Vaccination and immunotherapies in neuroimmunological diseases
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35388213
PubMed Central
PMC8985568
DOI
10.1038/s41582-022-00646-5
PII: 10.1038/s41582-022-00646-5
Knihovny.cz E-zdroje
- MeSH
- COVID-19 * prevence a kontrola MeSH
- imunologické faktory MeSH
- imunoterapie MeSH
- lidé MeSH
- pandemie MeSH
- SARS-CoV-2 MeSH
- vakcinace MeSH
- vakcíny proti COVID-19 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- imunologické faktory MeSH
- vakcíny proti COVID-19 * MeSH
Neuroimmunological diseases and their treatment compromise the immune system, thereby increasing the risk of infections and serious illness. Consequently, vaccinations to protect against infections are an important part of the clinical management of these diseases. However, the wide variety of immunotherapies that are currently used to treat neuroimmunological disease - particularly multiple sclerosis and neuromyelitis optica spectrum disorders - can also impair immunological responses to vaccinations. In this Review, we discuss what is known about the effects of various immunotherapies on immunological responses to vaccines and what these effects mean for the safe and effective use of vaccines in patients with a neuroimmunological disease. The success of vaccination in patients receiving immunotherapy largely depends on the specific mode of action of the immunotherapy. To minimize the risk of infection when using immunotherapy, assessment of immune status and exclusion of underlying chronic infections before initiation of therapy are essential. Selection of the required vaccinations and leaving appropriate time intervals between vaccination and administration of immunotherapy can help to safeguard patients. We also discuss the rapidly evolving knowledge of how immunotherapies affect responses to SARS-CoV-2 vaccines and how these effects should influence the management of patients on these therapies during the COVID-19 pandemic.
Brain and Mind Centre University of Sydney Sydney Australia
Department of Neurology Medical Faculty Heinrich Heine University Düsseldorf Düsseldorf Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Olomouc Czech Republic
Department of Neurology Section of Neuroimmunology University of Rostock Rostock Germany
Department of Neurology University of Rostock Rostock Germany
Department of Tropical Medicine and Infectious Diseases University of Rostock Rostock Germany
Zobrazit více v PubMed
Reich DS, Lucchinetti CF, Calabresi PA. Multiple sclerosis. N. Engl. J. Med. 2018;378:169–180. doi: 10.1056/NEJMra1401483. PubMed DOI PMC
Lassmann H. Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front. Immunol. 2018;9:3116. doi: 10.3389/fimmu.2018.03116. PubMed DOI PMC
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple sclerosis: mechanisms and immunotherapy. Neuron. 2018;97:742–768. doi: 10.1016/j.neuron.2018.01.021. PubMed DOI
Loebermann M, et al. Vaccination against infection in patients with multiple sclerosis. Nat. Rev. Neurol. 2012;8:143–151. doi: 10.1038/nrneurol.2012.8. PubMed DOI
Moiola L, Rommer PS, Zettl UK. Prevention and management of adverse effects of disease modifying treatments in multiple sclerosis. Curr. Opin. Neurol. 2020;33:286–294. doi: 10.1097/WCO.0000000000000824. PubMed DOI
Zrzavy T, et al. Vaccination in multiple sclerosis: friend or foe? Front. Immunol. 2019;10:1883. doi: 10.3389/fimmu.2019.01883. PubMed DOI PMC
Siegrist, C. A. in Plotkin’s Vaccines (eds Plotkin, S., Orenstein, W., Offit, P., & Edwards, K. M.) 17-36 (Elsevier, 2018).
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 2018;17:261–279. doi: 10.1038/nrd.2017.243. PubMed DOI PMC
Pardi N, Hogan MJ, Weissman D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020;65:14–20. doi: 10.1016/j.coi.2020.01.008. PubMed DOI
Gary EN, Weiner DB. DNA vaccines: prime time is now. Curr. Opin. Immunol. 2020;65:21–27. doi: 10.1016/j.coi.2020.01.006. PubMed DOI PMC
Rawat K, Kumari P, Saha L. COVID-19 vaccine: a recent update in pipeline vaccines, their design and development strategies. Eur. J. Pharmacol. 2021;892:173751. doi: 10.1016/j.ejphar.2020.173751. PubMed DOI PMC
Poland GA, Ovsyannikova IG, Kennedy RB. SARS-CoV-2 immunity: review and applications to phase 3 vaccine candidates. Lancet. 2020;396:1595–1606. doi: 10.1016/S0140-6736(20)32137-1. PubMed DOI PMC
Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–527. doi: 10.1038/s41586-020-2798-3. PubMed DOI
WHO. COVID-19 Vaccine Tracker and Landscapehttps://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines (2021). The COVID-19 vaccine tracker assembles up to date information on COVID-19 vaccine candidates currently under development.
Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 vaccine development: current status. Mayo Clinic Proc. 2020;95:2172–2188. doi: 10.1016/j.mayocp.2020.07.021. PubMed DOI PMC
Plotkin, S. L. & Plotkin, S. A. in Plotkin’s Vaccines (eds Plotkin, S., Orenstein, W., Offit, P., & Edwards, K. M.) (Elsevier, 2018).
Beutler B. Innate immunity: an overview. Mol. Immunol. 2004;40:845–859. doi: 10.1016/j.molimm.2003.10.005. PubMed DOI
Kar UK, Joosten LAB. Training the trainable cells of the immune system and beyond. Nat. Immunol. 2020;21:115–119. doi: 10.1038/s41590-019-0583-y. PubMed DOI
Higgins JP, et al. Association of BCG, DTP, and measles containing vaccines with childhood mortality: systematic review. BMJ. 2016;355:i5170. doi: 10.1136/bmj.i5170. PubMed DOI PMC
Netea MG, et al. Trained immunity: a program of innate immune memory in health and disease. Science. 2016;352:aaf1098. doi: 10.1126/science.aaf1098. PubMed DOI PMC
Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J. Leukoc. Biol. 2019;105:329–338. doi: 10.1002/JLB.MR0318-104R. PubMed DOI
Del Giudice G, Rappuoli R, Didierlaurent AM. Correlates of adjuvanticity: a review on adjuvants in licensed vaccines. Semin. Immunol. 2018;39:14–21. doi: 10.1016/j.smim.2018.05.001. PubMed DOI
Villarreal R, Casale TB. Commonly used adjuvant human vaccines: advantages and side effects. J. Allergy Clin. Immunol. Pract. 2020;8:2953–2957. doi: 10.1016/j.jaip.2020.04.045. PubMed DOI
Pellegrino P, Clementi E, Radice S. On vaccine’s adjuvants and autoimmunity: current evidence and future perspectives. Autoimmun. Rev. 2015;14:880–888. doi: 10.1016/j.autrev.2015.05.014. PubMed DOI
Stowe J, Andrews N, Miller E. Do vaccines trigger neurological diseases? epidemiological evaluation of vaccination and neurological diseases using examples of multiple sclerosis, Guillain-Barre syndrome and narcolepsy. CNS Drugs. 2020;34:1–8. doi: 10.1007/s40263-019-00670-y. PubMed DOI PMC
Lobermann M, et al. Immunization in the adult immunocompromised host. Autoimmun. Rev. 2012;11:212–218. doi: 10.1016/j.autrev.2011.05.015. PubMed DOI
Hapfelmeier A, Gasperi C, Donnachie E, Hemmer B. A large case-control study on vaccination as risk factor for multiple sclerosis. Neurology. 2019;93:e908–e916. doi: 10.1212/WNL.0000000000008012. PubMed DOI
Farez MF, Correale J. Immunizations and risk of multiple sclerosis: systematic review and meta-analysis. J. Neurol. 2011;258:1197–1206. doi: 10.1007/s00415-011-5984-2. PubMed DOI
Mailand MT, Frederiksen JL. Vaccines and multiple sclerosis: a systematic review. J. Neurol. 2017;264:1035–1050. doi: 10.1007/s00415-016-8263-4. PubMed DOI
Jasti AK, et al. Guillain-Barre syndrome: causes, immunopathogenic mechanisms and treatment. Expert Rev. Clin. Immunol. 2016;12:1175–1189. doi: 10.1080/1744666X.2016.1193006. PubMed DOI
Lehmann HC, Hartung HP, Kieseier BC, Hughes RA. Guillain-Barre syndrome after exposure to influenza virus. Lancet Infect. Dis. 2010;10:643–651. doi: 10.1016/S1473-3099(10)70140-7. PubMed DOI
Kwong JC, et al. Risk of Guillain-Barre syndrome after seasonal influenza vaccination and influenza health-care encounters: a self-controlled study. Lancet Infect. Dis. 2013;13:769–776. doi: 10.1016/S1473-3099(13)70104-X. PubMed DOI
Bar-Or A, et al. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis: the VELOCE study. Neurology. 2020;95:e1999–e2008. doi: 10.1212/WNL.0000000000010380. PubMed DOI PMC
Kim W, et al. Reduced antibody formation after influenza vaccination in patients with neuromyelitis optica spectrum disorder treated with rituximab. Eur. J. Neurol. 2013;20:975–980. doi: 10.1111/ene.12132. PubMed DOI
Bingham CO, 3rd, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab: results from a controlled clinical trial. Arthritis Rheum. 2010;62:64–74. doi: 10.1002/art.25034. PubMed DOI
Rehnberg M, et al. Vaccination response to protein and carbohydrate antigens in patients with rheumatoid arthritis after rituximab treatment. Arthritis Res. Ther. 2010;12:R111. doi: 10.1186/ar3047. PubMed DOI PMC
Hauser SL, et al. Ofatumumab versus teriflunomide in multiple sclerosis. N. Engl. J. Med. 2020;383:546–557. doi: 10.1056/NEJMoa1917246. PubMed DOI
Cree BAC, et al. Inebilizumab for the treatment of neuromyelitis optica spectrum disorder (N-MOmentum): a double-blind, randomised placebo-controlled phase 2/3 trial. Lancet. 2019;394:1352–1363. doi: 10.1016/S0140-6736(19)31817-3. PubMed DOI
McCarthy CL, et al. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81:872–876. doi: 10.1212/WNL.0b013e3182a35215. PubMed DOI PMC
Moser T, et al. Long-term peripheral immune cell profiling reveals further targets of oral cladribine in MS. Ann. Clin. Transl. Neurol. 2020;7:2199–2212. doi: 10.1002/acn3.51206. PubMed DOI PMC
Leist TP, Weissert R. Cladribine: mode of action and implications for treatment of multiple sclerosis. Clin. Neuropharmacol. 2011;34:28–35. doi: 10.1097/WNF.0b013e318204cd90. PubMed DOI
Brill L, et al. Effect of cladribine on COVID-19 serology responses following two doses of the BNT162b2 mRNA vaccine in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2022;57:103343. doi: 10.1016/j.msard.2021.103343. PubMed DOI PMC
Gold R, et al. Vaccination in multiple sclerosis patients treated with highly effective disease-modifying drugs: an overview with consideration of cladribine tablets. Ther. Adv. Neurol. Disord. 2021;14:17562864211019598. doi: 10.1177/17562864211019598. PubMed DOI PMC
Sorensen PS, et al. Expert opinion on the use of cladribine tablets in clinical practice. Ther. Adv. Neurol. Disord. 2020;13:1756286420935019. doi: 10.1177/1756286420935019. PubMed DOI PMC
Bock H, et al. Humoral and cellular immune responses to SARS CoV-2 vaccination in people with multiple sclerosis and NMOSD patients receiving immunomodulatory treatments. Mult. Scler. Relat. Disord. 2022;59:103554. doi: 10.1016/j.msard.2022.103554. PubMed DOI PMC
Bar-Or A, et al. Teriflunomide effect on immune response to influenza vaccine in patients with multiple sclerosis. Neurology. 2013;81:552–558. doi: 10.1212/WNL.0b013e31829e6fbf. PubMed DOI PMC
Bar-Or A, et al. Randomized study of teriflunomide effects on immune responses to neoantigen and recall antigens. Neurol. Neuroimmunol. Neuroinflamm. 2015;2:e70. doi: 10.1212/NXI.0000000000000070. PubMed DOI PMC
Bar-Or A, Pachner A, Menguy-Vacheron F, Kaplan J, Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs. 2014;74:659–674. doi: 10.1007/s40265-014-0212-x. PubMed DOI PMC
Ciotti JR, Valtcheva MV, Cross AH. Effects of MS disease-modifying therapies on responses to vaccinations: a review. Mult. Scler. Relat. Disord. 2020;45:102439. doi: 10.1016/j.msard.2020.102439. PubMed DOI PMC
Vagberg M, Kumlin U, Svenningsson A. Humoral immune response to influenza vaccine in natalizumab-treated MS patients. Neurol. Res. 2012;34:730–733. doi: 10.1179/1743132812Y.0000000059. PubMed DOI
Kaufman M, et al. Natalizumab treatment shows no clinically meaningful effects on immunization responses in patients with relapsing-remitting multiple sclerosis. J. Neurol. Sci. 2014;341:22–27. doi: 10.1016/j.jns.2014.03.035. PubMed DOI
Kappos L, et al. Randomized trial of vaccination in fingolimod-treated patients with multiple sclerosis. Neurology. 2015;84:872–879. doi: 10.1212/WNL.0000000000001302. PubMed DOI
Signoriello E, et al. Is antibody titer useful to verify the immunization after VZV vaccine in MS patients treated with fingolimod? A case series. Mult. Scler. Relat. Disord. 2020;40:101963. doi: 10.1016/j.msard.2020.101963. PubMed DOI
Ufer M, et al. Impact of siponimod on vaccination response in a randomized, placebo-controlled study. Neurol. Neuroimmunol. Neuroinflamm. 2017;4:e398. doi: 10.1212/NXI.0000000000000398. PubMed DOI PMC
Mehling M, et al. Preserved antigen-specific immune response in patients with multiple sclerosis responding to IFNbeta-therapy. PLoS One. 2013;8:e78532. doi: 10.1371/journal.pone.0078532. PubMed DOI PMC
Schwid SR, Decker MD, Lopez-Bresnahan M, Rebif-Influenza Vaccine Study Investigators. Immune response to influenza vaccine is maintained in patients with multiple sclerosis receiving interferon beta-1a. Neurology. 2005;65:1964–1966. doi: 10.1212/01.wnl.0000188901.12700.e0. PubMed DOI
Metze C, et al. Immunogenicity and predictors of response to a single dose trivalent seasonal influenza vaccine in multiple sclerosis patients receiving disease-modifying therapies. CNS Neurosci. Ther. 2019;25:245–254. doi: 10.1111/cns.13034. PubMed DOI PMC
Olberg HK, et al. Immunotherapies influence the influenza vaccination response in multiple sclerosis patients: an explorative study. Mult. Scler. 2014;20:1074–1080. doi: 10.1177/1352458513513970. PubMed DOI
Olberg HK, et al. Antibody response to seasonal influenza vaccination in patients with multiple sclerosis receiving immunomodulatory therapy. Eur. J. Neurol. 2018;25:527–534. doi: 10.1111/ene.13537. PubMed DOI
Winkelmann A, et al. Tick-borne encephalitis vaccination in multiple sclerosis: a prospective, multicenter study. Neurol. Neuroimmunol. Neuroinflamm. 2020;7:e664. doi: 10.1212/NXI.0000000000000664. PubMed DOI PMC
von Hehn C, et al. Immune response to vaccines is maintained in patients treated with dimethyl fumarate. Neurol. Neuroimmunol. Neuroinflamm. 2018;5:e409. doi: 10.1212/NXI.0000000000000409. PubMed DOI PMC
Sabatino JJ, Jr, et al. Multiple sclerosis therapies differentially affect SARS-CoV-2 vaccine-induced antibody and T cell immunity and function. JCI Insight. 2022;7:e156978. doi: 10.1172/jci.insight.156978. PubMed DOI PMC
Richi P, et al. Impact of biological therapies on the immune response after pneumococcal vaccination in patients with autoimmune inflammatory diseases. Vaccines. 2021;9:203. doi: 10.3390/vaccines9030203. PubMed DOI PMC
Richi P, et al. Evaluation of the immune response to hepatitis B vaccine in patients on biological therapy: results of the RIER cohort study. Clin. Rheumatol. 2020;39:2751–2756. doi: 10.1007/s10067-020-05042-2. PubMed DOI
Mori S, et al. Pneumococcal polysaccharide vaccination in rheumatoid arthritis patients receiving tocilizumab therapy. Ann. Rheum. Dis. 2013;72:1362–1366. doi: 10.1136/annrheumdis-2012-202658. PubMed DOI PMC
Mori S, et al. Impact of tocilizumab therapy on antibody response to influenza vaccine in patients with rheumatoid arthritis. Ann. Rheum. Dis. 2012;71:2006–2010. doi: 10.1136/annrheumdis-2012-201950. PubMed DOI PMC
Frampton JE. Eculizumab: a review in neuromyelitis optica spectrum disorder. Drugs. 2020;80:719–727. doi: 10.1007/s40265-020-01297-w. PubMed DOI PMC
Pittock SJ, et al. Eculizumab in aquaporin-4-positive neuromyelitis optica spectrum disorder. N. Engl. J. Med. 2019;381:614–625. doi: 10.1056/NEJMoa1900866. PubMed DOI
Lewis LA, Ram S. Meningococcal disease and the complement system. Virulence. 2014;5:98–126. doi: 10.4161/viru.26515. PubMed DOI PMC
Alashkar F, et al. Serologic response to meningococcal vaccination in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with the terminal complement inhibitor eculizumab. Ann. Hematol. 2017;96:589–596. doi: 10.1007/s00277-017-2924-y. PubMed DOI
Alashkar F, et al. Serologic response to meningococcal vaccination in patients with cold agglutinin disease (CAD) in the novel era of complement inhibition. Vaccine. 2019;37:6682–6687. doi: 10.1016/j.vaccine.2019.09.033. PubMed DOI
American Academy of Pediatrics. in Red Book: 2009 Report of the Committee on Infectious Diseases. (eds Pickering, L. K., Baker, C., Kimberlin, D. W. & Long, S.) (American Academy of Pediatrics, 2009).
Bühler S, et al. Vaccination recommendations for adult patients with autoimmune inflammatory rheumatic diseases. Swiss Med. Wkly. 2015;145:w14159. PubMed
Golekoh MC, et al. Comparison of the immunogenicity of intramuscular versus subcutaneous administration of trivalent inactivated influenza vaccine in individuals with neuromuscular diseases. J. Child. Neurol. 2013;28:596–601. doi: 10.1177/0883073813480243. PubMed DOI
Groot N, Heijstek MW, Wulffraat NM. Vaccinations in paediatric rheumatology: an update on current developments. Curr. Rheumatol. Rep. 2015;17:46. doi: 10.1007/s11926-015-0519-y. PubMed DOI PMC
Borba EF, et al. Influenza A/H1N1 vaccination of patients with SLE: can antimalarial drugs restore diminished response under immunosuppressive therapy? Rheumatology. 2012;51:1061–1069. doi: 10.1093/rheumatology/ker427. PubMed DOI
Kuruma KA, Borba EF, Lopes MH, de Carvalho JF, Bonfa E. Safety and efficacy of hepatitis B vaccine in systemic lupus erythematosus. Lupus. 2007;16:350–354. doi: 10.1177/0961203307078225. PubMed DOI
Lunemann JD, Nimmerjahn F, Dalakas MC. Intravenous immunoglobulin in neurology — mode of action and clinical efficacy. Nat. Rev. Neurol. 2015;11:80–89. doi: 10.1038/nrneurol.2014.253. PubMed DOI
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int. Immunol. 2017;29:491–498. doi: 10.1093/intimm/dxx039. PubMed DOI
Blechinger S, et al. Therapeutic plasma exchange in steroid-refractory multiple sclerosis relapses. A retrospective two-center study. Ther. Adv. Neurol. Disord. 2021;14:1756286420975642. doi: 10.1177/1756286420975642. PubMed DOI PMC
Shang P, Feng J, Wu W, Zhang HL. Intensive care and treatment of severe Guillain-Barre syndrome. Front. Pharmacol. 2021;12:608130. doi: 10.3389/fphar.2021.608130. PubMed DOI PMC
Reeves HM, Winters JL. The mechanisms of action of plasma exchange. Br. J. Haematol. 2014;164:342–351. doi: 10.1111/bjh.12629. PubMed DOI
Guptill JT, et al. Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis. Autoimmunity. 2016;49:472–479. doi: 10.1080/08916934.2016.1214823. PubMed DOI PMC
Sharrack B, et al. Autologous haematopoietic stem cell transplantation and other cellular therapy in multiple sclerosis and immune-mediated neurological diseases: updated guidelines and recommendations from the EBMT Autoimmune Diseases Working Party (ADWP) and the Joint Accreditation Committee of EBMT and ISCT (JACIE) Bone Marrow Transpl. 2020;55:283–306. doi: 10.1038/s41409-019-0684-0. PubMed DOI PMC
Cordonnier C, et al. Vaccination of haemopoietic stem cell transplant recipients: guidelines of the 2017 European Conference on Infections in Leukaemia (ECIL 7) Lancet Infect. Dis. 2019;19:e200–e212. doi: 10.1016/S1473-3099(18)30600-5. PubMed DOI
Christopeit M, et al. Prophylaxis, diagnosis and therapy of infections in patients undergoing high-dose chemotherapy and autologous haematopoietic stem cell transplantation. 2020 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) Ann. Hematol. 2021;100:321–336. doi: 10.1007/s00277-020-04297-8. PubMed DOI PMC
Rieger CT, et al. Anti-infective vaccination strategies in patients with hematologic malignancies or solid tumors — Guideline of the Infectious Diseases Working Party (AGIHO) of the German Society for Hematology and Medical Oncology (DGHO) Ann. Oncol. 2018;29:1354–1365. doi: 10.1093/annonc/mdy117. PubMed DOI PMC
Farez MF, et al. Practice guideline update summary: vaccine-preventable infections and immunization in multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2019;93:584–594. doi: 10.1212/WNL.0000000000008157. PubMed DOI
Lebrun C, Vukusic S, French Group for Recommendations in Multiple Sclerosis France4MS the Société francophone de la sclérose en plaques SFSEP. Immunization and multiple sclerosis: recommendations from the French Multiple Sclerosis Society. Mult. Scler. Relat. Disord. 2019;31:173–188. doi: 10.1016/j.msard.2019.04.004. PubMed DOI
Wiedermann U, et al. Guidelines for vaccination of immunocompromised individuals. Wien. Klin. Wochenschr. 2016;128:337–376. doi: 10.1007/s00508-016-1033-6. PubMed DOI
Wagner N, et al. Impfen bei Immundefizienz. Bundesgesundheitsblatt. 2019;62:494–515. doi: 10.1007/s00103-019-02905-1. PubMed DOI
Plotkin SA. Correlates of protection induced by vaccination. Clin. Vaccine Immunol. 2010;17:1055–1065. doi: 10.1128/CVI.00131-10. PubMed DOI PMC
Plotkin SA. Updates on immunologic correlates of vaccine-induced protection. Vaccine. 2020;38:2250–2257. doi: 10.1016/j.vaccine.2019.10.046. PubMed DOI
Loebermann M, et al. A randomized, open-label study of the immunogenicity and reactogenicity of three lots of a combined typhoid fever/hepatitis A vaccine in healthy adults. Clin. Ther. 2004;26:1084–1091. doi: 10.1016/S0149-2918(04)90180-4. PubMed DOI
Amanna IJ, Carlson NE, Slifka MK. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 2007;357:1903–1915. doi: 10.1056/NEJMoa066092. PubMed DOI
Antia A, et al. Heterogeneity and longevity of antibody memory to viruses and vaccines. PLoS Biol. 2018;16:e2006601. doi: 10.1371/journal.pbio.2006601. PubMed DOI PMC
Loonstra FC, Hoitsma E, van Kempen ZL, Killestein J, Mostert JP. COVID-19 in multiple sclerosis: the Dutch experience. Mult. Scler. 2020;26:1256–1260. doi: 10.1177/1352458520942198. PubMed DOI PMC
Solomon JM, et al. Clinical characteristics and outcomes of multiple sclerosis patients with COVID-19 in Toronto, Canada. Mult. Scler. Relat. Disord. 2022;58:103509. doi: 10.1016/j.msard.2022.103509. PubMed DOI PMC
Mohn N, et al. Implications of COVID-19 outbreak on immune therapies in multiple sclerosis patients — lessons learned from SARS and MERS. Front. Immunol. 2020;11:1059. doi: 10.3389/fimmu.2020.01059. PubMed DOI PMC
Hartung HP, Aktas O. COVID-19 and management of neuroimmunological disorders. Nat. Rev. Neurol. 2020;16:347–348. doi: 10.1038/s41582-020-0368-9. PubMed DOI PMC
Perez CA, et al. COVID-19 severity and outcome in multiple sclerosis: results of a national, registry-based, matched cohort study. Mult. Scler. Relat. Disord. 2021;55:103217. doi: 10.1016/j.msard.2021.103217. PubMed DOI PMC
Chaudhry F, Jageka C, Levy PD, Cerghet M, Lisak RP. Review of the COVID-19 risk in multiple sclerosis. J. Cell Immunol. 2021;3:68–77. PubMed PMC
Newsome SD, et al. COVID-19 in patients with neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody disease in North America: from the COViMS Registry. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1057. doi: 10.1212/NXI.0000000000001057. PubMed DOI PMC
Sormani MP, et al. Disease-modifying therapies and coronavirus disease 2019 severity in multiple sclerosis. Ann. Neurol. 2021;89:780–789. doi: 10.1002/ana.26028. PubMed DOI PMC
Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol. Neuroimmunol. Neuroinflamm. 2020;7:e761. doi: 10.1212/NXI.0000000000000761. PubMed DOI PMC
Zabalza A, et al. COVID-19 in multiple sclerosis patients: susceptibility, severity risk factors and serological response. Eur. J. Neurol. 2021;28:3384–3395. doi: 10.1111/ene.14690. PubMed DOI
Simpson-Yap S, et al. Associations of disease-modifying therapies with COVID-19 severity in multiple sclerosis. Neurology. 2021;97:e1870–e1885. doi: 10.1212/WNL.0000000000012753. PubMed DOI PMC
Zheng C, et al. Multiple sclerosis disease-modifying therapy and the COVID-19 pandemic: implications on the risk of infection and future vaccination. CNS Drugs. 2020;34:879–896. doi: 10.1007/s40263-020-00756-y. PubMed DOI PMC
Schiavetti I, et al. Severe outcomes of COVID-19 among patients with multiple sclerosis under anti-CD-20 therapies: a systematic review and meta-analysis. Mult. Scler. Relat. Disord. 2022;57:103358. doi: 10.1016/j.msard.2021.103358. PubMed DOI PMC
Bsteh G, et al. Humoral immune response after COVID-19 in multiple sclerosis: a nation-wide Austrian study. Mult. Scler. 2021;27:2209–2218. doi: 10.1177/13524585211049391. PubMed DOI PMC
Louapre C, et al. Anti-CD20 therapies decrease humoral immune response to SARS-CoV-2 in patients with multiple sclerosis or neuromyelitis optica spectrum disorders. J. Neurol. Neurosurg. Psychiatry. 2022;93:24–31. doi: 10.1136/jnnp-2021-326904. PubMed DOI
Achtnichts L, et al. Humoral immune response after the third SARS-CoV-2 mRNA vaccination in CD20 depleted people with multiple sclerosis. Vaccines. 2021 doi: 10.3390/vaccines9121470. PubMed DOI PMC
Conte WL. Attenuation of antibody response to SARS-CoV-2 infection in patients with multiple sclerosis on ocrelizumab: a case-control study. Mult. Scler. Relat. Disord. 2021;52:103014. doi: 10.1016/j.msard.2021.103014. PubMed DOI PMC
McKay KA, et al. Rituximab infusion timing, cumulative dose, and hospitalization for COVID-19 in persons with multiple sclerosis in Sweden. JAMA Netw. Open. 2021;4:e2136697. doi: 10.1001/jamanetworkopen.2021.36697. PubMed DOI PMC
Guerrieri S, et al. Serological response to SARS-CoV-2 vaccination in multiple sclerosis patients treated with fingolimod or ocrelizumab: an initial real-life experience. J. Neurol. 2022;22:39–43. PubMed PMC
Sormani MP, et al. DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France. Ann. Clin. Transl. Neurol. 2021;8:1738–1744. doi: 10.1002/acn3.51408. PubMed DOI PMC
Monschein T, et al. Vaccination and multiple sclerosis in the era of the COVID-19 pandemic. J. Neurol. Neurosurg. Psychiatry. 2021;92:1033–1043. doi: 10.1136/jnnp-2021-326839. PubMed DOI PMC
Chen Q, Allot A, Lu Z. LitCovid: an open database of COVID-19 literature. Nucleic Acids Res. 2021;49:D1534–D1540. doi: 10.1093/nar/gkaa952. PubMed DOI PMC
Le TT, Cramer JP, Chen R, Mayhew S. Evolution of the COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 2020;19:667–668. doi: 10.1038/d41573-020-00151-8. PubMed DOI
Rodriguez-Coira J, Sokolowska M. SARS-CoV-2 candidate vaccines — composition, mechanisms of action and stages of clinical development. Allergy. 2021;76:1922–1924. doi: 10.1111/all.14714. PubMed DOI
Sahin U, et al. COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature. 2020;586:594–599. doi: 10.1038/s41586-020-2814-7. PubMed DOI
Gao Q, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369:77–81. doi: 10.1126/science.abc1932. PubMed DOI PMC
Dai L, Gao GF. Viral targets for vaccines against COVID-19. Nat. Rev. Immunol. 2021;21:73–82. doi: 10.1038/s41577-020-00480-0. PubMed DOI PMC
Dobrovidova O. Latest Russian vaccine comes with a big dose of mystery. Science. 2021;372:116–117. doi: 10.1126/science.372.6538.116. PubMed DOI
Jackson LA, et al. An mRNA vaccine against SARS-CoV-2-preliminary report. N. Engl. J. Med. 2020;383:1920–1931. doi: 10.1056/NEJMoa2022483. PubMed DOI PMC
Dolgin E. The tangled history of mRNA vaccines. Nature. 2021;597:318–324. doi: 10.1038/d41586-021-02483-w. PubMed DOI
Chaudhary N, Weissman D, Whitehead KA. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 2021;20:817–838. doi: 10.1038/s41573-021-00283-5. PubMed DOI PMC
Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52:583–589. doi: 10.1016/j.immuni.2020.03.007. PubMed DOI PMC
Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: the status and perspectives in delivery points of view. Adv. Drug Deliv. Rev. 2021;170:1–25. doi: 10.1016/j.addr.2020.12.011. PubMed DOI PMC
Thompson MG, et al. Prevention and attenuation of covid-19 with the BNT162b2 and mRNA-1273 Vaccines. N. Engl. J. Med. 2021;385:320–329. doi: 10.1056/NEJMoa2107058. PubMed DOI PMC
Voysey M, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi: 10.1016/S0140-6736(20)32661-1. PubMed DOI PMC
Barrett JR, et al. Phase 1/2 trial of SARS-CoV-2 vaccine ChAdOx1 nCoV-19 with a booster dose induces multifunctional antibody responses. Nat. Med. 2021;27:279–288. doi: 10.1038/s41591-020-01179-4. PubMed DOI
Sadoff J, et al. Interim results of a phase 1-2a trial of Ad26.COV2.S Covid-19 vaccine. N. Engl. J. Med. 2021;384:1824–1835. doi: 10.1056/NEJMoa2034201. PubMed DOI PMC
Corchado-Garcia J, et al. Analysis of the effectiveness of the Ad26.COV2.S adenoviral vector vaccine for preventing COVID-19. JAMA Netw. Open. 2021;4:e2132540. doi: 10.1001/jamanetworkopen.2021.32540. PubMed DOI PMC
Mascellino MT, Di Timoteo F, De Angelis M, Oliva A. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect. Drug Resist. 2021;14:3459–3476. doi: 10.2147/IDR.S315727. PubMed DOI PMC
Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature. 2021;595:339–340. doi: 10.1038/d41586-021-01813-2. PubMed DOI
Ndwandwe D, Wiysonge CS. COVID-19 vaccines. Curr. Opin. Immunol. 2021;71:111–116. doi: 10.1016/j.coi.2021.07.003. PubMed DOI PMC
Soleimanpour S, Yaghoubi A. COVID-19 vaccine: where are we now and where should we go? Expert Rev. Vaccines. 2021;20:23–44. doi: 10.1080/14760584.2021.1875824. PubMed DOI PMC
Dai L, et al. A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS. Cell. 2020;182:722–733.e11. doi: 10.1016/j.cell.2020.06.035. PubMed DOI PMC
Liu H, et al. Development of recombinant COVID-19 vaccine based on CHO-produced, prefusion spike trimer and alum/CpG adjuvants. Vaccine. 2021;39:7001–7011. doi: 10.1016/j.vaccine.2021.10.066. PubMed DOI PMC
Heath PT, et al. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. N. Engl. J. Med. 2021;385:1172–1183. doi: 10.1056/NEJMoa2107659. PubMed DOI PMC
Keech C, et al. Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 2020;383:2320–2332. doi: 10.1056/NEJMoa2026920. PubMed DOI PMC
Goepfert PA, et al. Safety and immunogenicity of SARS-CoV-2 recombinant protein vaccine formulations in healthy adults: interim results of a randomised, placebo-controlled, phase 1-2, dose-ranging study. Lancet Infect. Dis. 2021;21:1257–1270. doi: 10.1016/S1473-3099(21)00147-X. PubMed DOI PMC
Zivkovic SA, Gruener G, Narayanaswami P, Quality A, AANEM Quality and Patient Safety Committee Doctor — should I get the COVID-19 vaccine? Infection and immunization in individuals with neuromuscular disorders. Muscle Nerve. 2021;63:294–303. doi: 10.1002/mus.27179. PubMed DOI PMC
Otero-Romero S, Ascherio A, Lebrun-Frenay C. Vaccinations in multiple sclerosis patients receiving disease-modifying drugs. Curr. Opin. Neurol. 2021;34:322–328. doi: 10.1097/WCO.0000000000000929. PubMed DOI
Lotan I, Romanow G, Levy M. Patient-reported safety and tolerability of the COVID-19 vaccines in persons with rare neuroimmunological diseases. Mult. Scler. Relat. Disord. 2021;55:103189. doi: 10.1016/j.msard.2021.103189. PubMed DOI PMC
Kelly H, Sokola B, Abboud H. Safety and efficacy of COVID-19 vaccines in multiple sclerosis patients. J. Neuroimmunol. 2021;356:577599. doi: 10.1016/j.jneuroim.2021.577599. PubMed DOI PMC
Ghasemiyeh P, Mohammadi-Samani S, Firouzabadi N, Dehshahri A, Vazin A. A focused review on technologies, mechanisms, safety, and efficacy of available COVID-19 vaccines. Int. Immunopharmacol. 2021;100:108162. doi: 10.1016/j.intimp.2021.108162. PubMed DOI PMC
Chen M, et al. Safety of SARS-CoV-2 vaccines: a systematic review and meta-analysis of randomized controlled trials. Infect. Dis. Poverty. 2021;10:94. doi: 10.1186/s40249-021-00878-5. PubMed DOI PMC
Luxi N, et al. COVID-19 vaccination in pregnancy, paediatrics, immunocompromised patients, and persons with history of allergy or prior SARS-CoV-2 infection: overview of current recommendations and pre- and post-marketing evidence for vaccine efficacy and safety. Drug Saf. 2021;44:1247–1269. doi: 10.1007/s40264-021-01131-6. PubMed DOI PMC
Cromer D, et al. Neutralising antibody titres as predictors of protection against SARS-CoV-2 variants and the impact of boosting: a meta-analysis. Lancet Microbe. 2022;3:e52–e61. doi: 10.1016/S2666-5247(21)00267-6. PubMed DOI PMC
Gilbert PB, et al. Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial. Science. 2022;375:43–50. doi: 10.1126/science.abm3425. PubMed DOI PMC
Khoury DS, et al. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat. Med. 2021;27:1205–1211. doi: 10.1038/s41591-021-01377-8. PubMed DOI
Gadani SP, et al. Discordant humoral and T cell immune responses to SARS-CoV-2 vaccination in people with multiple sclerosis on anti-CD20 therapy. EBioMedicine. 2021;73:103636. doi: 10.1016/j.ebiom.2021.103636. PubMed DOI PMC
Haas EJ, et al. Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet. 2021;397:1819–1829. doi: 10.1016/S0140-6736(21)00947-8. PubMed DOI PMC
Sureshchandra S, et al. Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight. 2021;6:e153201. doi: 10.1172/jci.insight.153201. PubMed DOI PMC
Guerrera G, et al. BNT162b2 vaccination induces durable SARS-CoV-2-specific T cells with a stem cell memory phenotype. Sci. Immunol. 2021;6:eabl5344. doi: 10.1126/sciimmunol.abl5344. PubMed DOI
Collier AY, et al. Differential kinetics of immune responses elicited by Covid-19 vaccines. N. Engl. J. Med. 2021;385:2010–2012. doi: 10.1056/NEJMc2115596. PubMed DOI PMC
Bar-On YM, et al. Protection of BNT162b2 vaccine booster against Covid-19 in Israel. N. Engl. J. Med. 2021;385:1393–1400. doi: 10.1056/NEJMoa2114255. PubMed DOI PMC
Andrews N, et al. Duration of protection against mild and severe disease by covid-19 vaccines. N. Engl. J. Med. 2022;386:340–350. doi: 10.1056/NEJMoa2115481. PubMed DOI PMC
Gilboa M, et al. Early Immunogenicity and safety of the third dose of BNT162b2 mRNA Covid-19 vaccine among adults older than 60 years; real world experience. J. Infect. Dis. 2021 doi: 10.1093/infdis/jiab584. PubMed DOI
Goldberg Y, et al. Waning immunity after the BNT162b2 vaccine in Israel. N. Engl. J. Med. 2021;385:e85. doi: 10.1056/NEJMoa2114228. PubMed DOI PMC
Gupta RK, Topol EJ. COVID-19 vaccine breakthrough infections. Science. 2021;374:1561–1562. doi: 10.1126/science.abl8487. PubMed DOI
Munro APS, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021;398:2258–2276. doi: 10.1016/S0140-6736(21)02717-3. PubMed DOI PMC
Levin EG, et al. Waning immune humoral response to BNT162b2 Covid-19 vaccine over 6 months. N. Engl. J. Med. 2021;385:e84. doi: 10.1056/NEJMoa2114583. PubMed DOI PMC
Arbel R, et al. BNT162b2 vaccine booster and mortality due to covid-19. N. Engl. J. Med. 2021;385:2413–2420. doi: 10.1056/NEJMoa2115624. PubMed DOI PMC
Atmar RL, et al. Homologous and heterologous Covid-19 booster vaccinations. N. Engl. J. Med. 2022 doi: 10.1056/NEJMoa2116414. PubMed DOI PMC
Chadeau-Hyam M, et al. SARS-CoV-2 infection and vaccine effectiveness in England (REACT-1): a series of cross-sectional random community surveys. Lancet Respir. Med. 2022 doi: 10.1016/S2213-2600(21)00542-7. PubMed DOI PMC
Chemaitelly H, et al. Waning of BNT162b2 vaccine protection against SARS-CoV-2 infection in Qatar. N. Engl. J. Med. 2021;385:e83. doi: 10.1056/NEJMoa2114114. PubMed DOI PMC
Dickerman BA, et al. Comparative effectiveness of BNT162b2 and mRNA-1273 vaccines in U.S. Veterans. N. Engl. J. Med. 2022;386:105–115. doi: 10.1056/NEJMoa2115463. PubMed DOI PMC
Lin DY, et al. Effectiveness of Covid-19 vaccines over a 9-month period in North Carolina. N. Engl. J. Med. 2022 doi: 10.1056/NEJMoa2117128. PubMed DOI PMC
Lopez Bernal J, et al. Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 2021;385:585–594. doi: 10.1056/NEJMoa2108891. PubMed DOI PMC
Andrews N, et al. Effectiveness of COVID-19 booster vaccines against covid-19 related symptoms, hospitalisation and death in England. Nat. Med. 2022 doi: 10.1038/s41591-022-01699-1. PubMed DOI PMC
Bates TA, et al. Antibody response and variant cross-neutralization after SARS-CoV-2 breakthrough infection. JAMA. 2022;327:179–181. doi: 10.1001/jama.2021.22898. PubMed DOI PMC
Hoffmann M, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic. Cell. 2022;185:447–456.e11. doi: 10.1016/j.cell.2021.12.032. PubMed DOI PMC
Sievers BL, et al. Antibodies elicited by SARS-CoV-2 infection or mRNA vaccines have reduced neutralizing activity against Beta and Omicron pseudoviruses. Sci. Transl. Med. 2022 doi: 10.1126/scitranslmed.abn7842. PubMed DOI PMC
Cele S, et al. Omicron extensively but incompletely escapes Pfizer BNT162b2 neutralization. Nature. 2022;602:654–656. doi: 10.1038/s41586-021-04387-1. PubMed DOI PMC
Collie S, Champion J, Moultrie H, Bekker LG, Gray G. Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. N. Engl. J. Med. 2022;386:494–496. doi: 10.1056/NEJMc2119270. PubMed DOI PMC
Garcia-Beltran WF, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell. 2022;185:457–466.e4. doi: 10.1016/j.cell.2021.12.033. PubMed DOI PMC
Muik A, et al. Neutralization of SARS-CoV-2 Omicron by BNT162b2 mRNA vaccine-elicited human sera. Science. 2022;375:678–680. doi: 10.1126/science.abn7591. PubMed DOI PMC
Nemet I, et al. Third BNT162b2 vaccination neutralization of SARS-CoV-2 Omicron infection. N. Engl. J. Med. 2022;386:492–494. doi: 10.1056/NEJMc2119358. PubMed DOI PMC
Wu M, et al. Three-dose vaccination elicits neutralising antibodies against omicron. Lancet. 2022;399:715–717. doi: 10.1016/S0140-6736(22)00092-7. PubMed DOI PMC
Planas D, et al. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature. 2022;602:671–675. doi: 10.1038/s41586-021-04389-z. PubMed DOI
Zuo F, et al. Heterologous immunization with inactivated vaccine followed by mRNA booster elicits strong humoral and cellular immune responses against the SARS-CoV-2 Omicron variant. medRxiv. 2022 doi: 10.1101/2022.01.04.22268755. PubMed DOI PMC
Angyal A, et al. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe. 2022;3:e21–e31. doi: 10.1016/S2666-5247(21)00275-5. PubMed DOI PMC
Pawlitzki M, et al. Merits and culprits of immunotherapies for neurological diseases in times of COVID-19. EBioMedicine. 2020;56:102822. doi: 10.1016/j.ebiom.2020.102822. PubMed DOI PMC
Baker D, et al. COVID-19 vaccine-readiness for anti-CD20-depleting therapy in autoimmune diseases. Clin. Exp. Immunol. 2020;202:149–161. doi: 10.1111/cei.13495. PubMed DOI PMC
Achiron A, et al. Humoral immune response to COVID-19 mRNA vaccine in patients with multiple sclerosis treated with high-efficacy disease-modifying therapies. Ther. Adv. Neurol. Disord. 2021;14:1–8. PubMed PMC
Giossi R, et al. Anti-Spike IgG in multiple sclerosis patients after BNT162b2 vaccine: an exploratory case-control study in Italy. Mult. Scler. Relat. Disord. 2022 doi: 10.1016/j.msard.2021.103415. PubMed DOI PMC
Etemadifar M, et al. SARS-CoV-2 serology among people with multiple sclerosis on disease-modifying therapies after BBIBP-CorV (Sinopharm) inactivated virus vaccination: same story, different vaccine. Mult. Scler. Relat. Disord. 2021 doi: 10.1016/j.msard.2021.103417. PubMed DOI PMC
Krbot Skoric M, Rogic D, Lapic I, Segulja D, Habek M. Humoral immune response to COVID-19 vaccines in people with secondary progressive multiple sclerosis treated with siponimod. Mult. Scler. Relat. Disord. 2022;57:103435. doi: 10.1016/j.msard.2021.103435. PubMed DOI PMC
Achiron A, et al. COVID-19 vaccination in patients with multiple sclerosis: what we have learnt by February 2021. Mult. Scler. 2021;27:864–870. doi: 10.1177/13524585211003476. PubMed DOI PMC
Sormani MP, et al. Effect of SARS-CoV-2 mRNA vaccination in MS patients treated with disease modifying therapies. EBioMedicine. 2021;72:103581. doi: 10.1016/j.ebiom.2021.103581. PubMed DOI PMC
Disanto G, et al. Association of disease-modifying treatment and anti-CD20 infusion timing with humoral response to 2 SARS-CoV-2 vaccines in patients with multiple sclerosis. JAMA Neurol. 2021 doi: 10.1001/jamaneurol.2021.3609. PubMed DOI PMC
van Kempen ZLE, et al. Longitudinal humoral response after SARS-CoV-2 vaccination in ocrelizumab treated MS patients: to wait and repopulate? Mult. Scler. Relat. Disord. 2022;57:103416. doi: 10.1016/j.msard.2021.103416. PubMed DOI PMC
Boekel L, et al. Antibody development after COVID-19 vaccination in patients with autoimmune diseases in the Netherlands: a substudy of data from two prospective cohort studies. Lancet Rheumatol. 2021;3:e778–e788. doi: 10.1016/S2665-9913(21)00222-8. PubMed DOI PMC
Kornek B, et al. B cell depletion and SARS-CoV-2 vaccine responses in neuroimmunologic patients. Ann. Neurol. 2022;91:342–352. doi: 10.1002/ana.26309. PubMed DOI PMC
König M, et al. Immunogenicity and safety of a third SARS-CoV-2 vaccine dose in patients with multiple sclerosis and weak immune response After COVID-19 vaccination. JAMA Neurol. 2022 doi: 10.1001/jamaneurol.2021.5109. PubMed DOI PMC
Bigaut K, et al. Impact of disease-modifying treatments on humoral response after COVID-19 vaccination: a mirror of the response after SARS-CoV-2 infection. Rev. Neurol. 2021;177:1237–1240. doi: 10.1016/j.neurol.2021.05.001. PubMed DOI PMC
Tallantyre EC, et al. COVID-19 vaccine response in people with multiple sclerosis. Ann. Neurol. 2022;91:89–100. doi: 10.1002/ana.26251. PubMed DOI PMC
Konig M, et al. Humoral immunity to SARS-CoV-2 mRNA vaccination in multiple sclerosis: the relevance of time since last rituximab infusion and first experience from sporadic revaccinations. J. Neurol. Neurosurg. Psychiatry. 2021 doi: 10.1136/jnnp-2021-327612. PubMed DOI PMC
Payne RP, et al. Immunogenicity of standard and extended dosing intervals of BNT162b2 mRNA vaccine. Cell. 2021;184:5699–5714.e11. doi: 10.1016/j.cell.2021.10.011. PubMed DOI PMC
Pitzalis M, et al. Effect of different disease-modifying therapies on humoral response to BNT162b2 vaccine in Sardinian multiple sclerosis patients. Front. Immunol. 2021;12:781843. doi: 10.3389/fimmu.2021.781843. PubMed DOI PMC
Etemadifar M, et al. SARS-CoV-2 serology among people with multiple sclerosis on disease-modifying therapies after BBIBP-CorV (Sinopharm) inactivated virus vaccination: same story, different vaccine. Mult. Scler. Relat. Disord. 2022;57:103417. doi: 10.1016/j.msard.2021.103417. PubMed DOI PMC
Ozakbas S, et al. Comparison of SARS-CoV-2 antibody response after two doses of mRNA and inactivated vaccines in multiple sclerosis patients treated with disease-modifying therapies. Mult. Scler. Relat. Disord. 2022;58:103486. doi: 10.1016/j.msard.2022.103486. PubMed DOI PMC
Apostolidis SA, et al. Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat. Med. 2021;27:1990–2001. doi: 10.1038/s41591-021-01507-2. PubMed DOI PMC
Brill L, et al. Humoral and T-cell response to SARS-CoV-2 vaccination in patients with multiple sclerosis treated with ocrelizumab. JAMA Neurol. 2021;78:1510–1514. doi: 10.1001/jamaneurol.2021.3599. PubMed DOI PMC
Rauber S, et al. Immune response to SARS-CoV-2 vaccination in relation to peripheral immune cell profiles among patients with multiple sclerosis receiving ocrelizumab. J. Neurol. Neurosurg. Psychiatry. 2022 doi: 10.1136/jnnp-2021-328197. PubMed DOI PMC
Tortorella C, et al. Humoral- and T-cell-specific immune responses to SARS-CoV-2 mRNA vaccination in patients with MS using different disease-modifying therapies. Neurology. 2022;98:e541–e554. doi: 10.1212/WNL.0000000000013108. PubMed DOI PMC
Moor MB, et al. Humoral and cellular responses to mRNA vaccines against SARS-CoV-2 in patients with a history of CD20 B-cell-depleting therapy (RituxiVac): an investigator-initiated, single-centre, open-label study. Lancet Rheumatol. 2021;3:e789–e797. doi: 10.1016/S2665-9913(21)00251-4. PubMed DOI PMC
Cai H, Zhou R, Jiang F, Zeng Q, Yang H. Vaccination in neuromyelitis optica spectrum disorders: friend or enemy? Mult. Scler. Relat. Disord. 2022;58:103394. doi: 10.1016/j.msard.2021.103394. PubMed DOI
Jyssum I, et al. Humoral and cellular immune responses to two and three doses of SARS-CoV-2 vaccines in rituximab-treated patients with rheumatoid arthritis: a prospective, cohort study. Lancet Rheumatol. 2022;4:e177–e187. doi: 10.1016/S2665-9913(21)00394-5. PubMed DOI PMC
Madelon N, et al. Robust T cell responses in anti-CD20 treated patients following COVID-19 vaccination: a prospective cohort study. Clin. Infect. Dis. 2021 doi: 10.1093/cid/ciab954. PubMed DOI PMC
Achiron A, et al. Humoral immune response in multiple sclerosis patients following PfizerBNT162b2 COVID19 vaccination: Up to 6 months cross-sectional study. J. Neuroimmunol. 2021;361:577746. doi: 10.1016/j.jneuroim.2021.577746. PubMed DOI PMC
Centonze D, et al. Disease-modifying therapies and SARS-CoV-2 vaccination in multiple sclerosis: an expert consensus. J. Neurol. 2021;268:3961–3968. doi: 10.1007/s00415-021-10545-2. PubMed DOI PMC
Cabreira V, Abreu P, Soares-Dos-Reis R, Guimaraes J, Sa MJ. Multiple sclerosis, disease-modifying therapies and COVID-19: a systematic review on immune response and vaccination recommendations. Vaccines. 2021;9:773. doi: 10.3390/vaccines9070773. PubMed DOI PMC
Baker D, et al. CD19 B cell repopulation after ocrelizumab, alemtuzumab and cladribine: implications for SARS-CoV-2 vaccinations in multiple sclerosis. Mult. Scler. Relat. Disord. 2022;57:103448. doi: 10.1016/j.msard.2021.103448. PubMed DOI PMC
Doneddu PE, et al. Acute and chronic inflammatory neuropathies and COVID-19 vaccines: practical recommendations from the task force of the Italian Peripheral Nervous System Association (ASNP) J. Peripher. Nerv. Syst. 2021;26:148–154. doi: 10.1111/jns.12435. PubMed DOI
Toscano S, Chisari CG, Patti F. Multiple sclerosis, COVID-19 and vaccines: making the point. Neurol. Ther. 2021;10:627–649. doi: 10.1007/s40120-021-00288-7. PubMed DOI PMC
Agarwal N, Ollington K, Kaneshiro M, Frenck R, Melmed GY. Are immunosuppressive medications associated with decreased responses to routine immunizations? A systematic review. Vaccine. 2012;30:1413–1424. doi: 10.1016/j.vaccine.2011.11.109. PubMed DOI
Winthrop KL, et al. ESCMID Study Group for Infections in Compromised Hosts (ESGICH) Consensus Document on the safety of targeted and biological therapies: an infectious diseases perspective (Soluble immune effector molecules [II]: agents targeting interleukins, immunoglobulins and complement factors) Clin. Microbiol. Infect. 2018;24:S21–S40. doi: 10.1016/j.cmi.2018.02.002. PubMed DOI
Andrade P, Santos-Antunes J, Rodrigues S, Lopes S, Macedo G. Treatment with infliximab or azathioprine negatively impact the efficacy of hepatitis B vaccine in inflammatory bowel disease patients. J. Gastroenterol. Hepatol. 2015;30:1591–1595. doi: 10.1111/jgh.13001. PubMed DOI
Furer V, et al. 2019 update of EULAR recommendations for vaccination in adult patients with autoimmune inflammatory rheumatic diseases. Ann. Rheum. Dis. 2020;79:39–52. doi: 10.1136/annrheumdis-2019-215882. PubMed DOI
Garcia Garrido HM, et al. Hepatitis A vaccine immunogenicity in patients using immunosuppressive drugs: a systematic review and meta-analysis. Travel. Med. Infect. Dis. 2019 doi: 10.1016/j.tmaid.2019.101479. PubMed DOI
Huber F, et al. Safety of live vaccines on immunosuppressive or immunomodulatory therapy — a retrospective study in three Swiss travel clinics. J. Travel. Med. 2018 doi: 10.1093/jtm/tax082. PubMed DOI
McMahan ZH, Bingham CO., 3rd Effects of biological and non-biological immunomodulatory therapies on the immunogenicity of vaccines in patients with rheumatic diseases. Arthritis Res. Ther. 2014;16:506. doi: 10.1186/s13075-014-0506-0. PubMed DOI PMC
Levin LI, et al. Temporal relationship between elevation of Epstein-Barr virus antibody titers and initial onset of neurological symptoms in multiple sclerosis. JAMA. 2005;293:2496–2500. doi: 10.1001/jama.293.20.2496. PubMed DOI
Bjornevik K, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science. 2022;375:296–301. doi: 10.1126/science.abj8222. PubMed DOI