De novo variants in neurodevelopmental disorders-experiences from a tertiary care center
Jazyk angličtina Země Dánsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33619735
DOI
10.1111/cge.13946
Knihovny.cz E-zdroje
- Klíčová slova
- autism, candidate gene, de novo variant, exome sequencing, intellectual disability, neurodevelopmental disorder, reanalysis,
- MeSH
- centra terciární péče MeSH
- dítě MeSH
- dospělí MeSH
- exom genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci genetika MeSH
- genetická variace genetika MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neurovývojové poruchy genetika MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- retrospektivní studie MeSH
- sekvenování exomu metody MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Up to 40% of neurodevelopmental disorders (NDDs) such as intellectual disability, developmental delay, autism spectrum disorder, and developmental motor abnormalities have a documented underlying monogenic defect, primarily due to de novo variants. Still, the overall burden of de novo variants as well as novel disease genes in NDDs await discovery. We performed parent-offspring trio exome sequencing in 231 individuals with NDDs. Phenotypes were compiled using human phenotype ontology terms. The overall diagnostic yield was 49.8% (n = 115/231) with de novo variants contributing to more than 80% (n = 93/115) of all solved cases. De novo variants affected 72 different-mostly constrained-genes. In addition, we identified putative pathogenic variants in 16 genes not linked to NDDs to date. Reanalysis performed in 80 initially unsolved cases revealed a definitive diagnosis in two additional cases. Our study consolidates the contribution and genetic heterogeneity of de novo variants in NDDs highlighting trio exome sequencing as effective diagnostic tool for NDDs. Besides, we illustrate the potential of a trio-approach for candidate gene discovery and the power of systematic reanalysis of unsolved cases.
Department of Nephrology Klinikum rechts der Isar Technical University of Munich Munich Germany
Department of Neurology P J Safarik University Kosice Slovakia
Department of Neurology University Hospital L Pasteur Kosice Slovakia
Department of Neurology Zvolen Hospital Zvolen Slovakia
Department of Pediatrics Technische Universität München Munich Germany
Division of Pediatric Neurology University Children's Hospital Zurich Zurich Switzerland
Divison of Neuropediatrics Clinic for Children and Adolescents Dritter Orden Munich Germany
Institute of Human Genetics Helmholtz Zentrum München Neuherberg Germany
Institute of Human Genetics University Medical Center Hamburg Eppendorf Hamburg Germany
Institute of Neurogenomics Helmholtz Zentrum München Neuherberg Germany
Munich Cluster for Systems Neurology Munich Germany
Neurogenetics Technische Universität München Munich Germany
Zobrazit více v PubMed
Moreno-De-Luca A, Myers SM, Challman TD, Moreno-De-Luca D, Evans DW, Ledbetter DH. Developmental brain dysfunction: revival and expansion of old concepts based on new genetic evidence. Lancet Neurol. 2013;12(4):406-414.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: Diagnostic and Statistical Manual of Mental Disorders. 5. Arlington, VA; American Psychiatric Association; 2013.
D'Haene E, Vergult S. Interpreting the impact of noncoding structural variation in neurodevelopmental disorders. Genet Med. 2021.23(1):34-46.
Kochinke K, Zweier C, Nijhof B, et al. systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98(1):149-164.
Kaplains J, Samocha KE, Wiel L, et al. Evidence for 28 genetic disorders discovered by combining healthcare and research data. Nature. 2020;586(7831):757-762.
de Ligt J, Willemsen MH, van Bon BW, et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367(20):1921-1929.
Epi KC, Epilepsy Phenome/Genome P, Allen AS, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501(7466):217-221.
Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511(7509):344-347.
Iossifov I, O'Roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature. 2014;515(7526):216-221.
Iossifov I, Ronemus M, Levy D, et al. De novo gene disruptions in children on the autistic spectrum. Neuron. 2012;74(2):285-299.
O'Roak BJ, Vives L, Girirajan S, et al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature. 2012;485(7397):246-250.
Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380(9854):1674-1682.
Deciphering Developmental Disorders S. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542(7642):433-438.
Coe BP, Stessman HAF, Sulovari A, et al. Neurodevelopmental disease genes implicated by de novo mutation and copy number variation morbidity. Nat Genet. 2019;51(1):106-116.
Kohler S, Carmody L, Vasilevsky N, et al. Expansion of the human phenotype ontology (HPO) knowledge base and resources. Nucleic Acids Res. 2019;47(D1):D1018-D1027.
Srivastava S, Love-Nichols JA, Dies KA, et al. Meta-analysis and multidisciplinary consensus statement: exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet Med. 2019;21(11):2413-2421.
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987-2993.
Plagnol V, Curtis J, Epstein M, et al. A robust model for read count data in exome sequencing experiments and implications for copy number variant calling. Bioinformatics. 2012;28(21):2747-2754.
Ye K, Schulz MH, Long Q, Apweiler R, Ning Z. Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics. 2009;25(21):2865-2871.
Wagner M, Berutti R, Lorenz-Depiereux B, et al. Mitochondrial DNA mutation analysis from exome sequencing-a more holistic approach in diagnostics of suspected mitochondrial disease. J Inherit Metab Dis. 2019;42(5):909-917.
Riggs ER, Andersen EF, Cherry AM, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the clinical genome resource (ClinGen). Genet Med. 2020;22(2):245-257.
Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
Abou Tayoun AN, Pesaran T, DiStefano MT, et al. Recommendations for interpreting the loss of function PVS1 ACMG/AMP variant criterion. Hum Mutat. 2018;39(11):1517-1524.
Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the clinical validity of gene-disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100(6):895-906.
Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434-443.
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285-291.
Fisher RA. On the interpretation of χ 2 from contingency tables, and the calculation of P. J Royal Stat Soc. 1922;85(1):87-94.
Zweier M, Begemann A, McWalter K, et al. Spatially clustering de novo variants in CYFIP2, encoding the cytoplasmic FMRP interacting protein 2, cause intellectual disability and seizures. Eur J Hum Genet. 2019;27(5):747-759.
Diets IJ, van der Donk R, Baltrunaite K, et al. De novo and inherited pathogenic variants in KDM3B cause intellectual disability, short stature, and facial dysmorphism. Am J Hum Genet. 2019;104(4):758-766.
Zech M, Jech R, Boesch S, et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020;19(11):908-918.
Wagner M, Skorobogatko Y, Pode-Shakked B, et al. Bi-allelic variants in RALGAPA1 cause profound neurodevelopmental disability, muscular hypotonia, infantile spasms, and feeding abnormalities. Am J Hum Genet. 2020;106(2):246-255.
Riedhammer KM, Leszinski GS, Andres S, Strobl-Wildemann G, Wagner M. First replication that biallelic variants in FITM2 cause a complex deafness-dystonia syndrome. Mov Disord. 2018;33(10):1665-1666.
Siekierska A, Stamberger H, Deconinck T, et al. Biallelic VARS variants cause developmental encephalopathy with microcephaly that is recapitulated in vars knockout zebrafish. Nat Commun. 2019;10(1):708.
Westphal DS, Riedhammer KM, Kovacs-Nagy R, Meitinger T, Hoefele J, Wagner MA. De novo missense variant in POU3F2 identified in a child with global developmental delay. Neuropediatrics. 2018;49(6):401-404.
Brunet T, Radivojkov-Blagojevic M, Lichtner P, Kraus V, Meitinger T, Wagner M. Biallelic loss-of-function variants in RBL2 in siblings with a neurodevelopmental disorder. Ann Clin Transl Neurol. 2020;7(3):390-396.
Zech M, Lam DD, Weber S, et al. A unique de novo gain-of-function variant in CAMK4 associated with intellectual disability and hyperkinetic movement disorder. Cold Spring Harb Mol Case Stud. 2018;4(6):a003293.
Hengel H, Bosso-Lefevre C, Grady G, et al. Loss-of-function mutations in UDP-glucose 6-dehydrogenase cause recessive developmental epileptic encephalopathy. Nat Commun. 2020;11(1):595.
Magini P, Smits DJ, Vandervore L, et al. Loss of SMPD4 causes a developmental disorder characterized by microcephaly and congenital arthrogryposis. Am J Hum Genet. 2019;105(4):689-705.
Kaminsky EB, Kaul V, Paschall J, et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet Med. 2011;13(9):777-784.
Heyne HO, Singh T, Stamberger H, et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet. 2018;50(7):1048-1053.
Wright CF, McRae JF, Clayton S, et al. Making new genetic diagnoses with old data: iterative reanalysis and reporting from genome-wide data in 1,133 families with developmental disorders. Genet Med. 2018;20(10):1216-1223.
Retterer K, Juusola J, Cho MT, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18(7):696-704.
Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17(1):9-18.
Mahler EA, Johannsen J, Tsiakas K, et al. Exome sequencing in children. Dtsch Arztebl Int. 2019;116(12):197-204.
Martin HC, Jones WD, McIntyre R, et al. Quantifying the contribution of recessive coding variation to developmental disorders. Science. 2018;362(6419):1161-1164.
Sobreira N, Schiettecatte F, Valle D, Hamosh A. GeneMatcher: a matching tool for connecting investigators with an interest in the same gene. Hum Mutat. 2015;36(10):928-930.
Sobreira N, Schiettecatte F, Boehm C, Valle D, Hamosh A. New tools for Mendelian disease gene identification: PhenoDB variant analysis module; and GeneMatcher, a web-based tool for linking investigators with an interest in the same gene. Hum Mutat. 2015;36(4):425-431.
Wenger AM, Guturu H, Bernstein JA, Bejerano G. Systematic reanalysis of clinical exome data yields additional diagnoses: implications for providers. Genet Med. 2017;19(2):209-214.
Liu P, Meng L, Normand EA, et al. Reanalysis of clinical exome sequencing data. N Engl J Med. 2019;380(25):2478-2480.
Fung JLF, Yu MHC, Huang S, et al. A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med. 2020;5:37.
Schmitz-Abe K, Li Q, Rosen SM, et al. Unique bioinformatic approach and comprehensive reanalysis improve diagnostic yield of clinical exomes. Eur J Hum Genet. 2019;27(9):1398-1405.