Protection of toll-like receptor 9 against lipopolysaccharide-induced inflammation and oxidative stress of pulmonary epithelial cells via MyD88-mediated pathways
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35275698
PubMed Central
PMC9150556
DOI
10.33549/physiolres.934741
PII: 934741
Knihovny.cz E-zdroje
- MeSH
- akutní poškození plic * chemicky indukované metabolismus prevence a kontrola MeSH
- epitelové buňky patologie MeSH
- krysa rodu Rattus MeSH
- lipopolysacharidy * metabolismus toxicita MeSH
- NF-kappa B metabolismus MeSH
- oxidační stres MeSH
- protein MyD88 metabolismus MeSH
- signální transdukce MeSH
- toll-like receptor 4 metabolismus MeSH
- toll-like receptor 9 genetika metabolismus MeSH
- transkripční faktor AP-1 metabolismus MeSH
- zánět chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- lipopolysacharidy * MeSH
- Myd88 protein, rat MeSH Prohlížeč
- NF-kappa B MeSH
- protein MyD88 MeSH
- Tlr9 protein, rat MeSH Prohlížeč
- toll-like receptor 4 MeSH
- toll-like receptor 9 MeSH
- transkripční faktor AP-1 MeSH
Acute lung injury (ALI) caused by lipopolysaccharide (LPS) is a common, severe clinical syndrome. Injury caused by inflammation and oxidative stress in vascular endothelial and alveolar epithelial cells is a vital process in the pathogenesis of ALI. Toll-like receptor 9 (TLR9) is highly expressed in LPS-induced ALI rats. In this study, Beas-2B human pulmonary epithelial cells and A549 alveolar epithelial cells were stimulated by LPS, resulting in the upregulation of TLR9 in a concentrationdependent manner. Furthermore, TLR9 overexpression and interference vectors were transfected before LPS administration to explore the role of TLR9 in LPS-induced ALI in vitro. The findings revealed that inhibition of TLR9 reduced inflammation and oxidative stress while suppressing apoptosis of LPS-induced Beas-2B and A549 cells, whereas TLR9 overexpression aggravated these conditions. Moreover, TLR9 inhibition resulted in downregulated protein expression of myeloid differentiation protein 88 (MyD88) and activator activator protein 1 (AP-1), as well as phosphorylation of nuclear factor-?B (NF-kappaB), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK). The phosphorylation of extracellular-regulated protein kinases 1/2 was upregulated compared to that of cells subjected to only LPS administration, and this was reversed by TLR9 overexpression. These results indicate that inhibition of TLR9 plays a protective role against LPS-induced inflammation and oxidative stress in Beas-2B and A549 cells, possibly via the MyD88/NF-kappaB and MyD88/MAPKs/AP-1 pathways.
Zobrazit více v PubMed
Meng L, Li L, Lu S, Li K, Su Z, Wang Y, Fan X, Li X, Zhao G. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-kappaB and PI3K/Akt/mTOR pathways. Mol Immunol. 2018;94:7–17. doi: 10.1016/j.molimm.2017.12.008. PubMed DOI
Johnson ER, Matthay MA. Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv. 2010;23:243–252. doi: 10.1089/jamp.2009.0775. PubMed DOI PMC
Mokra D, Kosutova P. Biomarkers in acute lung injury. Respir Physiol Neurobiol. 2015;209:52–58. doi: 10.1016/j.resp.2014.10.006. PubMed DOI
Maybauer MO, Maybauer DM, Herndon DN. Incidence and outcomes of acute lung injury. N Engl J Med. 2006;354:416–417. PubMed
Chen H, Bai C, Wang X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med. 2010;4:773–783. doi: 10.1586/ers.10.71. PubMed DOI
Gong Y, Lan H, Yu Z, Wang M, Wang S, Chen Y, Rao H, Li J, Sheng Z, Shao J. Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochemical and biophysical research communications. 2017;491:522–529. doi: 10.1016/j.bbrc.2017.05.173. PubMed DOI
Yang X, Jing T, Li Y, He Y, Zhang W, Wang B, Xiao Y, Wang W, Zhang J, Wei J, Lin R. Hydroxytyrosol attenuates LPS-induced acute lung injury in mice by regulating autophagy and sirtuin expression. Curr Mol Med. 2017;17:149–159. doi: 10.2174/1566524017666170421151940. PubMed DOI
Hsieh YH, Deng JS, Pan HP, Liao JC, Huang SS, Huang GJ. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int Immunopharmacol. 2017;44:16–25. doi: 10.1016/j.intimp.2016.12.026. PubMed DOI
Li Y, Huang J, Foley NM, Xu Y, Li YP, Pan J, Redmond HP, Wang JH, Wang J. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Sci Rep. 2016;6:31284. doi: 10.1038/srep31284. PubMed DOI PMC
Shen H, Wu N, Wang Y, Zhang L, Hu X, Chen Z, Zhao M. Toll-like receptor 9 mediates paraquat-induced acute lung injury: an in vitro and in vivo study. Life Sci. 2017;178:109–118. doi: 10.1016/j.lfs.2017.03.021. PubMed DOI
Kim AY, Shim HJ, Kim SY, Heo S, Youn HS. Differential regulation of MyD88- and TRIF-dependent signaling pathways of Toll-like receptors by cardamonin. Int Immunopharmacol. 2018;64:1–9. doi: 10.1016/j.intimp.2018.08.018. PubMed DOI
Ahmed S, Maratha A, Butt AQ, Shevlin E, Miggin SM. TRIF-mediated TLR3 and TLR4 signaling is negatively regulated by ADAM15. J Immunol. 2013;190:2217–2228. doi: 10.4049/jimmunol.1201630. PubMed DOI
Cao C, Yin C, Shou S, Wang J, Yu L, Li X, Chai Y. Ulinastatin protects against LPS-induced acute lung injury by attenuating TLR4/NF-kappaB pathway activation and reducing inflammatory mediators. Shock. 2018;50:595–605. doi: 10.1097/SHK.0000000000001104. PubMed DOI
Feng G, Sun B, Liu HX, Liu QH, Zhao L, Wang TL. EphA2 antagonism alleviates LPS-induced acute lung injury via Nrf2/HO-1, TLR4/MyD88 and RhoA/ROCK pathways. Int Immunopharmacol. 2019;72:176–185. doi: 10.1016/j.intimp.2019.04.008. PubMed DOI
Kong D, Wang Z, Tian J, Liu T, Zhou H. Glycyrrhizin inactivates toll-like receptor (TLR) signaling pathway to reduce lipopolysaccharide-induced acute lung injury by inhibiting TLR2. J Cell Physiol. 2019;234:4597–4607. doi: 10.1002/jcp.27242. PubMed DOI
Han WZ, Xu SW, Wang L. Impact of ketamine intervention for acute lung injury on RAGE and TLR9. Eur Rev Med Pharmacol Sci. 2018;22:4350–4354. doi: 10.26355/eurrev_201807_15432. PubMed DOI
Shao L, Meng D, Yang F, Song H, Tang D. Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochemical and biophysical research communications. 2017;487:194–200. doi: 10.1016/j.bbrc.2017.04.020. PubMed DOI
Zhao J, Yu H, Liu Y, Gibson SA, Yan Z, Xu X, Gaggar A, Li PK, Li C, Wei S, Benveniste EN, Qin H. Protective effect of suppressing STAT3 activity in LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2016;311:L868–L880. doi: 10.1152/ajplung.00281.2016. PubMed DOI PMC
Su CF, Kao SJ, Chen HI. Acute respiratory distress syndrome and lung injury: Pathogenetic mechanism and therapeutic implication. World J Crit Care Med. 2012;1:50–60. doi: 10.5492/wjccm.v1.i2.50. PubMed DOI PMC
Hu D, Yang X, Xiang Y, Li H, Yan H, Zhou J, Caudle Y, Zhang X, Yin D. Inhibition of Toll-like receptor 9 attenuates sepsis-induced mortality through suppressing excessive inflammatory response. Cell Immunol. 2015;295:92–98. doi: 10.1016/j.cellimm.2015.03.009. PubMed DOI PMC
Knuefermann P, Baumgarten G, Koch A, Schwederski M, Velten M, Ehrentraut H, Mersmann J, Meyer R, Hoeft A, Zacharowski K, Grohe C. CpG oligonucleotide activates Toll-like receptor 9 and causes lung inflammation in vivo. Respir Res. 2007;8:72. doi: 10.1186/1465-9921-8-72. PubMed DOI PMC
Jiang Q, Yi M, Guo Q, Wang C, Wang H, Meng S, Liu C, Fu Y, Ji H, Chen T. Protective effects of polydatin on lipopolysaccharide-induced acute lung injury through TLR4-MyD88-NF-kappaB pathway. Int Immunopharmacol. 2015;29:370–376. doi: 10.1016/j.intimp.2015.10.027. PubMed DOI
Herold S, Gabrielli NM, Vadasz I. Novel concepts of acute lung injury and alveolar-capillary barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2013;305:L665–681. doi: 10.1152/ajplung.00232.2013. PubMed DOI
Zhao X, Yin L, Fang L, Xu L, Sun P, Xu M, Liu K, Peng J. Protective effects of dioscin against systemic inflammatory response syndromevia adjusting TLR2/MyD88/NFkappab signal pathway. Int Immunopharmacol. 2018;65:458–469. doi: 10.1016/j.intimp.2018.10.036. PubMed DOI
Yu D, Shi M, Bao J, Yu X, Li Y, Liu W. Genipin ameliorates hypertension-induced renal damage via the angiotensin II-TLR/MyD88/MAPK pathway. Fitoterapia. 2016;112:244–253. doi: 10.1016/j.fitote.2016.06.010. PubMed DOI
Zong X, Song D, Wang T, Xia X, Hu W, Han F, Wang Y. LFP-20, a porcine lactoferrin peptide, ameliorates LPS-induced inflammation via the MyD88/NF-kappaB and MyD88/MAPK signaling pathways. Dev Comp Immunol. 2015;52:123–131. doi: 10.1016/j.dci.2015.05.006. PubMed DOI
Zhang R, Ai X, Duan Y, Xue M, He W, Wang C, Xu T, Xu M, Liu B, Li C, Wang Z, Zhang R, Wang G, Tian S, Liu H. Kaempferol ameliorates H9N2 swine influenza virus-induced acute lung injury by inactivation of TLR4/MyD88-mediated NF-kappaB and MAPK signaling pathways. Biomed Pharmacother. 2017;89:660–672. doi: 10.1016/j.biopha.2017.02.081. PubMed DOI
Gomes MT, Campos PC, de Pereira GS, Bartholomeu DC, Splitter G, Oliveira SC. TLR9 is required for MAPK/NF-kappaB activation but does not cooperate with TLR2 or TLR6 to induce host resistance to Brucella abortus. J Leukoc Biol. 2016;99:771–780. doi: 10.1189/jlb.4A0815-346R. PubMed DOI PMC
Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75:50–83. doi: 10.1128/MMBR.00031-10. PubMed DOI PMC
Hossen MJ, Kim MY, Cho JY. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium. Am J Chin Med. 2016;44:1111–1125. doi: 10.1142/S0192415X16500622. PubMed DOI
Yang Z, Wu QQ, Xiao Y, Duan MX, Liu C, Yuan Y, Meng YY, Liao HH, Tang QZ. Aucubin protects against myocardial infarction-induced cardiac remodeling via nNOS/NO-regulated oxidative stress. Oxid Med Cell Longev. 2018;2018:4327901. doi: 10.1155/2018/4327901. PubMed DOI PMC
Zhang HX, Liu SJ, Tang XL, Duan GL, Ni X, Zhu XY, Liu YJ, Wang CN. H2S attenuates LPS-induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem. 2016;40:1603–1612. doi: 10.1159/000453210. PubMed DOI
Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395:203–230. doi: 10.1515/hsz-2013-0241. PubMed DOI
Farombi EO, Shrotriya S, Surh YJ. Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-kappaB and AP-1. Life Sci. 2009;84:149–155. doi: 10.1016/j.lfs.2008.11.012. PubMed DOI
Ruiz-Ortega M, Lorenzo O, Egido J. Angiotensin III increases MCP-1 and activates NF-kappaB and AP-1 in cultured mesangial and mononuclear cells. Kidney Int. 2000;57:2285–2298. doi: 10.1046/j.1523-1755.2000.00089.x. PubMed DOI
Hokeness-Antonelli KL, Crane MJ, Dragoi AM, Chu WM, Salazar-Mather TP. IFN-alphabeta-mediated inflammatory responses and antiviral defense in liver is TLR9-independent but MyD88-dependent during murine cytomegalovirus infection. J Immunol. 2007;179:6176–6183. PubMed
Sporri R, Joller N, Albers U, Hilbi H, Oxenius A. MyD88-dependent IFN-gamma production by NK cells is key for control of Legionella pneumophila infection. J Immunol. 2006;176:6162–6171. PubMed
Lin WC, Chen CW, Huang YW, Chao L, Chao J, Lin YS, Lin CF. Kallistatin protects against sepsis-related acute lung injury via inhibiting inflammation and apoptosis. Sci Rep. 2015;5:12463. doi: 10.1038/srep12463. PubMed DOI PMC
Arunkumar N, Liu C, Hang H, Song W. Toll-like receptor agonists induce apoptosis in mouse B-cell lymphoma cells by altering NF-kappaB activation. Cell Mol Immunol. 2013;10:360–372. doi: 10.1038/cmi.2013.14. PubMed DOI PMC
Martinou JC, Youle RJ. Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell. 2011;21:92–101. doi: 10.1016/j.devcel.2011.06.017. PubMed DOI PMC
Yu XF, Wang J, No U, Guo S, Sun H, Tong J, Chen T, Li J. The role of miR-130a-3p and SPOCK1 in tobacco exposed bronchial epithelial BEAS-2B transformed cells: Comparison to A549 and H1299 lung cancer cell lines. J Toxicol Environ Health A. 2019;82:862–869. doi: 10.1080/15287394.2019.1664479. PubMed DOI