Cerosomes as skin repairing agent: Mode of action studies with a model stratum corneum layer at liquid/air and liquid/solid interfaces

. 2022 ; 2 () : 100039. [epub] 20211226

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37082599
Odkazy

PubMed 37082599
PubMed Central PMC10074917
DOI 10.1016/j.bbadva.2021.100039
PII: S2667-1603(21)00038-7
Knihovny.cz E-zdroje

The stratum corneum (SC) is the largest physical barrier of the human body. It protects against physical, chemical and biological damages, and avoids evaporation of water from the deepest skin layers. For its correct functioning, the homeostasis of the SC lipid matrix is fundamental. An alteration of the lipid matrix composition and in particular of its ceramide (CER) fraction can lead to the development of pathologies such as atopic dermatitis and psoriasis. Different studies showed that the direct replenishment of SC lipids on damaged skin had positive effects on the recovery of its barrier properties. In this work, cerosomes, i.e. liposomes composed of SC lipids, have been successfully prepared in order to investigate the mechanism of interaction with a model SC lipid matrix. The cerosomes contain CER[NP], D-CER[AP], stearic acid and cholesterol. In addition, hydrogenated soybean phospholipids have been added to one of the formulations leading to an increased stability at neutral pH. For the mode of action studies, monolayer models at the air-water interface and on solid support have been deployed. The results indicated that a strong interaction occurred between SC monolayers and the cerosomes. Since both systems were negatively charged, the driving force for the interaction must be based on the ability of CERs head groups to establish intermolecular hydrogen bonding networks that energetically prevailed against the electrostatic repulsion. This work proved for the first time the mode of action by which cerosomes exploit their function as skin barrier repairing agents on the SC.

Zobrazit více v PubMed

Proksch E., Brandner J.M., Jensen J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008;17:1063–1072. doi: 10.1111/j.1600-0625.2008.00786.x. PubMed DOI

Madison K.C. Barrier function of the skin: “La Raison d’Être” of the epidermis. J. Invest. Dermatol. 2003;121:231–241. doi: 10.1046/j.1523-1747.2003.12359.x. PubMed DOI

Menon L.M., K G, Cleary GW. The structure and function of the stratum corneum. Int J Pharm. 2012;435:3–9. doi: 10.1016/j.ijpharm.2012.06.005. PubMed DOI

K.A. Walters, M. Dekker, Dermatological and Transdermal Formulations, 2002. 10.1201/9780824743239. DOI

Holbrook K.A., Odland G.F. Regional differences in the thickness (cell layers) of the human stratum corneum: an ultrastructural analysis. J. Invest. Dermatol. 1974;62:415–422. doi: 10.1111/1523-1747.ep12701670. PubMed DOI

Lampe M.A., Burlingame A.L., Whitney J., Williams M.L., Brown B.E., Roitman E., Elias P.M. Human stratum corneum lipids: characterization and regional variations. J. Lipid Res. 1983;24:120–130. http://www.ncbi.nlm.nih.gov/pubmed/6833889 PubMed

Weerheim A., Ponec M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch. Dermatol. Res. 2001;293:191–199. PubMed

Elias P.M., Feingold K.R., Mao-qiang M., Elias P.M., Feingold K.R. Fatty acids are required for epidermal permeability barrier function . Fatty Acids Are Required for Epidermal Permeability Barrier Function. J. Clin. Invest. 1993;92:791–798. PubMed PMC

Schroeter A., Kiselev M.A., Hauß T., Dante S., Neubert R.H.H. Evidence of free fatty acid interdigitation in stratum corneum model membranes based on ceramide [AP] by deuterium labelling. BBA - Biomembr. 2009;1788:2194–2203. doi: 10.1016/j.bbamem.2009.07.024. PubMed DOI

Sahle F.F., Gebre-Mariam T., Dobner B., Wohlrab J., Neubert R.H.H. Skin diseases associated with the depletion of stratum corneum lipids and stratum corneum lipid substitution therapy. Skin Pharmacol. Physiol. 2015;28:42–55. doi: 10.1159/000360009. PubMed DOI

Imokawa A., Abe G., Jin A., Higaki K., Kawashima Y., Hidano M. Decreased level of Ceramides in Stratum Conreum of Atopic Dermatits: An Etioogic Factor in Atopic Dry Skin? J. Invest. Dermatol. 1991;96:523–526. PubMed

Motta S., Monti M., Sesana S., Caputo R., Carelli S., Ghidoni R. Ceramide composition of the psoriatic scale. BBA - Mol. Basis Dis. 1993;1182:147–151. doi: 10.1016/0925-4439(93)90135-N. PubMed DOI

Sahle F.F., Wohlrab J., Neubert R.H.H. Controlled penetration of ceramides into and across the stratum corneum using various types of microemulsions and formulation associated toxicity studies. Eur. J. Pharm. Biopharm. 2014;86:244–250. doi: 10.1016/j.ejpb.2013.07.011. PubMed DOI

Sahle F.F., Metz H., Wohlrab J., Neubert R.H.H. Lecithin-based microemulsions for targeted delivery of Ceramide AP into the stratum corneum: Formulation, characterizations, and in vitro release and penetration studies. Pharm. Res. 2013;30:538–551. doi: 10.1007/s11095-012-0899-x. PubMed DOI

Heuschkel S., Goebel A., Neubert R.H.H. Microemulsions—Modern Colloidal Carrier for Dermal and Transdermal Drug Delivery. J. Pharm. Sci. 2008;97:603–631. doi: 10.1002/jps.20995. PubMed DOI

Abdelgawad R., Nasr M., Moftah N.H., Hamza M.Y. Phospholipid membrane tubulation using ceramide doping “Cerosomes”: Characterization and clinical application in psoriasis treatment. Eur. J. Pharm. Sci. 2017;101:258–268. doi: 10.1016/j.ejps.2017.02.030. PubMed DOI

Vovesná A., Zhigunov A., Balouch M., Zbytovská J. Ceramide liposomes for skin barrier recovery: A novel formulation based on natural skin lipids. Int. J. Pharm. 2021;596 doi: 10.1016/j.ijpharm.2021.120264. PubMed DOI

Masukawa Y., Ishikawa J., Homma R., Narita H., Kitahara T., Naoe A., Takagi Y., Sato H., Oba T., Kondo N., Sugai Y. Comprehensive quantification of ceramide species in human stratum corneum. J. Lipid Res. 2009;50:1708–1719. doi: 10.1194/jlr.d800055-jlr200. PubMed DOI PMC

Kindt R., Jorge L., Dumont E., Couturon P., David F., Sandra P., Sandra K. Profiling and Characterizing Skin Ceramides Using Reversed-Phase Liquid Chromatography − Quadrupole Time-of-Flight Mass Spectrometry. Anal. Chem. 2011;84:403–411. doi: 10.1021/ac202646v. PubMed DOI

J.N. Israelachvili, Intermolecular and Surface Forces, 3rd ed., 2011. 10.1016/C2009-0-21560-1. DOI

Kumar V.V. Complementary molecular shapes and additivity of the packing parameter of lipids. Proc. Natl. Acad. Sci. U. S. A. 1991;88:444–448. doi: 10.1073/pnas.88.2.444. PubMed DOI PMC

Khazanov E., Priev A., Shillemans J.P., Barenholz Y. Physicochemical and biological characterization of ceramide-containing liposomes: Paving the way to ceramide therapeutic application. Langmuir. 2008;24:6965–6980. doi: 10.1021/la800207z. PubMed DOI

Mueller J., Oliveira J.S.L., Barker R., Trapp M., Schroeter A., Brezesinski G., Neubert R.H.H. The effect of urea and taurine as hydrophilic penetration enhancers on stratum corneum lipid models. Biochim. Biophys. Acta - Biomembr. 2016;1858:2006–2018. doi: 10.1016/j.bbamem.2016.05.010. PubMed DOI

Fathi-Azarbayjani A., Ng K.X., Chan Y.W., Chan S.Y. Lipid Vesicles for the Skin Delivery of Diclofenac: Cerosomes vs. Other Lipid Suspensions. Adv. Pharm. Bull. 2015;5:25–33. doi: 10.5681/apb.2015.004. PubMed DOI PMC

Chang J.E., Cho H.J., Yi E., Kim D.D., Jheon S. Hypocrellin B and paclitaxel-encapsulated hyaluronic acid-ceramide nanoparticles for targeted photodynamic therapy in lung cancer. J. Photochem. Photobiol. B Biol. 2016;158:113–121. doi: 10.1016/j.jphotobiol.2016.02.035. PubMed DOI

Jung S.M., Yoon G.H., Lee H.C., Jung M.H., Il Yu S., Yeon S.J., Min S.K., Kwon Y.S., Hwang J.H., Shin H.S. Thermodynamic Insights and Conceptual Design of Skin-Sensitive Chitosan Coated Ceramide/PLGA Nanodrug for Regeneration of Stratum Corneum on Atopic Dermatitis. Sci. Rep. 2015;5:1–12. doi: 10.1038/srep18089. PubMed DOI PMC

Noh G.Y., Suh J.Y., Park S.N. Ceramide-based nanostructured lipid carriers for transdermal delivery of isoliquiritigenin: Development, physicochemical characterization, and in vitro skin permeation studies. Korean J. Chem. Eng. 2017;34:400–406. doi: 10.1007/s11814-016-0267-3. DOI

Bangham A.D., Standish M.M., Watkins J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965;13:238–252. doi: 10.1016/S0022-2836(65)80093-6. PubMed DOI

Tian C.H., Zoriniants G., Gronheid R., Van Der Auweraer M., De Schryver F.C. Confocal fluorescence microscopy and AFM of thiacyanine J aggregates in Langmuir-Schaefer monolayers. Langmuir. 2003;19:9831–9840. doi: 10.1021/la034817s. DOI

Kjaer K. Some simple ideas on X-ray reflection and grazing-incidence diffraction from thin surfactant films. Phys. B Phys. Condens. Matter. 1994;198:100–109. doi: 10.1016/0921-4526(94)90137-6. DOI

Strati F., Neubert R.H.H., Opálka L., Kerth A., Brezesinski G. Non-ionic surfactants as innovative skin penetration enhancers: insight in the mechanism of interaction with simple 2D stratum corneum model system. Eur. J. Pharm. Sci. 2020;157 doi: 10.1016/j.ejps.2020.105620. PubMed DOI

Schmitt T., Lange S., Dobner B., Sonnenberger S., Hauß T., Neubert R.H.H. Investigation of a CER[NP]- and [AP]-Based Stratum Corneum Modeling Membrane System: Using Specifically Deuterated CER Together with a Neutron Diffraction Approach. Langmuir. 2018;34:1742–1749. doi: 10.1021/acs.langmuir.7b01848. PubMed DOI

Stefaniu C., Brezesinski G., Möhwald H. Langmuir monolayers as models to study processes at membrane surfaces. Adv. Colloid Interface Sci. 2014;208:197–213. doi: 10.1016/j.cis.2014.02.013. PubMed DOI

Kessner D., Ruettinger A., Kiselev M.A., Wartewig S., Neubert R.H.H. Properties of ceramides and their impact on the stratum corneum structure: A review - Part 2: Stratum corneum lipid model systems. Skin Pharmacol. Physiol. 2008;21:58–74. doi: 10.1159/000112956. PubMed DOI

Bouwstra J.A., Gooris G.S., Dubbelaar F.E.R., Ponec M. Phase behavior of lipid mixtures based on human ceramides: Coexistence of crystalline and liquid phases. J. Lipid Res. 2001;42:1759–1770. doi: 10.1016/s0022-2275(20)31502-9. PubMed DOI

Das C., Olmsted P.D. The physics of stratum corneum lipid membranes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016;374 doi: 10.1098/rsta.2015.0126. PubMed DOI PMC

Iwai I., Han H., Den Hollander L., Svensson S., Öfverstedt L.G., Anwar J., Brewer J., Bloksgaard M., Laloeuf A., Nosek D., Masich S., Bagatolli L.A., Skoglund U., Norlén L. The human Skin barrier is organized as stacked bilayers of fully extended ceramides with cholesterol molecules associated with the ceramide sphingoid moiety. J. Invest. Dermatol. 2012;132:2215–2225. doi: 10.1038/jid.2012.43. PubMed DOI

Stefaniu C., Brezesinski G. X-ray investigation of monolayers formed at the soft air/water interface. Curr. Opin. Colloid Interface Sci. 2014;19:216–227. doi: 10.1016/j.cocis.2014.01.004. PubMed DOI

Brezesinski G., Schneck E. Investigating Ions at Amphiphilic Monolayers with X-ray Fluorescence. Langmuir. 2019;35:8531–8542. doi: 10.1021/acs.langmuir.9b00191. PubMed DOI PMC

Rabionet M., Gorgas K., Sandhoff R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2014;1841:422–434. doi: 10.1016/j.bbalip.2013.08.011. PubMed DOI

Van Smeden J., Janssens M., Gooris G.S., Bouwstra J.A. The important role of stratum corneum lipids for the cutaneous barrier function. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2014;1841:295–313. doi: 10.1016/j.bbalip.2013.11.00. PubMed DOI

Čuříková-Kindlová B.A., Diat O., Štěpánek F., Vávrová K., Zbytovská J. Probing the interactions among sphingosine and phytosphingosine ceramides with non- and alpha-hydroxylated acyl chains in skin lipid model membranes. Int. J. Pharm. 2019;563:384–394. doi: 10.1016/j.ijpharm.2019.04.010. PubMed DOI

J. Zbytovská, M.A. Kiselev, S.S. Funari, V.M. Garamus, S. Wartewig, K. Palát, R. Neubert, Colloids and Surfaces A : Physicochemical and Engineering Aspects Influence of cholesterol on the structure of stratum corneum lipid model membrane, 328 (2008) 90-99. 10.1016/j.colsurfa.2008.06.032. DOI

F. Arends, H. Chaudhary, P. Janmey, M.M.A.E. Claessens, O. Lieleg, Lipid Head Group Charge and Fatty Acid Configuration Dictate Liposome Mobility in Neurofilament Networks, 201600229 (n.d.) 2016 1-8. 10.1002/mabi.201600229. PubMed DOI

Dreher P., Walde F., Luisi P., Elsner P.L. Human skin irritation studies of a lecithin microemulsion gel and of lecithin liposomes. Ski. Pharmacol. 1996:124–126. PubMed

Heurtault B., Saulnier P., Pech B., Proust J.E., Benoit J.P. Physico-chemical stability of colloidal lipid particles. Biomaterials. 2003;24:4283–4300. doi: 10.1016/S0142-9612(03)00331-4. PubMed DOI

Kadu P.J., Kushare S.S., Thacker D.D., Gattani S.G. Enhancement of oral bioavailability of atorvastatin calcium by self-emulsifying drug delivery systems (SEDDS) Pharm. Dev. Technol. 2011;16:65–74. doi: 10.3109/10837450903499333. PubMed DOI

Lambers H., Piessens S., Bloem A., Pronk H., Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006;28:359–370. doi: 10.1111/j.1467-2494.2006.00344.x. PubMed DOI

Blaak J., Staib P. The Relation of pH and Skin Cleansing. Curr. Probl. Dermatology. 2018;54:132–142. doi: 10.1159/000489527. PubMed DOI

Blume A., Kerth A. Peptide and protein binding to lipid monolayers studied by FT-IRRA spectroscopy. Biochim. Biophys. Acta - Biomembr. 2013;1828:2294–2305. doi: 10.1016/j.bbamem.2013.04.014. PubMed DOI

Brezesinski G., Möhwald H. Langmuir monolayers to study interactions at model membrane surfaces. Adv. Colloid Interface Sci. 2003;100-102:563–584. doi: 10.1016/S0001-8686(02)00071-4. PubMed DOI

Schlaich A., Dos Santos A.P., Netz R.R. Simulations of Nanoseparated Charged Surfaces Reveal Charge-Induced Water Reorientation and Nonadditivity of Hydration and Mean-Field Electrostatic Repulsion. Langmuir. 2019;35:551–560. doi: 10.1021/acs.langmuir.8b03474. PubMed DOI

Fumagalli L., Esfandiar A., Fabregas R., Hu S., Ares P., Janardanan A., Yang Q., Radha B., Taniguchi T., Watanabe K., Gomila G., Novoselov K.S., Geim A.K. Anomalously low dielectric constant of confined water. Science (80-.) 2018;360:1339–1342. doi: 10.1126/science.aat4191. PubMed DOI

Mukhina T., Hemmerle A., Rondelli V., Gerelli Y., Fragneto G., Daillant J., Charitat T. Attractive Interaction between Fully Charged Lipid Bilayers in a Strongly Confined Geometry. J. Phys. Chem. Lett. 2019;10:7195–7199. doi: 10.1021/acs.jpclett.9b02804. PubMed DOI

Latza V.M., Demé B., Schneck E. Membrane Adhesion via Glycolipids Occurs for Abundant Saccharide Chemistries. Biophys. J. 2020;118:1602–1611. doi: 10.1016/j.bpj.2020.02.003. PubMed DOI PMC

Mcintosh T.J., Magid A.D., Simon S.A. Cholesterol Modifies the Short-Range Repulsive Interactions between Phosphatidylcholine Membranes. Biochemistry. 1989;28:17–25. doi: 10.1021/bi00427a004. PubMed DOI

Rerek M.E., Chen B.Markovic, Van Wyck D., Garidel P., Mendelsohn R., Moore D.J. Phytosphingosine and Sphingosine Ceramide Headgroup Hydrogen Bonding: Structural Insights through Thermotropic Hydrogen/Deuterium Exchange. J. Phys. Chem. B. 2001;105:9355–9362. doi: 10.1021/jp0118367. DOI

Raudenkolb S., Wartewig S., Neubert R.H.H. Polymorphism of ceramide 6 : a vibrational spectroscopic and X-ray powder diffraction investigation of the diastereomers of N-(alpha-hydroxyoctadecanoyl)-phytosphingosine. Chem. Phys. Lipids. 2005;133:89–102. doi: 10.1016/j.chemphyslip.2004.09.015. PubMed DOI

Engelbrecht T.N., Schroeter A., Hauß T., Demé B., Scheidt H.A., Huster D., Neubert R.H.H. The impact of ceramides NP and AP on the nanostructure of stratum corneum lipid bilayer. Part I: Neutron diffraction and 2H NMR studies on multilamellar models based on ceramides with symmetric alkyl chain length distribution. Soft Matter. 2012;8:6599–6607. doi: 10.1039/c2sm25420d. DOI

Skolova B., Janusova B., Zbytovska J., Gooris G., Bouwstra J.A., Slepička P., Berka P., Roh J., Palát K., Hrabálek A., Vavrova K. Ceramides in the Skin Lipid Membranes: Length Matters. Langmuir. 2013;29:15624–15633. PubMed

Pullmannová P., Pavlíková L., Kováčik A., Sochorová M., Školová B., Slepička P., Maixner J., Zbytovská J., Vávrová K. Permeability and microstructure of model stratum corneum lipid membranes containing ceramides with long (C16) and very long (C24) acyl chains. Biophys. Chem. 2017;224:20–31. doi: 10.1016/j.bpc.2017.03.004. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...