• This record comes from PubMed

Evaluation of endoglucanase and xylanase production by Aspergillus tamarii cultivated in agro-industrial lignocellulosic biomasses

. 2022 Oct ; 67 (5) : 721-732. [epub] 20220422

Language English Country United States Media print-electronic

Document type Journal Article

Links

PubMed 35451731
DOI 10.1007/s12223-022-00971-8
PII: 10.1007/s12223-022-00971-8
Knihovny.cz E-resources

To better understand the production of enzymes of industrial interest from microorganisms with biotechnological potential using lignocellulosic biomass, we evaluated the production of endoglucanase and xylanase from Aspergillus tamarii. CAZymes domains were evaluated in the genome, and a screening of the enzymatic potential of A. tamarii in various agricultural biomasses was done. The enzymatic profile could be associated with the biomass complexity, with increased biomass recalcitrance yielding higher activity. A time-course profile defined 48 h of cultivation as the best period for cultivating A. tamarii in sugarcane bagasse reached 12.05 IU/mg for endoglucanase and 74.86 IU/mg for xylanase. Using 0.1% (w/v) tryptone as the only nitrogen source and 12 µmol/L CuSO4 addition had an overall positive effect on the enzymatic activity and protein production. A 22 factorial central composite design was used then to investigate the simultaneous influence of tryptone and CuSO4 on enzyme activity. Tryptone strongly affected enzymatic activity, decreasing endoglucanase activity but increasing xylanase activity. CuSO4 supplementation was advantageous for endoglucanases, increasing their activity, and it had a negative effect on xylanases. But overall, the experimental design increased the enzymatic activity of all biomasses used. For the clean cotton residue, the experimental design was able to reach the highest enzyme activity for endoglucanase and xylanase, with 1.195 IU/mL and 6.353 IU/mL, respectively. More experimental studies are required to investigate how the biomass induction effect impacts enzyme production.

See more in PubMed

Aiello C, Ferrer A, Ledesma A (1996) Effect of alkaline treatments at various temperatures on cellulase and biomass production using sugarcane bagasse fermentation with Trichoderma Reesei QM 9414. Bioresour Technol 57:13–18. https://doi.org/10.1023/A:1006468905194 DOI

Akimkulova A, Zhou Y, Zhao X, Liu D (2016) Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin. Bioresour Technol 208:110–116. https://doi.org/10.1016/J.BIORTECH.2016.02.059 PubMed DOI

Amaral YMS, da Silva OS, de Oliveira RL, Porto TS (2020) Production, extraction, and thermodynamics protease partitioning from Aspergillus tamarii Kita UCP1279 using PEG/sodium citrate aqueous two-phase systems. https://doi.org/10.1080/10826068.2020.1721535

Andrade MC, Gorgulho Silva CDO, de Souza Moreira LR, Ferreira Filho EX (2021) Crop residues: applications of lignocellulosic biomass in the context of a biorefinery. Front Energy 1-22. https://doi.org/10.1007/s11708-021-0730-7

Andreini C, Bertini I, Cavallaro G et al (2008) Metal ions in biological catalysis: from enzyme databases to general principles. JBIC J Biol Inorg Chem 138(13):1205–1218. https://doi.org/10.1007/S00775-008-0404-5 DOI

Bankar SB, Bule MV, Singhal RS, Ananthanarayan L (2008) Optimization of Aspergillus niger fermentation for the production of glucose oxidase. Food Bioprocess Technol 24(2):344–352. https://doi.org/10.1007/S11947-007-0050-X DOI

Barrett K, Lange L (2019) Peptide-based functional annotation of carbohydrate-active enzymes by conserved unique peptide patterns (CUPP). Biotechnol Biofuels 12:1–21. https://doi.org/10.1186/s13068-019-1436-5 DOI

Benocci T, Aguilar-Pontes MV, Zhou M et al (2017) Regulators of plant biomass degradation in ascomycetous fungi. Biotechnol Biofuels 10:152. https://doi.org/10.1186/s13068-017-0841-x PubMed DOI PMC

Betini JHA, Michelin M, Peixoto-Nogueira SC et al (2009) Xylanases from Aspergillus niger, Aspergillus niveus and Aspergillus ochraceus produced under solid-state fermentation and their application in cellulose pulp bleaching. Bioprocess Biosyst Eng 326(32):819–824. https://doi.org/10.1007/S00449-009-0308-Y DOI

Boer CG, Peralta RM (2000) Production of extracellular protease by Aspergillus tamarii. J Basic Microbiol 40:75–81. https://doi.org/10.1002/(SICI)1521-4028(200005)40:2%3c75::AID-JOBM75%3e3.0.CO;2-X DOI

Brown NA, Ries LNA, Goldman GH (2014) How nutritional status signaling coordinates metabolism and lignocellulolytic enzyme secretion. Fungal Genet Biol 72:48–63. https://doi.org/10.1016/j.fgb.2014.06.012 PubMed DOI

Cavalcanti Luna MA, Rodrigues Vieira E, Okada K et al (2015) Copper-induced adaptation, oxidative stress and its tolerance in Aspergillus niger UCP1261. Electron J Biotechnol 18:418–427. https://doi.org/10.1016/J.EJBT.2015.09.006 DOI

Chudzicka-Ormaniec P, Macios M, Koper M et al (2019) The role of the GATA transcription factor AreB in regulation of nitrogen and carbon metabolism in Aspergillus nidulans. FEMS Microbiol Lett 366:1–11. https://doi.org/10.1093/FEMSLE/FNZ066 DOI

Cotty PJ (1997) Aflatoxin-producing potential of communities of Aspergillus section Flavi from cotton producing areas in the United States. Mycol Res 101:698–704. https://doi.org/10.1017/S0953756296003139 DOI

da Silva OS, de Almeida EM, de Melo AHF, Porto TS (2018) Purification and characterization of a novel extracellular serine-protease with collagenolytic activity from Aspergillus tamarii URM4634. Int J Biol Macromol 117:1081–1088. https://doi.org/10.1016/J.IJBIOMAC.2018.06.002 PubMed DOI

Daranagama ND, Suzuki Y, Shida Y, Ogasawara W (2020) Involvement of Xyr1 and Are1 for trichodermapepsin gene expression in response to cellulose and galactose in Trichoderma reesei. Curr Microbiol 778(77):1506–1517. https://doi.org/10.1007/S00284-020-01955-Y

de Oliveira Gorgulho Silva C, de Castro Moreira dos Santos Júnior A, Santana RH et al (2019) Mild hydrothermal pretreatment of sugarcane bagasse enhances the production of holocellulases by Aspergillus niger. J Ind Microbiol Biotechnol 46:1517–1529. https://doi.org/10.1007/s10295-019-02207-0

de Siqueira FG, de Siqueira EG, Jaramillo PMD et al (2010a) The potential of agro-industrial residues for production of holocellulase from filamentous fungi. Int Biodeterior Biodegrad 64:20–26. https://doi.org/10.1016/j.ibiod.2009.10.002 DOI

de Siqueira FG, de Siqueira AG, de Siqueira EG et al (2010b) Evaluation of holocellulase production by plant-degrading fungi grown on agro-industrial residues. Biodegradation 21:815–824. https://doi.org/10.1007/s10532-010-9346-z PubMed DOI

de Souza AP, Grandis A, Leite DCC, Buckeridge MS (2014) Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. Bioenergy Res 7:24–35. https://doi.org/10.1007/s12155-013-9366-8 DOI

Filiatrault-Chastel C, Heiss-Blanquet S, Margeot A, Berrin JG (2021) From fungal secretomes to enzymes cocktails: the path forward to bioeconomy. Biotechnol Adv 52:107833. https://doi.org/10.1016/J.BIOTECHADV.2021.107833 PubMed DOI

Gawande PV, Kamat MY (1999) Production of Aspergillus xylanase by lignocellulosic waste fermentation and its application

Horn SJ, Vaaje-Kolstad G, Westereng B, Eijsink VG (2012) Novel enzymes for the degradation of cellulose. Biotechnol Biofuels 5:45. https://doi.org/10.1186/1754-6834-5-45 PubMed DOI PMC

Kachlishvili E, Penninckx MJ, Tsiklauri N, Elisashvili V (2006) Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World J Microbiol Biotechnol 22:391–397. https://doi.org/10.1007/s11274-005-9046-8 DOI

Kjærbølling I, Vesth T, Frisvad JC et al (2020) A comparative genomics study of 23 Aspergillus species from section Flavi. Nat Commun 11. https://doi.org/10.1038/s41467-019-14051-y

Krappmann S, Braus GH (2005) Nitrogen metabolism of Aspergillus and its role in pathogenicity. Med Mycol 43. https://doi.org/10.1080/13693780400024271

Kumar L, Arantes V, Chandra R, Saddler J (2012) The lignin present in steam pretreated softwood binds enzymes and limits cellulose accessibility. Bioresour Technol 103:201–208. https://doi.org/10.1016/j.biortech.2011.09.091 PubMed DOI

Labourel A, Frandsen KEH, Zhang F et al (2020) A fungal family of lytic polysaccharide monooxygenase-like copper proteins. Nat Chem Biol. https://doi.org/10.1038/s41589-019-0438-8 PubMed DOI

Levasseur A, Drula E, Lombard V et al (2013) Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol Biofuels 6. https://doi.org/10.1186/1754-6834-6-41

Levin L, Herrmann C, Papinutti VL (2008) Optimization of lignocellulolytic enzyme production by the white-rot fungus Trametes trogii in solid-state fermentation using response surface methodology. Biochem Eng J 39:207–214. https://doi.org/10.1016/j.bej.2007.09.004 DOI

Liao C-H, Yao L, Xu Y et al (2015) Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes. Proc Natl Acad Sci 112:15630–15635. https://doi.org/10.1073/PNAS.1508465112 PubMed DOI PMC

Liming X, Xueliang S (2004) High-yield cellulase production by Trichoderma reesei ZU-02 on corn cob residue. Bioresour Technol 91:259–262. https://doi.org/10.1016/S0960-8524(03)00195-0 PubMed DOI

Lu F, Lu M, Lu Z et al (2008) Purification and characterization of xylanase from Aspergillus ficuum AF-98. Bioresour Technol 99:5938–5941. https://doi.org/10.1016/j.biortech.2007.10.051 PubMed DOI

Lv X, Zheng F, Li C et al (2015) Characterization of a copper responsive promoter and its mediated overexpression of the xylanase regulator 1 results in an induction-independent production of cellulases in Trichoderma reesei. Biotechnol Biofuels 81(8):1–14. https://doi.org/10.1186/S13068-015-0249-4 DOI

Małachowska E, Dubowik M, Lipkiewicz A et al (2020) Analysis of cellulose pulp characteristics and processing parameters for efficient paper production. Sustain 12:1–12. https://doi.org/10.3390/su12177219 DOI

Midorikawa GEO, Correa CL, Noronha EF et al (2018) Analysis of the transcriptome in Aspergillus tamarii during enzymatic degradation of sugarcane bagasse. Front Bioeng Biotechnol 6:. https://doi.org/10.3389/fbioe.2018.00123

Monclaro AV, Petrović DM, Alves GSC et al (2020) Characterization of two family AA9 LPMOs from Aspergillus tamarii with distinct activities on xyloglucan reveals structural differences linked to cleavage specificity. PLoS ONE 15:e0235642. https://doi.org/10.1371/journal.pone.0235642 PubMed DOI PMC

Morozov IY, Galbis-Martinez M, Jones MG, Caddick MX (2001) Characterization of nitrogen metabolite signaling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol 42:269–277. https://doi.org/10.1046/j.1365-2958.2001.02636.x PubMed DOI

Ögel ZB, Yarangümeli K, Dündar H, Ifrij I (2001) Submerged cultivation of Scytalidium thermophilum on complex lignocellulosic biomass for endoglucanase production. Enzyme Microb Technol 28:689–695. https://doi.org/10.1016/S0141-0229(01)00315-5 PubMed DOI

Perez-Cuesta U, Guruceaga X, Cendon-Sanchez S et al (2021) Nitrogen, iron, and zinc acquisition: key nutrients to Aspergillus fumigatus virulence. J Fungi 2021 7:518. https://doi.org/10.3390/JOF7070518

Qian Y, Sun Y, Zhong L et al (2019) The GATA-Type transcriptional factor Are1 modulates the expression of extracellular proteases and cellulases in Trichoderma reesei. Int J Mol Sci 2019 20:4100. https://doi.org/10.3390/IJMS20174100

Raffa N, Osherov N, Keller NP (2019) Copper utilization, regulation, and acquisition by Aspergillus fumigatus. Int J Mol Sci 2019 20:1980. https://doi.org/10.3390/IJMS20081980

Seyis I, Aksoz N (2005) Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3. Int Biodeterior Biodegradation 55:115–119. https://doi.org/10.1016/J.IBIOD.2004.09.001 DOI

Silva COG, Vaz RP, Filho EXF (2017) Bringing plant cell wall-degrading enzymes into the lignocellulosic biorefinery concept. Biofuels, Bioprod Biorefining 1–13. https://doi.org/10.1002/bbb.1832

Siqueira G, Arantes V, Saddler JN et al (2017) Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnol Biofuels 10:176. https://doi.org/10.1186/s13068-017-0860-7 PubMed DOI PMC

Swift RJ, Karandikar A, Griffen AM et al (2000) The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture. Fungal Genet Biol 31:125–133. https://doi.org/10.1006/FGBI.2000.1241 PubMed DOI

Tonoli GHD, Teixeira EM, Corrêa AC et al (2012) Cellulose micro/nanofibres from Eucalyptus kraft pulp: preparation and properties. Carbohydr Polym 89:80–88. https://doi.org/10.1016/j.carbpol.2012.02.052 PubMed DOI

van Zyl PJ, Moodley V, Rose SH et al (2009) Production of the Aspergillus aculeatus endo-1,4-β-mannanase in A. niger. J Ind Microbiol Biotechnol 36:611–617. https://doi.org/10.1007/S10295-009-0551-X PubMed DOI

Vasconcellos VM, Tardioli PW, Giordano RLC, Farinas CS (2016) Addition of metal ions to a (hemi)cellulolytic enzymatic cocktail produced in-house improves its activity, thermostability, and efficiency in the saccharification of pretreated sugarcane bagasse. N Biotechnol 33:331–337. https://doi.org/10.1016/j.nbt.2015.12.002 PubMed DOI

Várnai A, Siika-aho M, Viikari L (2010) Restriction of the enzymatic hydrolysis of steam-pretreated spruce by lignin and hemicellulose. Enzyme Microb Technol 46:185–193. https://doi.org/10.1016/j.enzmictec.2009.12.013 DOI

Wiemann P, Perevitsky A, Lim FY et al (2017) Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep 19:1008–1021. https://doi.org/10.1016/J.CELREP.2017.04.019 PubMed DOI PMC

Xiang L, Lin Y, Tian Y et al (2021) Ammonium ions induce cellulase synthesis in Trichoderma koningii. Curr Microbiol 788(78):3201–3211. https://doi.org/10.1007/S00284-021-02568-9 DOI

Zadra I, Abt B, Parson W, Haas H (2000) xylP promoter-based expression system and its use for antisense downregulation of the Penicillium chrysogenum nitrogen regulator NRE. Appl Environ Microbiol 66:4810–4816. https://doi.org/10.1128/AEM.66.11.4810-4816.2000 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...