Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37082599
PubMed Central
PMC10074917
DOI
10.1016/j.bbadva.2021.100039
PII: S2667-1603(21)00038-7
Knihovny.cz E-zdroje
- Klíčová slova
- Ceramides, Hydrogen bonding network, Langmuir monolayer, Liposomes, Skin barrier repairing agents, Stratum corneum,
- Publikační typ
- časopisecké články MeSH
The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.
Biozentrum Martin Luther University Halle Wittenberg Weinbergweg 22 06120 Halle Germany
Institute for Condensed Matter Physics TU Darmstadt Hochschulstraße 8 64289 Darmstadt Germany
Zobrazit více v PubMed
Proksch E., Brandner J.M., Jensen J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x. PubMed DOI
Madison K.C. Barrier function of the skin: “La Raison d’Être” of the epidermis. J. Invest. Dermatol. 2003;121:231–241. doi: 10.1046/j.1523-1747.2003.12359.x. PubMed DOI
Menon L.M., K G, Cleary GW. The structure and function of the stratum corneum. Int J Pharm. 2012;435:3–9. doi: 10.1016/j.ijpharm.2012.06.005. PubMed DOI
K.A. Walters, M. Dekker, Dermatological and Transdermal Formulations, 2002. 10.1201/9780824743239. DOI
Holbrook K.A., Odland G.F. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J. Invest. Dermatol. 1974;62:415–422. doi: 10.1111/1523-1747.ep12701670. PubMed DOI
Lampe M.A., Burlingame A.L., Whitney J., Williams M.L., Brown B.E., Roitman E., Elias P.M. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 1983;24:120–130. http://www.ncbi.nlm.nih.gov/pubmed/6833889 PubMed
Weerheim A., Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch. Dermatol. Res. 2001;293:191–199. PubMed
Elias P.M., Feingold K.R., Mao-qiang M., Elias P.M., Feingold K.R. Fatty acids are required for epidermal permeability barrier function . Fatty Acids Are Required for Epidermal Permeability Barrier Function. J. Clin. Invest. 1993;92:791–798. PubMed PMC
Schroeter A., Kiselev M.A., Hauß T., Dante S., Neubert R.H.H. Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. BBA - Biomembr. 2009;1788:2194–2203. doi: 10.1016/j.bbamem.2009.07.024. PubMed DOI
Sahle F.F., Gebre-Mariam T., Dobner B., Wohlrab J., Neubert R.H.H. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol. 2015;28:42–55. doi: 10.1159/000360009. PubMed DOI
Imokawa A., Abe G., Jin A., Higaki K., Kawashima Y., Hidano M. Decreased level of Ceramides in Stratum Conreum of Atopic Dermatits: An Etioogic Factor in Atopic Dry Skin? J. Invest. Dermatol. 1991;96:523–526. PubMed
Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R. Ceramide composition of the psoriatic scale. BBA - Mol. Basis Dis. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI
Sahle F.F., Wohlrab J., Neubert R.H.H. Controlled penetration of ceramides into and across the stratum corneum using various types of microemulsions and formulation associated toxicity studies. Eur. J. Pharm. Biopharm. 2014;86:244–250. doi: 10.1016/j.ejpb.2013.07.011. PubMed DOI
Sahle F.F., Metz H., Wohlrab J., Neubert R.H.H. Lecithin-based microemulsions for targeted delivery of Ceramide AP into the stratum corneum: Formulation, characterizations, and in vitro release and penetration studies. Pharm. Res. 2013;30:538–551. doi: 10.1007/s11095-012-0899-x. PubMed DOI
Heuschkel S., Goebel A., Neubert R.H.H. Microemulsions—Modern Colloidal Carrier for Dermal and Transdermal Drug Delivery. J. Pharm. Sci. 2008;97:603–631. doi: 10.1002/jps.20995. PubMed DOI
Abdelgawad R., Nasr M., Moftah N.H., Hamza M.Y. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur. J. Pharm. Sci. 2017;101:258–268. doi: 10.1016/j.ejps.2017.02.030. PubMed DOI
Vovesná A., Zhigunov A., Balouch M., Zbytovská J. Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int. J. Pharm. 2021;596 doi: 10.1016/j.ijpharm.2021.120264. PubMed DOI
Masukawa Y., Ishikawa J., Homma R., Narita H., Kitahara T., Naoe A., Takagi Y., Sato H., Oba T., Kondo N., Sugai Y. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009;50:1708–1719. doi: 10.1194/jlr.d800055-jlr200. PubMed DOI PMC
Kindt R., Jorge L., Dumont E., Couturon P., David F., Sandra P., Sandra K. Profiling and Characterizing Skin Ceramides Using Reversed-Phase Liquid Chromatography − Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2011;84:403–411. doi: 10.1021/ac202646v. PubMed DOI
J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed., 2011. 10.1016/C2009-0-21560-1. DOI
Kumar V.V. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc. Natl. Acad. Sci. U. S. A. 1991;88:444–448. doi: 10.1073/pnas.88.2.444. PubMed DOI PMC
Khazanov E., Priev A., Shillemans J.P., Barenholz Y. Physicochemical and biological characterization of ceramide-containing liposomes: Paving the way to ceramide therapeutic application. Langmuir. 2008;24:6965–6980. doi: 10.1021/la800207z. PubMed DOI
Mueller J., Oliveira J.S.L., Barker R., Trapp M., Schroeter A., Brezesinski G., Neubert R.H.H. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochim. Biophys. Acta - Biomembr. 2016;1858:2006–2018. doi: 10.1016/j.bbamem.2016.05.010. PubMed DOI
Fathi-Azarbayjani A., Ng K.X., Chan Y.W., Chan S.Y. Lipid Vesicles for the Skin Delivery of Diclofenac: Cerosomes vs. Other Lipid Suspensions. Adv. Pharm. Bull. 2015;5:25–33. doi: 10.5681/apb.2015.004. PubMed DOI PMC
Chang J.E., Cho H.J., Yi E., Kim D.D., Jheon S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. B Biol. 2016;158:113–121. doi: 10.1016/j.jphotobiol.2016.02.035. PubMed DOI
Jung S.M., Yoon G.H., Lee H.C., Jung M.H., Il Yu S., Yeon S.J., Min S.K., Kwon Y.S., Hwang J.H., Shin H.S. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep18089. PubMed DOI PMC
Noh G.Y., Suh J.Y., Park S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng. 2017;34:400–406. doi: 10.1007/s11814-016-0267-3. DOI
Bangham A.D., Standish M.M., Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965;13:238–252. doi: 10.1016/S0022-2836(65)80093-6. PubMed DOI
Tian C.H., Zoriniants G., Gronheid R., Van Der Auweraer M., De Schryver F.C. Confocal fluorescence microscopy and AFM of thiacyanine J aggregates in Langmuir-Schaefer monolayers. Langmuir. 2003;19:9831–9840. doi: 10.1021/la034817s. DOI
Kjaer K. Some simple ideas on X-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B Phys. Condens. Matter. 1994;198:100–109. doi: 10.1016/0921-4526(94)90137-6. DOI
Strati F., Neubert R.H.H., Opálka L., Kerth A., Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur. J. Pharm. Sci. 2020;157 doi: 10.1016/j.ejps.2020.105620. PubMed DOI
Schmitt T., Lange S., Dobner B., Sonnenberger S., Hauß T., Neubert R.H.H. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir. 2018;34:1742–1749. doi: 10.1021/acs.langmuir.7b01848. PubMed DOI
Stefaniu C., Brezesinski G., Möhwald H. Langmuir monolayers as models to study processes at membrane surfaces. Adv. Colloid Interface Sci. 2014;208:197–213. doi: 10.1016/j.cis.2014.02.013. PubMed DOI
Kessner D., Ruettinger A., Kiselev M.A., Wartewig S., Neubert R.H.H. Properties of ceramides and their impact on the stratum corneum structure: A review - Part 2: Stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58–74. doi: 10.1159/000112956. PubMed DOI
Bouwstra J.A., Gooris G.S., Dubbelaar F.E.R., Ponec M. Phase behavior of lipid mixtures based on human ceramides: Coexistence of crystalline and liquid phases. J. Lipid Res. 2001;42:1759–1770. doi: 10.1016/s0022-2275(20)31502-9. PubMed DOI
Das C., Olmsted P.D. The physics of stratum corneum lipid membranes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016;374 doi: 10.1098/rsta.2015.0126. PubMed DOI PMC
Iwai I., Han H., Den Hollander L., Svensson S., Öfverstedt L.G., Anwar J., Brewer J., Bloksgaard M., Laloeuf A., Nosek D., Masich S., Bagatolli L.A., Skoglund U., Norlén L. The human Skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. doi: 10.1038/jid.2012.43. PubMed DOI
Stefaniu C., Brezesinski G. X-ray investigation of monolayers formed at the soft air/water interface. Curr. Opin. Colloid Interface Sci. 2014;19:216–227. doi: 10.1016/j.cocis.2014.01.004. PubMed DOI
Brezesinski G., Schneck E. Investigating Ions at Amphiphilic Monolayers with X-ray Fluorescence. Langmuir. 2019;35:8531–8542. doi: 10.1021/acs.langmuir.9b00191. PubMed DOI PMC
Rabionet M., Gorgas K., Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2014;1841:422–434. doi: 10.1016/j.bbalip.2013.08.011. PubMed DOI
Van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2014;1841:295–313. doi: 10.1016/j.bbalip.2013.11.00. PubMed DOI
Čuříková-Kindlová B.A., Diat O., Štěpánek F., Vávrová K., Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int. J. Pharm. 2019;563:384–394. doi: 10.1016/j.ijpharm.2019.04.010. PubMed DOI
J. Zbytovská, M.A. Kiselev, S.S. Funari, V.M. Garamus, S. Wartewig, K. Palát, R. Neubert, Colloids and Surfaces A : Physicochemical and Engineering Aspects Influence of cholesterol on the structure of stratum corneum lipid model membrane, 328 (2008) 90-99. 10.1016/j.colsurfa.2008.06.032. DOI
F. Arends, H. Chaudhary, P. Janmey, M.M.A.E. Claessens, O. Lieleg, Lipid Head Group Charge and Fatty Acid Configuration Dictate Liposome Mobility in Neurofilament Networks, 201600229 (n.d.) 2016 1-8. 10.1002/mabi.201600229. PubMed DOI
Dreher P., Walde F., Luisi P., Elsner P.L. Human skin irritation studies of a lecithin microemulsion gel and of lecithin liposomes. Ski. Pharmacol. 1996:124–126. PubMed
Heurtault B., Saulnier P., Pech B., Proust J.E., Benoit J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–4300. doi: 10.1016/S0142-9612(03)00331-4. PubMed DOI
Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) Pharm. Dev. Technol. 2011;16:65–74. doi: 10.3109/10837450903499333. PubMed DOI
Lambers H., Piessens S., Bloem A., Pronk H., Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006;28:359–370. doi: 10.1111/j.1467-2494.2006.00344.x. PubMed DOI
Blaak J., Staib P. The Relation of pH and Skin Cleansing. Curr. Probl. Dermatology. 2018;54:132–142. doi: 10.1159/000489527. PubMed DOI
Blume A., Kerth A. Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochim. Biophys. Acta - Biomembr. 2013;1828:2294–2305. doi: 10.1016/j.bbamem.2013.04.014. PubMed DOI
Brezesinski G., Möhwald H. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 2003;100-102:563–584. doi: 10.1016/S0001-8686(02)00071-4. PubMed DOI
Schlaich A., Dos Santos A.P., Netz R.R. Simulations of Nanoseparated Charged Surfaces Reveal Charge-Induced Water Reorientation and Nonadditivity of Hydration and Mean-Field Electrostatic Repulsion. Langmuir. 2019;35:551–560. doi: 10.1021/acs.langmuir.8b03474. PubMed DOI
Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water. Science (80-.) 2018;360:1339–1342. doi: 10.1126/science.aat4191. PubMed DOI
Mukhina T., Hemmerle A., Rondelli V., Gerelli Y., Fragneto G., Daillant J., Charitat T. Attractive Interaction between Fully Charged Lipid Bilayers in a Strongly Confined Geometry. J. Phys. Chem. Lett. 2019;10:7195–7199. doi: 10.1021/acs.jpclett.9b02804. PubMed DOI
Latza V.M., Demé B., Schneck E. Membrane Adhesion via Glycolipids Occurs for Abundant Saccharide Chemistries. Biophys. J. 2020;118:1602–1611. doi: 10.1016/j.bpj.2020.02.003. PubMed DOI PMC
Mcintosh T.J., Magid A.D., Simon S.A. Cholesterol Modifies the Short-Range Repulsive Interactions between Phosphatidylcholine Membranes. Biochemistry. 1989;28:17–25. doi: 10.1021/bi00427a004. PubMed DOI
Rerek M.E., Chen B.Markovic, Van Wyck D., Garidel P., Mendelsohn R., Moore D.J. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355–9362. doi: 10.1021/jp0118367. DOI
Raudenkolb S., Wartewig S., Neubert R.H.H. Polymorphism of ceramide 6 : a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids. 2005;133:89–102. doi: 10.1016/j.chemphyslip.2004.09.015. PubMed DOI
Engelbrecht T.N., Schroeter A., Hauß T., Demé B., Scheidt H.A., Huster D., Neubert R.H.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607. doi: 10.1039/c2sm25420d. DOI
Skolova B., Janusova B., Zbytovska J., Gooris G., Bouwstra J.A., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., Vavrova K. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir. 2013;29:15624–15633. PubMed
Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. doi: 10.1016/j.bpc.2017.03.004. PubMed DOI