(10):1423–1426. PubMed
Clopper C.J., Pearson E.S. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika. 1934;26(4):404–413.
Morgan N.V., Westaway S.K., Morton J.E., et al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet. 2006;38(7):752–754. PubMed PMC
Chu Y.T., Lin H.Y., Chen P.L., Lin C.H. Genotype-phenotype correlations of adult-onset PLA2G6-associated Neurodegeneration: case series and literature review. BMC Neurol. 2020;20(1):101. PubMed PMC
Gregory A, Hayflick S, Neurodegeneration with brain iron accumulation disorders overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, et al., eds. GeneReviews(®). Seattle (WA): University of Washington, Seattle. Copyright © 1993-2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved. 1993 PubMed
Dusi S., Valletta L., Haack T.B., et al. Exome sequence reveals mutations in CoA synthase as a cause of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2014;94(1):11–22. PubMed PMC
Miyajima H., Kohno S., Takahashi Y., Yonekawa O., Kanno T. Estimation of the gene frequency of aceruloplasminemia in Japan. Neurology. 1999;53(3):617–619. PubMed
Miyajima H., Hosoi Y., et al. In: GeneReviews(®) Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., et al., editors. University of Washington; Seattle (WA)Seattle: 1993. Aceruloplasminemia. Copyright © 1993-2020, University of Washington, Seattle. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved. PubMed
Is BPAN the most common NBIA disorder? Oregon: Oregon Health and Science University; 2018 [Available from: http://nbiacure.org/newsletter/.
Di Meo I., Cavestro C., Pedretti S., et al. Neuronal ablation of CoA synthase causes motor deficits, iron dyshomeostasis, and mitochondrial dysfunctions in a CoPAN mouse model. Int J Mol Sci. 2020;21(24) PubMed PMC
van Dijk T., Ferdinandusse S., Ruiter J.P.N., et al. Biallelic loss of function variants in COASY cause prenatal onset pontocerebellar hypoplasia, microcephaly, and arthrogryposis. Eur J Hum Genet. 2018;26(12):1752–1758. PubMed PMC
Ma J., Wang L., Yang Y.M., Wan X.H. Targeted gene capture sequencing in diagnosis of dystonia patients. J Neurol Sci. 2018;390:36–41. PubMed
Mak C.M., Sheng B., Lee H.H., et al. Young-onset parkinsonism in a Hong Kong Chinese man with adult-onset Hallervorden-Spatz syndrome. Int J Neurosci. 2011;121(4):224–227. PubMed
McNeill A., Pandolfo M., Kuhn J., Shang H., Miyajima H. The neurological presentation of ceruloplasmin gene mutations. Eur Neurol. 2008;60(4):200–205. PubMed
Borges M.D., de Albuquerque D.M., Lanaro C., Costa F.F., Fertrin K.Y. Clinical relevance of heterozygosis for aceruloplasminemia. Am J Med Genet Part B Neuropsychiatr Genet. 2019;180(4):266–271. the official publication of the International Society of Psychiatric Genetics. PubMed
Cooper D.N., Krawczak M., Polychronakos C., Tyler-Smith C., Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132(10):1077–1130. PubMed PMC
Polizzi A., Tesse R., Santostasi T., et al. Genotype-phenotype correlation in cystic fibrosis patients bearing [H939R;H949L] allele. Genet Mol Biol. 2011;34(3):416–420. PubMed PMC
Harris Z.L., Takahashi Y., Miyajima H., Serizawa M., MacGillivray R.T., Gitlin J.D. Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci U S A. 1995;92(7):2539–2543. PubMed PMC
Zhou B., Westaway S.K., Levinson B., Johnson M.A., Gitschier J., Hayflick S.J. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet. 2001;28(4):345–349. PubMed
Ferdinandusse S., Kostopoulos P., Denis S., et al. Mutations in the gene encoding peroxisomal sterol carrier protein X (SCPx) cause leukencephalopathy with dystonia and motor neuropathy. Am J Hum Genet. 2006;78(6):1046–1052. PubMed PMC
Ramirez A., Heimbach A., Gründemann J., et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–1191. PubMed
Alazami A.M., Al-Saif A., Al-Semari A., et al. Mutations in C2orf37, encoding a nucleolar protein, cause hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome. Am J Hum Genet. 2008;83(6):684–691. PubMed PMC
Roubertie A., Hieu N., Roux C.J., et al. AP4 deficiency: a novel form of neurodegeneration with brain iron accumulation? Neurol Genet. 2018;4(1):e217. PubMed PMC
Kruer M.C., Paisán-Ruiz C., Boddaert N., et al. Defective FA2H leads to a novel form of neurodegeneration with brain iron accumulation (NBIA) Ann Neurol. 2010;68(5):611–618. PubMed PMC
Hartig M.B., Iuso A., Haack T., et al. Absence of an orphan mitochondrial protein, c19orf12, causes a distinct clinical subtype of neurodegeneration with brain iron accumulation. Am J Hum Genet. 2011;89(4):543–550. PubMed PMC
Jaberi E., Rohani M., Shahidi G.A., et al. Identification of mutation in GTPBP2 in patients of a family with neurodegeneration accompanied by iron deposition in the brain. Neurobiol Aging. 2016;38:216. e11-.e18. PubMed
Drecourt A., Babdor J., Dussiot M., et al. Impaired transferrin receptor palmitoylation and recycling in neurodegeneration with brain iron accumulation. Am J Hum Genet. 2018;102(2):266–277. PubMed PMC