Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation

. 2022 Apr 11 ; 23 (8) : . [epub] 20220411

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35457055

Grantová podpora
448218 Grant Agency of Charles University
CEITEC 2020 LQ1601 Ministry of Education, Youth and Sports of the Czech Republic
LO1508 Ministry of Education, Youth and Sports of the Czech Rep
LO1309 Ministry of Education, Youth and Sports of the Czech Republic
18-09306S Czech Science Foundation

Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.

Zobrazit více v PubMed

Einhorn T.A., Gerstenfeld L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015;11:45–54. doi: 10.1038/nrrheum.2014.164. PubMed DOI PMC

Schemitsch E.H. Size matters: Defining critical in bone defect size! J. Orthop. Trauma. 2017;31:S20–S22. doi: 10.1097/BOT.0000000000000978. PubMed DOI

Rh Owen G., Dard M., Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B. Appl. Biomater. 2018;106:2493–2512. doi: 10.1002/jbm.b.34049. PubMed DOI

Giannoudis P.V., Dinopoulos H., Tsiridis E. Bone substitutes: An update. Injury. 2005;36:S20–S27. doi: 10.1016/j.injury.2005.07.029. PubMed DOI

Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC

Saiz E., Zimmermann E.A., Lee J.S., Wegst U.G.K., Tomsia A.P. Perspectives on the role of nanotechnology in bone tissue engineering. Dent. Mater. 2013;29:103–115. doi: 10.1016/j.dental.2012.08.001. PubMed DOI PMC

Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018;6:90–99. PubMed PMC

Kołodziejska B., Kaflak A., Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration-A review. Materials. 2020;13:1748. doi: 10.3390/ma13071748. PubMed DOI PMC

Fang C.H., Lin Y.W., Sun J.S., Lin F.H. The chitosan/tri-calcium phosphate bio-composite bone cement promotes better osteo-integration: An in vitro and in vivo study. J. Orthop. Surg. Res. 2019;14:1–9. doi: 10.1186/s13018-019-1201-2. PubMed DOI PMC

Zeng J., Lin J., Yao G., Kong K., Wang X. Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. J. Orthop. Surg. Res. 2017;12:1–9. doi: 10.1186/s13018-017-0598-8. PubMed DOI PMC

Fernández T., Olave G., Valencia C.H., Arce S., Quinn J.M., Thouas G.A., Chen Q.Z. Effects of calcium phosphate/chitosan composite on bone healing in rats: Calcium phosphate induces osteon formation. Tissue Eng. Part A. 2014;20:1948–1960. doi: 10.1089/ten.tea.2013.0696. PubMed DOI

Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part. A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI

Prosecka E., Rampichova M., Vojtová L., Tvrdik D., Melčáková Š., Juhasova J., Plencner M., Jakubová R., Jančář J., Kochová P., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part A. 2011;99:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI

Wang J., Liu C. Collagen-hydroxyapatite composite scaffolds for tissue engineering. Hydroxyapatite Biomed. Appl. 2015:211–234. doi: 10.1016/B978178242033000010-9. DOI

Mazzoni E., D’Agostino A., Manfrini M., Maniero S., Puozzo A., Bassi E., Marsico S., Fortini C., Trevisiol L., Patergnani S., et al. Human adipose stem cells induced to osteogenic differentiation by an innovative collagen/hydroxylapatite hybrid scaffold. FASEB J. 2017;31:4555–4565. doi: 10.1096/fj.201601384R. PubMed DOI

Henriksen K., Karsdal M.A. Type I Collagen. Biochem. Collagens, Laminins Elastin Struct. Funct. Biomarkers. 2016;2016:1–11. doi: 10.1016/B978-0-12-809847-9.00001-5. DOI

Che Hashim N., Nordin D. Nano-Hydroxyapatite Powder for Biomedical Implant Coating. Mater. Today Proc. 2019;19:1562–1571. doi: 10.1016/j.matpr.2019.11.184. DOI

Agbabiaka O.G., Oladele I.O., Akinwekomi A.D., Adediran A.A., Balogun A.O., Olasunkanm O.G., Olayanju T.M.A. Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci. African. 2020;8:e00452. doi: 10.1016/j.sciaf.2020.e00452. DOI

Bočková J., Vojtová L., Přikryl R., Čechal J., Jančář J. Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications. Chem. Pap. 2008;62:580–588. doi: 10.2478/s11696-008-0076-1. DOI

Durucan C., Brown P.W. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000;11:365–371. doi: 10.1023/A:1008934024440. PubMed DOI

Zeng S., Shi H., Yu T., Zhou C. Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate. Adv. Powder Technol. 2017;28:3288–3295. doi: 10.1016/j.apt.2017.10.006. DOI

Eskandari N., Shafiei S.S. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Mol. Biotechnol. 2021;63:477–490. doi: 10.1007/s12033-021-00315-w. PubMed DOI

Kim Y.H., Jyoti M.A., Youn M.H., Youn H.S., Seo H.S., Lee B.T., Song H.Y. In vitro and in vivo evaluation of a macro porous β-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process. Biomed. Mater. 2010;5:035007. doi: 10.1088/1748-6041/5/3/035007. PubMed DOI

Wang X., Schröder H.C., Müller W.E.G. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J. Mater. Chem. B. 2018;6:2385–2412. doi: 10.1039/C8TB00241J. PubMed DOI

Müller W.E., Wang X., Diehl-Seifert B., Kropf K., Schloßmacher U., Lieberwirth I., Glasser G., Wiens M., Schröder H.C. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater. 2011;7:2661–2671. doi: 10.1016/j.actbio.2011.03.007. PubMed DOI

Smith J., Hong-Shum L. Sodium Polyphosphate. Food Addit. Data B. 2007:852–853. doi: 10.1002/9780470995327.CH317. DOI

Foley B., Greiner M., McGlynn G., Schmahl W.W. Anatomical variation of human bone bioapatite crystallography. Crystals. 2020;10:859. doi: 10.3390/cryst10100859. DOI

Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–1333. doi: 10.1016/S0142-9612(00)00285-4. PubMed DOI

Dorozhkin S.V. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J. Mater. Sci. 2009;44:2343–2387. doi: 10.1007/s10853-008-3124-x. DOI

Fritton S.P., Weinbaum S. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction. Annu. Rev. Fluid Mech. 2009;41:347–374. doi: 10.1146/annurev.fluid.010908.165136. PubMed DOI PMC

Kuboki Y., Jin Q., Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. Am. 2001;83:S105–S115. doi: 10.2106/00004623-200100002-00005. PubMed DOI

Filová E., Jakubcová B., Danilová I., Kostakova E.K., Jarosikova T., Chernyavskiy O., Hejda J., Handl M., Beznoska J., Nečas A., et al. Polycaprolactone Foam Functionalized With Chitosan Microparticles-a Suitable Scaffold for Cartilage Regeneration. Physiol. Res. 2016;65:121–131. doi: 10.33549/physiolres.932998. PubMed DOI

Di Luca A.A., Ostrowska B., Lorenzo-Moldero I., Lepedda A., Swieszkowski W., Van Blitterswijk C., Moroni L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016;6:22898. doi: 10.1038/srep22898. PubMed DOI PMC

Cai Y., Liu Y., Yan W., Hu Q., Tao J., Zhang M., Shi Z., Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007;17:3780–3787. doi: 10.1039/b705129h. DOI

Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI

Pamula E., Bacakova L., Filova E., Buczynska J., Dobrzynski P., Noskova L., Grausova L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 2008;19:425–435. doi: 10.1007/s10856-007-3001-1. PubMed DOI

Loh Q.L., Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC

Dušková-Smrčková M., Zavřel J., Bartoš M., Kaberova Z., Filová E., Zárubová J., Šlouf M., Michálek J., Vampola T., Kubies D. Communicating macropores in PHEMA-based hydrogels for cell seeding: Probabilistic open pore simulation and direct micro-CT proof. Mater. Des. 2021;198:109312. doi: 10.1016/j.matdes.2020.109312. DOI

Higashi T., Okamoto H. Influence of particle size of hydroxyapatite as a capping agent on cell proliferation of cultured fibroblasts. J. Endod. 1996;22:236–239. doi: 10.1016/S0099-2399(06)80139-1. PubMed DOI

Khashaba R.M., Lockwood P.E., Lewis J.B., Messer R.L., Chutkan N.B., Borke J.L. Cytotoxicity, calcium release, and pH changes generated by novel calcium phosphate cement formulations. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010;93:297–303. doi: 10.1002/jbm.b.31494. PubMed DOI

Xu H.H.K., Weir M.D., Sun L. Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties. Dent. Mater. 2009;25:535–542. doi: 10.1016/j.dental.2008.10.009. PubMed DOI PMC

Witek L., Shi Y., Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study. J. Adv. Ceram. 2017;6:157–164. doi: 10.1007/s40145-017-0228-2. DOI

Brazda L., Rohanova D., Helebrant A. Kinetics of dissolution of calcium phosphate (Ca-P) bioceramics. Process. Appl. Ceram. 2008;2:57–62. doi: 10.2298/PAC0801057B. DOI

Irawan R.M., Margono A., Djauhari N. The comparison of calcium ion release and pH changes from modified MTA and bioceramics in regeneration. J. Phys. Conf. Ser. 2017;884:012110. doi: 10.1088/1742-6596/884/1/012110. DOI

Pinto M.C.X., Kihara A.H., Goulart V.A., Tonelli F.M., Gomes K.N., Ulrich H., Resende R.R. Calcium signaling and cell proliferation. Cell. Signal. 2015;27:2139–2149. doi: 10.1016/j.cellsig.2015.08.006. PubMed DOI

Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 2006;97:56–70. doi: 10.1002/jcb.20675. PubMed DOI

Penido M.G.M.G., Alon U.S. Phosphate homeostasis and its role in bone health. Pediat. Nephrol. 2012;27:2039–2048. doi: 10.1007/s00467-012-2175-z. PubMed DOI PMC

Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. ‘false’ cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI

Šupová M., Suchý T., Sucharda Z., Filová E., der Kinderen J.N., Steinerová M., Martynková G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. J. Am. Ceram. Soc. 2018;102:2882–2904. doi: 10.1111/jace.16110. DOI

Chow L.C. Solubility of calcium phosphates. Monogr. Oral Sci. 2001;18:94–111. PubMed

Shih Y.-R.V., Chen C.-N., Tsai S.-W., Wang Y.J., Lee O.K. Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers. Stem Cells. 2006;24:2391–2397. doi: 10.1634/stemcells.2006-0253. PubMed DOI

Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI

Huri P.Y., Ozilgen B.A., Hutton D.L., Grayson W.L. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomed. Mater. 2014;9:045003. doi: 10.1088/1748-6041/9/4/045003. PubMed DOI

Kapat K., Srivas P.K., Rameshbabu A.P., Maity P.P., Jana S., Dutta J., Majumdar P., Chakrabarti D., Dhara S. Influence of Porosity and Pore-Size Distribution in Ti6Al4 v Foam on Physicomechanical Properties, Osteogenesis, and Quantitative Validation of Bone Ingrowth by Micro-Computed Tomography. ACS Appl. Mater. Interfaces. 2017;9:39235–39248. doi: 10.1021/acsami.7b13960. PubMed DOI

Viti F., Landini M., Mezzelani A., Petecchia L., Milanesi L., Scaglione S. Osteogenic differentiation of MSC through calcium signaling activation: Transcriptomics and functional analysis. PLoS ONE. 2016;11:e0148173. doi: 10.1371/journal.pone.0148173. PubMed DOI PMC

Silver I.A., Murrills R.J., Etherington D.J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 1988;175:266–276. doi: 10.1016/0014-4827(88)90191-7. PubMed DOI

Carlier A., Chai Y.C., Moesen M., Theys T., Schrooten J., Van Oosterwyck H., Geris L. Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach. Acta Biomater. 2011;7:3573–3585. doi: 10.1016/j.actbio.2011.06.021. PubMed DOI

Eyckmans J., Roberts S.J., Schrooten J., Luyten F.P. A clinically relevant model of osteoinduction: A process requiring calcium phosphate and BMP/Wnt signalling. J. Cell. Mol. Med. 2010;14:1845–1856. doi: 10.1111/j.1582-4934.2009.00807.x. PubMed DOI PMC

Wang H., Li Y., Zuo Y., Li J., Ma S., Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–3348. doi: 10.1016/j.biomaterials.2007.04.014. PubMed DOI

Akahane M., Ueha T., Shimizu T., Inagaki Y., Kido A., Imamura T., Kawate K., Tanaka Y. Increased osteogenesis with hydroxyapatite constructs combined with serially-passaged bone marrow-derived mesenchymal stem cells. Stem Cell Discov. 2012;02:133–140. doi: 10.4236/scd.2012.24018. DOI

Deligianni D.D., Katsala N.D., Koutsoukos P.G., Missirlis Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22:87–96. doi: 10.1016/S0142-9612(00)00174-5. PubMed DOI

Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51:475–483. doi: 10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9. PubMed DOI

Veiseh O., Doloff J.C., Ma M., Vegas A.J., Tam H.H., Bader A.R., Li J., Langan E., Wyckoff J., Loo W.S., et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 2015;14:643–651. doi: 10.1038/nmat4290. PubMed DOI PMC

Oh W.K., Kim S., Choi M., Kim C., Jeong Y.S., Cho B.R., Hahn J.S., Jang J. Cellular uptake, cytotoxicity, and innate immune response of silica-Titania hollow nanoparticles based on size and surface functionality. ACS Nano. 2010;4:5301–5313. doi: 10.1021/nn100561e. PubMed DOI

Bai L., Liu Y., Du Z., Weng Z., Yao W., Zhang X., Huang X., Yao X., Crawford R., Hang D., et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018;76:344–358. doi: 10.1016/j.actbio.2018.06.023. PubMed DOI

Sloviková A., Vojtová L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI

Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...