Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35386102
PubMed Central
PMC8941168
DOI
10.1016/j.csbj.2022.03.004
PII: S2001-0370(22)00079-4
Knihovny.cz E-zdroje
- Klíčová slova
- Acute myocardial infarction, AffiLib, Affinity engineering, Enzyme kinetics, Plasminogen activators, Rational design, SAK, Staphylokinase, Staphylokinase, Stroke treatments, Thrombolytics,
- Publikační typ
- časopisecké články MeSH
Cardio- and cerebrovascular diseases are leading causes of death and disability, resulting in one of the highest socio-economic burdens of any disease type. The discovery of bacterial and human plasminogen activators and their use as thrombolytic drugs have revolutionized treatment of these pathologies. Fibrin-specific agents have an advantage over non-specific factors because of lower rates of deleterious side effects. Specifically, staphylokinase (SAK) is a pharmacologically attractive indirect plasminogen activator protein of bacterial origin that forms stoichiometric noncovalent complexes with plasmin, promoting the conversion of plasminogen into plasmin. Here we report a computer-assisted re-design of the molecular surface of SAK to increase its affinity for plasmin. A set of computationally designed SAK mutants was produced recombinantly and biochemically characterized. Screening revealed a pharmacologically interesting SAK mutant with ∼7-fold enhanced affinity toward plasmin, ∼10-fold improved plasmin selectivity and moderately higher plasmin-generating efficiency in vitro. Collectively, the results obtained provide a framework for SAK engineering using computational affinity-design that could pave the way to next-generation of effective, highly selective, and less toxic thrombolytics.
Zobrazit více v PubMed
Tillett W.S., Garner R.L. The fibrinolytic activity of hemolytic streptococci. J Exp Med. 1933;58:485–502. PubMed PMC
Sila C.A., Furlan A.J. Therapy for acute ischemic stroke: the door opens. Interpreting the NINDS rt-PA stroke study. Cleve Clin J Med. 1996;63:77–79. PubMed
Macfarlane R.G., Pilling J. Fibrinolytic activity of normal urine. Nature. 1947;159:779. PubMed
Rijken D.C., Wijngaards G., Zaal-de Jong M., Welbergen J. Purification and partial characterization of plasminogen activator from human uterine tissue. Biochim Biophys Acta. 1979;580:140–153. PubMed
Mican J., Toul M., Bednar D., Damborsky J. Structural biology and protein engineering of thrombolytics. Comput Struct Biotechnol J. 2019;17:917–938. PubMed PMC
Nikitin D., Choi S., Mican J., Toul M., Ryu W.-S., Damborsky J., et al. Development and testing of thrombolytics in stroke. J Stroke. 2021;23(1):12–36. PubMed PMC
Collen D., Lijnen H.R. The tissue-type plasminogen activator story. Arterioscler Thromb Vasc Biol. 2009;29:1151–1155. PubMed
Bivard A., Huang X., Levi C.R., Spratt N., Campbell B.C., et al. Tenecteplase in ischemic stroke offers improved recanalization: analysis of 2 trials. Neurology. 2017;89:62–67. PubMed
Yaghi S., Willey J.Z., Cucchiara B., Goldstein J.N., Gonzales N.R., Khatri P., et al. Treatment and outcome of hemorrhagic transformation after intravenous alteplase in acute ischemic stroke: A scientific statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2017;48:e343–e361. PubMed
Lack C.H. Staphylokinase; an activator of plasma protease. Nature. 1948;161:559. PubMed
Collen D. Staphylokinase: a potent, uniquely fibrin-selective thrombolytic agent. Nat Med. 1998;4:279–284. PubMed
Parry M.A., Fernandez-Catalan C., Bergner A., Huber R., Hopfner K.P., et al. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat Struct Biol. 1998;5:917–923. PubMed
Sakharov D.V., Lijnen H.R., Rijken D.C. Interactions between staphylokinase, plasmin(ogen), and fibrin. Staphylokinase discriminates between free plasminogen and plasminogen bound to partially degraded fibrin. J Biol Chem. 1996;271:27912–27918. PubMed
Vanderschueren S., Barrios L., Kerdsinchai P., Van den Heuvel P., Hermans L., et al. A randomized trial of recombinant staphylokinase versus alteplase for coronary artery patency in acute myocardial infarction. The STAR Trial Group. Circulation. 1995 15;;92(8):2044–2049. PubMed
Armstrong P.W., Burton J., Pakola S., Molhoek P.G., Betriu A., et al. Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS II) Am Heart J. 2003;146:484–488. PubMed
Armstrong P.W., Burton J.R., Palisaitis D., Thompson C.R., Van de Werf F., et al. Collaborative angiographic patency trial of recombinant staphylokinase (CAPTORS) Am Heart J. 2000;139:820–823. PubMed
Toul M., Nikitin D., Marek M., Damborsky J., Prokop Z. Extended mechanism of the plasminogen activator staphylokinase revealed by global kinetic analysis: 1000-fold higher catalytic activity than That of clinically used alteplase. ACS Catal. 2022;12:3807–3814.
Netzer R., Listov D., Lipsh R., Dym O., Albeck S., et al. Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Nat Commun. 2018;9:5286. PubMed PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., et al. The protein data bank. Nucleic Acids Res. 2000;28:235–242. PubMed PMC
The UniProt Consortium UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489. PubMed PMC
Schrödinger, LLC. The PyMOL Molecular Graphics System, Version 2.1 2015.
Singh S., Ashish D.KL. Pro(42) and Val(45) of staphylokinase modulate intermolecular interactions of His(43)-Tyr(44) pair and specificity of staphylokinase-plasmin activator complex. Febs Lett. 2012;586:653–658. PubMed
Kellogg E.H., Leaver-Fay A., Baker D. Role of conformational sampling in computing mutation-induced changes in protein structure and stability. Proteins Struct Funct Bioinform. 2011;79:830–838. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–675. PubMed PMC
Johnson K.A., Simpson Z.B., Blom T. Global Kinetic Explorer: a new computer program for dynamic simulation and fitting of kinetic data. Anal Biochem. 2009;387:20–29. PubMed
Johnson K.A., Simpson Z.B., Blom T. FitSpace Explorer: an algorithm to evaluate multi-dimensional parameter space in fitting kinetic data. Anal Biochem. 2009;387:30–41. PubMed
Johnson K.A. Fitting enzyme kinetic data with KinTek global kinetic explorer. Comp Methods Enzymol. 2009;467:601–626. PubMed
Harpaz D., Chen X., Francis C.W., Marder V.J., Meltzer R.S. Ultrasound enhancement of thrombolysis and reperfusion in vitro. J Am Coll Cardiol. 1993;6:1507–1511. PubMed
Prasad S., Kashyap R.S., Deopujari J.Y., Purohit H.J., Taori G.M., Daginawala H.F. Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thromb J. 2006;4:14. PubMed PMC
Thalerová S., Pešková M., Kittová P., Gulati S., Víteček J., Kubala L., et al. Effect of apixaban pretreatment on alteplase-induced thrombolysis: an in vitro study. Front Pharmacol. 2021;12 PubMed PMC
Víteček J., Vítečková Wünschová A., Thalerová S., Gulati S., Kubala L., et al. Factors influencing recombinant tissue plasminogen activator efficacy: an in vitro study. Life Sci. 2021 in submission. PubMed PMC
Diamond S.L. Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng. 1999;1:427–462. PubMed
Rottenberger Z., Komorowicz E., Szabó L., Bóta A., Varga Z., et al. Lytic and mechanical stability of clots composed of fibrin and blood vessel wall components. J Thromb Haemost. 2013;11:529–538. PubMed PMC
Marcos-Contreras O.A., Ganguly K., Yamamoto A., Shlansky-Goldberg R., Cines D.B., Muzykantov V.R., et al. Clot penetration and retention by plasminogen activators promote fibrinolysis. Biochem Pharmacol. 2013;85:216–222. PubMed
Longstaff C. Measuring fibrinolysis: from research to routine diagnostic assays. J Thromb Haemost. 2018;16:652–662. PubMed PMC
Longstaff C., Varjú I., Sótonyi P., Szabó L., Krumrey M., et al. Mechanical stability and fibrinolytic resistance of clots containing fibrin, DNA, and histones. J Biol Chem. 2013;288:6946–6956. PubMed PMC
Morrow G.B., Whyte C.S., Mutch N.J. Functional plasminogen activator inhibitor 1 is retained on the activated platelet membrane following platelet activation. Haematologica. 2020;105:2824–2833. PubMed PMC
Acheampong P., Ford G.A. Pharmacokinetics of alteplase in the treatment of ischaemic stroke. Expert Opin Drug Metab Toxicol. 2012;8:271–281. PubMed
Elnager A., Abdullah W.Z., Hassan R., Idris Z., Arfah N.W., Sulaiman S.A., et al. In vitro whole blood clot lysis for fibrinolytic activity study using D-dimer and confocal microscopy. Adv Hematol. 2014;2014 PubMed PMC
Lijnen H.R., De Cock F., Van Hoef B., Schlott B., Collen D. Characterization of the interaction between plasminogen and staphylokinase. Eur J Biochem. 1994;224(1):143–149. PubMed
Schlott B., Hartmann M., Gührs K.H., Birch-Hirschfeld E., Gase A., Vettermann S., et al. Functional properties of recombinant staphylokinase variants obtained by site-specific mutagenesis of methionine-26. Biochim Biophys Acta. 1994;1204(2):235–242. PubMed
Dornberger U., Fandrei D., Backmann J., Hübner W., Rahmelow K., Gührs K.H., et al. A correlation between thermal stability and structural features of staphylokinase and selected mutants: a Fourier-transform infrared study. Biochim Biophys Acta. 1996;1294(2):168–176. PubMed
Dahiya M, Singh S, Rajamohan G, Sethi D, Dikshit A. Intermolecular interactions in staphylokinase-plasmin(ogen) bimolecular complex: function of His43 and Tyr44 FEBS Lett 2011; 585:1814. PubMed
Lee K.S., Yang J., Niu J., Ng C.J., Wagner K.M., et al. Drug-target residence time affects in vivo target occupancy through multiple pathways. ACS Cent Sci. 2019;5:1614–1624. PubMed PMC
Copeland R.A. The drug–target residence time model: a 10-year retrospective. Nat Rev Drug Discov. 2016;15:87–95. PubMed
Leach J.K., Patterson E., O’Rear E.A. Distributed intraclot thrombolysis: mechanism of accelerated thrombolysis with encapsulated plasminogen activators. J Thromb Haemost. 2004;2:1548–1555. PubMed
Alexandrov A., Grotta J. Arterial reocclusion in stroke patients treated with intravenous tissue plasminogen activator. Neurology. 2002;59(6):862–867. PubMed
Knuttinen M.G., Emmanuel N., Isa F., Rogers A.W., Gaba R.C., Bui J.T., et al. Review of pharmacology and physiology in thrombolysis interventions. Semin Intervent Radiol. 2010;27:374–383. PubMed PMC
Baruah D.B., Dash R.N., Chaudhari M.R., Kadam S.S. Plasminogen activators: a comparison. Vascul Pharmacol. 2006;44:1–9. PubMed
Nedaeinia R., Faraji H., Javanmard S.H., Ferns G.S., Ghayour-Mobarhan M., et al. Bacterial staphylokinase as a promising third-generation drug in the treatment for vascular occlusion. Mol Biol Rep. 2020;47:819–841. PubMed
A collateral circulation in ischemic stroke accelerates recanalization due to lower clot compaction