Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

SpinDoctor: A MATLAB toolbox for diffusion MRI simulation

JR. Li, VD. Nguyen, TN. Tran, J. Valdman, CB. Trang, KV. Nguyen, DTS. Vu, HA. Tran, HTA. Tran, TMP. Nguyen,

. 2019 ; 202 (-) : 116120. [pub] 20190827

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation. Under the assumption of negligible water exchange between compartments, the time-dependent apparent diffusion coefficient can be directly computed from the solution of a diffusion equation subject to a time-dependent Neumann boundary condition. This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used 1) to solve the Bloch-Torrey partial differential equation in order to simulate the diffusion magnetic resonance imaging signal; 2) to solve a diffusion partial differential equation to obtain directly the apparent diffusion coefficient; 3) to compare the simulated apparent diffusion coefficient with a short-time approximation formula. The partial differential equations are solved by P1 finite elements combined with built-in MATLAB routines for solving ordinary differential equations. The finite element mesh generation is performed using an external package called Tetgen. SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical cells with a myelin layer; 3) an extra-cellular space enclosed either a) in a box or b) in a tight wrapping around the cells; 4) deformation of canonical cells by bending and twisting; 5) permeable membranes; Built-in diffusion-encoding pulse sequences include the Pulsed Gradient Spin Echo and the Oscillating Gradient Spin Echo. We describe in detail how to use the SpinDoctor toolbox. We validate SpinDoctor simulations using reference signals computed by the Matrix Formalism method. We compare the accuracy and computational time of SpinDoctor simulations with Monte-Carlo simulations and show significant speed-up of SpinDoctor over Monte-Carlo simulations in complex geometries. We also illustrate several extensions of SpinDoctor functionalities, including the incorporation of T2 relaxation, the simulation of non-standard diffusion-encoding sequences, as well as the use of externally generated geometrical meshes.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc20025496
003      
CZ-PrNML
005      
20201222155227.0
007      
ta
008      
201125s2019 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.neuroimage.2019.116120 $2 doi
035    __
$a (PubMed)31470126
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Li, Jing-Rebecca $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France. Electronic address: jingrebecca.li@inria.fr.
245    10
$a SpinDoctor: A MATLAB toolbox for diffusion MRI simulation / $c JR. Li, VD. Nguyen, TN. Tran, J. Valdman, CB. Trang, KV. Nguyen, DTS. Vu, HA. Tran, HTA. Tran, TMP. Nguyen,
520    9_
$a The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-Torrey partial differential equation. Under the assumption of negligible water exchange between compartments, the time-dependent apparent diffusion coefficient can be directly computed from the solution of a diffusion equation subject to a time-dependent Neumann boundary condition. This paper describes a publicly available MATLAB toolbox called SpinDoctor that can be used 1) to solve the Bloch-Torrey partial differential equation in order to simulate the diffusion magnetic resonance imaging signal; 2) to solve a diffusion partial differential equation to obtain directly the apparent diffusion coefficient; 3) to compare the simulated apparent diffusion coefficient with a short-time approximation formula. The partial differential equations are solved by P1 finite elements combined with built-in MATLAB routines for solving ordinary differential equations. The finite element mesh generation is performed using an external package called Tetgen. SpinDoctor provides built-in options of including 1) spherical cells with a nucleus; 2) cylindrical cells with a myelin layer; 3) an extra-cellular space enclosed either a) in a box or b) in a tight wrapping around the cells; 4) deformation of canonical cells by bending and twisting; 5) permeable membranes; Built-in diffusion-encoding pulse sequences include the Pulsed Gradient Spin Echo and the Oscillating Gradient Spin Echo. We describe in detail how to use the SpinDoctor toolbox. We validate SpinDoctor simulations using reference signals computed by the Matrix Formalism method. We compare the accuracy and computational time of SpinDoctor simulations with Monte-Carlo simulations and show significant speed-up of SpinDoctor over Monte-Carlo simulations in complex geometries. We also illustrate several extensions of SpinDoctor functionalities, including the incorporation of T2 relaxation, the simulation of non-standard diffusion-encoding sequences, as well as the use of externally generated geometrical meshes.
650    12
$a mozek $7 D001921
650    _2
$a počítačová simulace $7 D003198
650    _2
$a difuzní magnetická rezonance $x metody $7 D038524
650    _2
$a lidé $7 D006801
650    12
$a teoretické modely $7 D008962
650    _2
$a neurozobrazování $x metody $7 D059906
650    12
$a software $7 D012984
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Nguyen, Van-Dang $u Department of Computational Science and Technology, KTH Royal Institute of Technology, Sweden.
700    1_
$a Tran, Try Nguyen $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Valdman, Jan $u Institute of Mathematics, Faculty of Science, University of South Bohemia, České Budějovice and Institute of Information Theory and Automation of the ASCR, Prague, Czech Republic.
700    1_
$a Trang, Cong-Bang $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Nguyen, Khieu Van $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Vu, Duc Thach Son $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Tran, Hoang An $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Tran, Hoang Trong An $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
700    1_
$a Nguyen, Thi Minh Phuong $u INRIA Saclay, Equipe DEFI, CMAP, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.
773    0_
$w MED00006575 $t NeuroImage $x 1095-9572 $g Roč. 202, č. - (2019), s. 116120
856    41
$u https://pubmed.ncbi.nlm.nih.gov/31470126 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20201125 $b ABA008
991    __
$a 20201222155223 $b ABA008
999    __
$a ok $b bmc $g 1599641 $s 1116182
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 202 $c - $d 116120 $e 20190827 $i 1095-9572 $m Neuroimage $n Neuroimage $x MED00006575
LZP    __
$a Pubmed-20201125

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...