Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
448218
Grant Agency of Charles University
CEITEC 2020 LQ1601
Ministry of Education, Youth and Sports of the Czech Republic
LO1508
Ministry of Education, Youth and Sports of the Czech Rep
LO1309
Ministry of Education, Youth and Sports of the Czech Republic
18-09306S
Czech Science Foundation
PubMed
35457055
PubMed Central
PMC9028204
DOI
10.3390/ijms23084236
PII: ijms23084236
Knihovny.cz E-zdroje
- Klíčová slova
- bioceramics, collagen, osteogenesis,
- MeSH
- buněčná diferenciace MeSH
- hydroxyapatit * chemie farmakologie MeSH
- kolagen typu I genetika MeSH
- kultivované buňky MeSH
- lidé MeSH
- osteogeneze * MeSH
- tkáňové inženýrství metody MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hydroxyapatit * MeSH
- kolagen typu I MeSH
Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.
Zobrazit více v PubMed
Einhorn T.A., Gerstenfeld L.C. Fracture healing: Mechanisms and interventions. Nat. Rev. Rheumatol. 2015;11:45–54. doi: 10.1038/nrrheum.2014.164. PubMed DOI PMC
Schemitsch E.H. Size matters: Defining critical in bone defect size! J. Orthop. Trauma. 2017;31:S20–S22. doi: 10.1097/BOT.0000000000000978. PubMed DOI
Rh Owen G., Dard M., Larjava H. Hydoxyapatite/beta-tricalcium phosphate biphasic ceramics as regenerative material for the repair of complex bone defects. J. Biomed. Mater. Res. B. Appl. Biomater. 2018;106:2493–2512. doi: 10.1002/jbm.b.34049. PubMed DOI
Giannoudis P.V., Dinopoulos H., Tsiridis E. Bone substitutes: An update. Injury. 2005;36:S20–S27. doi: 10.1016/j.injury.2005.07.029. PubMed DOI
Amini A.R., Laurencin C.T., Nukavarapu S.P. Bone tissue engineering: Recent advances and challenges. Crit. Rev. Biomed. Eng. 2012;40:363–408. doi: 10.1615/CritRevBiomedEng.v40.i5.10. PubMed DOI PMC
Saiz E., Zimmermann E.A., Lee J.S., Wegst U.G.K., Tomsia A.P. Perspectives on the role of nanotechnology in bone tissue engineering. Dent. Mater. 2013;29:103–115. doi: 10.1016/j.dental.2012.08.001. PubMed DOI PMC
Ghassemi T., Shahroodi A., Ebrahimzadeh M.H., Mousavian A., Movaffagh J., Moradi A. Current concepts in scaffolding for bone tissue engineering. Arch. Bone Jt. Surg. 2018;6:90–99. PubMed PMC
Kołodziejska B., Kaflak A., Kolmas J. Biologically inspired collagen/apatite composite biomaterials for potential use in bone tissue regeneration-A review. Materials. 2020;13:1748. doi: 10.3390/ma13071748. PubMed DOI PMC
Fang C.H., Lin Y.W., Sun J.S., Lin F.H. The chitosan/tri-calcium phosphate bio-composite bone cement promotes better osteo-integration: An in vitro and in vivo study. J. Orthop. Surg. Res. 2019;14:1–9. doi: 10.1186/s13018-019-1201-2. PubMed DOI PMC
Zeng J., Lin J., Yao G., Kong K., Wang X. Effect of modified compound calcium phosphate cement on the differentiation and osteogenesis of bone mesenchymal stem cells. J. Orthop. Surg. Res. 2017;12:1–9. doi: 10.1186/s13018-017-0598-8. PubMed DOI PMC
Fernández T., Olave G., Valencia C.H., Arce S., Quinn J.M., Thouas G.A., Chen Q.Z. Effects of calcium phosphate/chitosan composite on bone healing in rats: Calcium phosphate induces osteon formation. Tissue Eng. Part A. 2014;20:1948–1960. doi: 10.1089/ten.tea.2013.0696. PubMed DOI
Prosecká E., Rampichová M., Litvinec A., Tonar Z., Králíčková M., Vojtová L., Kochová P., Plencner M., Buzgo M., Míčková A., et al. Collagen/hydroxyapatite scaffold enriched with polycaprolactone nanofibers, thrombocyte-rich solution and mesenchymal stem cells promotes regeneration in large bone defect in vivo. J. Biomed. Mater. Res. Part. A. 2015;103:671–682. doi: 10.1002/jbm.a.35216. PubMed DOI
Prosecka E., Rampichova M., Vojtová L., Tvrdik D., Melčáková Š., Juhasova J., Plencner M., Jakubová R., Jančář J., Kochová P., et al. Optimized conditions for mesenchymal stem cells to differentiate into osteoblasts on a collagen/hydroxyapatite matrix. J. Biomed. Mater. Res. Part A. 2011;99:307–315. doi: 10.1002/jbm.a.33189. PubMed DOI
Wang J., Liu C. Collagen-hydroxyapatite composite scaffolds for tissue engineering. Hydroxyapatite Biomed. Appl. 2015:211–234. doi: 10.1016/B978178242033000010-9. DOI
Mazzoni E., D’Agostino A., Manfrini M., Maniero S., Puozzo A., Bassi E., Marsico S., Fortini C., Trevisiol L., Patergnani S., et al. Human adipose stem cells induced to osteogenic differentiation by an innovative collagen/hydroxylapatite hybrid scaffold. FASEB J. 2017;31:4555–4565. doi: 10.1096/fj.201601384R. PubMed DOI
Henriksen K., Karsdal M.A. Type I Collagen. Biochem. Collagens, Laminins Elastin Struct. Funct. Biomarkers. 2016;2016:1–11. doi: 10.1016/B978-0-12-809847-9.00001-5. DOI
Che Hashim N., Nordin D. Nano-Hydroxyapatite Powder for Biomedical Implant Coating. Mater. Today Proc. 2019;19:1562–1571. doi: 10.1016/j.matpr.2019.11.184. DOI
Agbabiaka O.G., Oladele I.O., Akinwekomi A.D., Adediran A.A., Balogun A.O., Olasunkanm O.G., Olayanju T.M.A. Effect of calcination temperature on hydroxyapatite developed from waste poultry eggshell. Sci. African. 2020;8:e00452. doi: 10.1016/j.sciaf.2020.e00452. DOI
Bočková J., Vojtová L., Přikryl R., Čechal J., Jančář J. Collagen-grafted ultra-high molecular weight polyethylene for biomedical applications. Chem. Pap. 2008;62:580–588. doi: 10.2478/s11696-008-0076-1. DOI
Durucan C., Brown P.W. α-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci. Mater. Med. 2000;11:365–371. doi: 10.1023/A:1008934024440. PubMed DOI
Zeng S., Shi H., Yu T., Zhou C. Enhanced hydrated properties of α-tricalcium phosphate bone cement mediated by loading magnesium substituted octacalcium phosphate. Adv. Powder Technol. 2017;28:3288–3295. doi: 10.1016/j.apt.2017.10.006. DOI
Eskandari N., Shafiei S.S. Fabrication and Evaluation of Layered Double Hydroxide-Enriched ß-Tricalcium Phosphate Nanocomposite Granules for Bone Regeneration: In Vitro Study. Mol. Biotechnol. 2021;63:477–490. doi: 10.1007/s12033-021-00315-w. PubMed DOI
Kim Y.H., Jyoti M.A., Youn M.H., Youn H.S., Seo H.S., Lee B.T., Song H.Y. In vitro and in vivo evaluation of a macro porous β-TCP granule-shaped bone substitute fabricated by the fibrous monolithic process. Biomed. Mater. 2010;5:035007. doi: 10.1088/1748-6041/5/3/035007. PubMed DOI
Wang X., Schröder H.C., Müller W.E.G. Amorphous polyphosphate, a smart bioinspired nano-/bio-material for bone and cartilage regeneration: Towards a new paradigm in tissue engineering. J. Mater. Chem. B. 2018;6:2385–2412. doi: 10.1039/C8TB00241J. PubMed DOI
Müller W.E., Wang X., Diehl-Seifert B., Kropf K., Schloßmacher U., Lieberwirth I., Glasser G., Wiens M., Schröder H.C. Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomater. 2011;7:2661–2671. doi: 10.1016/j.actbio.2011.03.007. PubMed DOI
Smith J., Hong-Shum L. Sodium Polyphosphate. Food Addit. Data B. 2007:852–853. doi: 10.1002/9780470995327.CH317. DOI
Foley B., Greiner M., McGlynn G., Schmahl W.W. Anatomical variation of human bone bioapatite crystallography. Crystals. 2020;10:859. doi: 10.3390/cryst10100859. DOI
Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001;22:1327–1333. doi: 10.1016/S0142-9612(00)00285-4. PubMed DOI
Dorozhkin S.V. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J. Mater. Sci. 2009;44:2343–2387. doi: 10.1007/s10853-008-3124-x. DOI
Fritton S.P., Weinbaum S. Fluid and Solute Transport in Bone: Flow-Induced Mechanotransduction. Annu. Rev. Fluid Mech. 2009;41:347–374. doi: 10.1146/annurev.fluid.010908.165136. PubMed DOI PMC
Kuboki Y., Jin Q., Takita H. Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J. Bone Joint Surg. Am. 2001;83:S105–S115. doi: 10.2106/00004623-200100002-00005. PubMed DOI
Filová E., Jakubcová B., Danilová I., Kostakova E.K., Jarosikova T., Chernyavskiy O., Hejda J., Handl M., Beznoska J., Nečas A., et al. Polycaprolactone Foam Functionalized With Chitosan Microparticles-a Suitable Scaffold for Cartilage Regeneration. Physiol. Res. 2016;65:121–131. doi: 10.33549/physiolres.932998. PubMed DOI
Di Luca A.A., Ostrowska B., Lorenzo-Moldero I., Lepedda A., Swieszkowski W., Van Blitterswijk C., Moroni L. Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds. Sci. Rep. 2016;6:22898. doi: 10.1038/srep22898. PubMed DOI PMC
Cai Y., Liu Y., Yan W., Hu Q., Tao J., Zhang M., Shi Z., Tang R. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J. Mater. Chem. 2007;17:3780–3787. doi: 10.1039/b705129h. DOI
Murphy C.M., Haugh M.G., O’Brien F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials. 2010;31:461–466. doi: 10.1016/j.biomaterials.2009.09.063. PubMed DOI
Pamula E., Bacakova L., Filova E., Buczynska J., Dobrzynski P., Noskova L., Grausova L. The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J. Mater. Sci. Mater. Med. 2008;19:425–435. doi: 10.1007/s10856-007-3001-1. PubMed DOI
Loh Q.L., Choong C. Three-dimensional scaffolds for tissue engineering applications: Role of porosity and pore size. Tissue Eng. Part B Rev. 2013;19:485–502. doi: 10.1089/ten.teb.2012.0437. PubMed DOI PMC
Dušková-Smrčková M., Zavřel J., Bartoš M., Kaberova Z., Filová E., Zárubová J., Šlouf M., Michálek J., Vampola T., Kubies D. Communicating macropores in PHEMA-based hydrogels for cell seeding: Probabilistic open pore simulation and direct micro-CT proof. Mater. Des. 2021;198:109312. doi: 10.1016/j.matdes.2020.109312. DOI
Higashi T., Okamoto H. Influence of particle size of hydroxyapatite as a capping agent on cell proliferation of cultured fibroblasts. J. Endod. 1996;22:236–239. doi: 10.1016/S0099-2399(06)80139-1. PubMed DOI
Khashaba R.M., Lockwood P.E., Lewis J.B., Messer R.L., Chutkan N.B., Borke J.L. Cytotoxicity, calcium release, and pH changes generated by novel calcium phosphate cement formulations. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010;93:297–303. doi: 10.1002/jbm.b.31494. PubMed DOI
Xu H.H.K., Weir M.D., Sun L. Calcium and phosphate ion releasing composite: Effect of pH on release and mechanical properties. Dent. Mater. 2009;25:535–542. doi: 10.1016/j.dental.2008.10.009. PubMed DOI PMC
Witek L., Shi Y., Smay J. Controlling calcium and phosphate ion release of 3D printed bioactive ceramic scaffolds: An in vitro study. J. Adv. Ceram. 2017;6:157–164. doi: 10.1007/s40145-017-0228-2. DOI
Brazda L., Rohanova D., Helebrant A. Kinetics of dissolution of calcium phosphate (Ca-P) bioceramics. Process. Appl. Ceram. 2008;2:57–62. doi: 10.2298/PAC0801057B. DOI
Irawan R.M., Margono A., Djauhari N. The comparison of calcium ion release and pH changes from modified MTA and bioceramics in regeneration. J. Phys. Conf. Ser. 2017;884:012110. doi: 10.1088/1742-6596/884/1/012110. DOI
Pinto M.C.X., Kihara A.H., Goulart V.A., Tonelli F.M., Gomes K.N., Ulrich H., Resende R.R. Calcium signaling and cell proliferation. Cell. Signal. 2015;27:2139–2149. doi: 10.1016/j.cellsig.2015.08.006. PubMed DOI
Zayzafoon M. Calcium/calmodulin signaling controls osteoblast growth and differentiation. J. Cell. Biochem. 2006;97:56–70. doi: 10.1002/jcb.20675. PubMed DOI
Penido M.G.M.G., Alon U.S. Phosphate homeostasis and its role in bone health. Pediat. Nephrol. 2012;27:2039–2048. doi: 10.1007/s00467-012-2175-z. PubMed DOI PMC
Klimek K., Belcarz A., Pazik R., Sobierajska P., Han T., Wiglusz R.J., Ginalska G. ‘false’ cytotoxicity of ions-adsorbing hydroxyapatite - Corrected method of cytotoxicity evaluation for ceramics of high specific surface area. Mater. Sci. Eng. C. 2016;65:70–79. doi: 10.1016/j.msec.2016.03.105. PubMed DOI
Šupová M., Suchý T., Sucharda Z., Filová E., der Kinderen J.N., Steinerová M., Martynková G.S. The comprehensive in vitro evaluation of eight different calcium phosphates: Significant parameters for cell behavior. J. Am. Ceram. Soc. 2018;102:2882–2904. doi: 10.1111/jace.16110. DOI
Chow L.C. Solubility of calcium phosphates. Monogr. Oral Sci. 2001;18:94–111. PubMed
Shih Y.-R.V., Chen C.-N., Tsai S.-W., Wang Y.J., Lee O.K. Growth of Mesenchymal Stem Cells on Electrospun Type I Collagen Nanofibers. Stem Cells. 2006;24:2391–2397. doi: 10.1634/stemcells.2006-0253. PubMed DOI
Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002. PubMed DOI
Huri P.Y., Ozilgen B.A., Hutton D.L., Grayson W.L. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomed. Mater. 2014;9:045003. doi: 10.1088/1748-6041/9/4/045003. PubMed DOI
Kapat K., Srivas P.K., Rameshbabu A.P., Maity P.P., Jana S., Dutta J., Majumdar P., Chakrabarti D., Dhara S. Influence of Porosity and Pore-Size Distribution in Ti6Al4 v Foam on Physicomechanical Properties, Osteogenesis, and Quantitative Validation of Bone Ingrowth by Micro-Computed Tomography. ACS Appl. Mater. Interfaces. 2017;9:39235–39248. doi: 10.1021/acsami.7b13960. PubMed DOI
Viti F., Landini M., Mezzelani A., Petecchia L., Milanesi L., Scaglione S. Osteogenic differentiation of MSC through calcium signaling activation: Transcriptomics and functional analysis. PLoS ONE. 2016;11:e0148173. doi: 10.1371/journal.pone.0148173. PubMed DOI PMC
Silver I.A., Murrills R.J., Etherington D.J. Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp. Cell Res. 1988;175:266–276. doi: 10.1016/0014-4827(88)90191-7. PubMed DOI
Carlier A., Chai Y.C., Moesen M., Theys T., Schrooten J., Van Oosterwyck H., Geris L. Designing optimal calcium phosphate scaffold-cell combinations using an integrative model-based approach. Acta Biomater. 2011;7:3573–3585. doi: 10.1016/j.actbio.2011.06.021. PubMed DOI
Eyckmans J., Roberts S.J., Schrooten J., Luyten F.P. A clinically relevant model of osteoinduction: A process requiring calcium phosphate and BMP/Wnt signalling. J. Cell. Mol. Med. 2010;14:1845–1856. doi: 10.1111/j.1582-4934.2009.00807.x. PubMed DOI PMC
Wang H., Li Y., Zuo Y., Li J., Ma S., Cheng L. Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials. 2007;28:3338–3348. doi: 10.1016/j.biomaterials.2007.04.014. PubMed DOI
Akahane M., Ueha T., Shimizu T., Inagaki Y., Kido A., Imamura T., Kawate K., Tanaka Y. Increased osteogenesis with hydroxyapatite constructs combined with serially-passaged bone marrow-derived mesenchymal stem cells. Stem Cell Discov. 2012;02:133–140. doi: 10.4236/scd.2012.24018. DOI
Deligianni D.D., Katsala N.D., Koutsoukos P.G., Missirlis Y.F. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2000;22:87–96. doi: 10.1016/S0142-9612(00)00174-5. PubMed DOI
Webster T.J., Ergun C., Doremus R.H., Siegel R.W., Bizios R. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J. Biomed. Mater. Res. 2000;51:475–483. doi: 10.1002/1097-4636(20000905)51:3<475::AID-JBM23>3.0.CO;2-9. PubMed DOI
Veiseh O., Doloff J.C., Ma M., Vegas A.J., Tam H.H., Bader A.R., Li J., Langan E., Wyckoff J., Loo W.S., et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 2015;14:643–651. doi: 10.1038/nmat4290. PubMed DOI PMC
Oh W.K., Kim S., Choi M., Kim C., Jeong Y.S., Cho B.R., Hahn J.S., Jang J. Cellular uptake, cytotoxicity, and innate immune response of silica-Titania hollow nanoparticles based on size and surface functionality. ACS Nano. 2010;4:5301–5313. doi: 10.1021/nn100561e. PubMed DOI
Bai L., Liu Y., Du Z., Weng Z., Yao W., Zhang X., Huang X., Yao X., Crawford R., Hang D., et al. Differential effect of hydroxyapatite nano-particle versus nano-rod decorated titanium micro-surface on osseointegration. Acta Biomater. 2018;76:344–358. doi: 10.1016/j.actbio.2018.06.023. PubMed DOI
Sloviková A., Vojtová L., Jančař J. Preparation and modification of collagen-based porous scaffold for tissue engineering. Chem. Pap. 2008;62:417–422. doi: 10.2478/s11696-008-0045-8. DOI
Horwitz E.M., Le Blanc K., Dominici M., Mueller I., Slaper-Cortenbach I., Marini F.C., Deans R.J., Krause D.S., Keating A. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005;7:393–395. doi: 10.1080/14653240500319234. PubMed DOI