The intra-session reliability of functional connectivity during naturalistic viewing conditions

. 2022 Oct ; 59 (10) : e14075. [epub] 20220423

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35460523

Functional connectivity analysis is a common approach to the characterization of brain function. While studies of functional connectivity have predominantly focused on resting-state fMRI, naturalistic paradigms, such as movie watching, are increasingly being used. This ecologically valid, yet relatively unconstrained acquisition state has been shown to improve subject compliance and, potentially, enhance individual differences. However, unlike the reliability of resting-state functional connectivity, the reliability of functional connectivity during naturalistic viewing has not yet been fully established. The current study investigates the intra-session reliability of functional connectivity during naturalistic viewing sessions to extend its understanding. Using fMRI data of 24 subjects measured at rest as well as during six naturalistic viewing conditions, we quantified the split-half reliability of each condition, as well as cross-condition reliabilities. We find that intra-session reliability is relatively high for all conditions. While cross-condition reliabilities are higher for pairings of two naturalistic viewing conditions, split-half reliability is highest for the resting state. Potential sources of variability across the conditions, as well as the strengths and limitations of using intra-session reliability as a measure in naturalistic viewing, are discussed.

Zobrazit více v PubMed

Bartels, A., & Zeki, S. (2004). The chronoarchitecture of the human brain - Natural viewing conditions reveal a time-based anatomy of the brain. NeuroImage, 22(1), 419-433. https://doi.org/10.1016/j.neuroimage.2004.01.007

Bartels, A., & Zeki, S. (2005). Brain dynamics during natural viewing conditions - A new guide for mapping connectivity in vivo. NeuroImage, 24(2), 339-349. https://doi.org/10.1016/j.neuroimage.2004.08.044

Bartko, J. J. (1966). The intraclass correlation coefficient as a measure of reliability. Psychological Reports, 19(1), 3-11. https://doi.org/10.2466/pr0.1966.19.1.3

Betti, V., Della Penna, S., de Pasquale, F., Mantini, D., Marzetti, L., Romanis, G. L., & Corbetta, M. (2013). Natural scenes viewing alters the dynamics of functional connectivity in the human brain. Neuron, 79(4), 782-797. https://doi.org/10.1016/j.neuron.2013.06.022

Birn, R. M., Molloy, E. K., Patriat, R., Parker, T., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., & Prabhakaran, V. (2013). The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage, 83, 550-558. https://doi.org/10.1016/j.neuroimage.2013.05.099

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., Beckmann, C. F., Adelstein, J. S., Buckner, R. L., Colcombe, S., & Dogonowski, A. M. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734-4739. https://doi.org/10.1073/pnas.0911855107

Chen, B., Xu, T., Zhou, C., Wang, L., Yang, N., Wang, Z., Dong, H. M., Yang, Z., Zang, Y. F., Zuo, X. N., & Weng, X. C. (2016). Individual variability and test-retest reliability revealed by ten repeated resting-state brain scans over one month. PLoS One, 10(12), 1-21. https://doi.org/10.1371/journal.pone.0144963

Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83(1), 238-251. https://doi.org/10.1016/j.neuron.2014.05.014

Craddock, R. C., James, G. A., Holtzheimer, P. E., III, Hu, X. P., & Mayberg, H. S. (2012). A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human Brain Mapping, 33(8), 1914-1928. https://doi.org/10.1002/hbm.21333

Dorr, M., Martinetz, T., Gegenfurtner, K., & Barth, E. (2010). Variability of eye movements when viewing dynamic natural scenes. Journal of Vision, 10(10), 1-17. https://doi.org/10.1167/10.10.28

Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., Ireland, D., Ramrakha, S., Poulton, R., Caspi, A., & Moffitt, T. E. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516-532. https://doi.org/10.1016/j.neuroimage.2019.01.068

Feilong, M., Nastase, S. A., Guntupalli, J. S., & Haxby, J. V. (2018). Reliable individual differences in fine-grained cortical functional architecture. NeuroImage, 183, 375-386. https://doi.org/10.1016/j.neuroimage.2018.08.029

Finn, E. S., & Bandettini, P. A. (2021). Movie-watching outperforms rest for functional connectivity-based prediction of behavior. NeuroImage, 235, 117963. https://doi.org/10.1016/j.neuroimage.2021.117963

Finn, E. S., Scheinost, D., Finn, D. M., Shen, X., Papademetris, X., & Constable, R. T. (2017). Can brain state be manipulated to emphasize individual differences in functional connectivity? NeuroImage, 160, 140-151. https://doi.org/10.1016/j.neuroimage.2017.03.064

Finn, E. S., Shen, X., Scheinost, D., Rosenberg, M. D., Huang, J., Chun, M. M., Papademetris, X., & Constable, R. T. (2015). Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity. Nature Neuroscience, 18(11), 1664-1671. https://doi.org/10.1038/nn.4135

Fisher, R. (1925). Statistical methods for research workers. Oliver & Boyd.

Friston, K. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2(1-2), 56-78. https://doi.org/10.1002/hbm.460020107

Gao, J., Chen, G., Wu, J., Wang, Y., Hu, Y., Xu, T., Zuo, X. N., & Yang, Z. (2020). Reliability map of individual differences reflected in inter-subject correlation in naturalistic imaging. NeuroImage, 223, 117277. https://doi.org/10.1016/j.neuroimage.2020.117277

Geerligs, L., Rubinov, M., & Henson, R. N. (2015). State and trait components of functional connectivity: Individual differences vary with mental state. Journal of Neuroscience, 35(41), 13949-13961. https://doi.org/10.1523/JNEUROSCI.1324-15.2015

Guo, C. C., Kurth, F., Zhou, J., Mayer, E. A., Eickhoff, S. B., Kramer, J. H., & Seeley, W. W. (2012). One-year test-retest reliability of intrinsic connectivity network fMRI in older adults. NeuroImage, 61(4), 1471-1483. https://doi.org/10.1016/j.neuroimage.2012.03.027

Hartman, D., Hlinka, J., Paluš, M., Mantini, D., & Corbetta, M. (2011). The role of nonlinearity in computing graph-theoretical properties of resting-state functional magnetic resonance imaging brain networks. Chaos, 21(1), 013119. https://doi.org/10.1063/1.3553181

Hasson, U., Malach, R., & Heeger, D. J. (2010). Reliability of cortical activity during natural stimulation. Trends in Cognitive Sciences, 14(1), 40-48. https://doi.org/10.1016/j.tics.2009.10.011

Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., & Malach, R. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303(5664), 1634-1640. https://doi.org/10.1126/science.1089506

Hlinka, J., Androvicova, R., Horacek, J., Lukavsky, J., Rydlo, J., Tintera, J., & Vejmelka, M. (2014). Is natural viewing a reliable alternative to resting state functional connectivity mapping? Poster presented at the Annual Meeting of the Organization for Human Brain Mapping, Hamburg, Germany.

Hlinka, J., Palus, M., Vejmelka, M., Mantini, D., & Corbetta, M. (2011). Functional connectivity in resting-state fMRI: Is linear correlation sufficient? NeuroImage, 54, 2218-2225. https://doi.org/10.1016/j.neuroimage.2010.08.042

Mantini, D., Hasson, U., Betti, V., Perrucci, M. G., Romani, G. L., Corbetta, M., Orban, G. A., & Vanduffel, W. (2012). Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature Methods, 9(3), 277-282. https://doi.org/10.1038/nmeth.1868

O’Connor, D., Potler, N. V., Kovacs, M., Xu, T., Ai, L., Pellman, J., Vanderwal, T., Parra, L. C., Cohen, S., Ghosh, S., & Escalera, J. (2017). The healthy brain network serial scanning initiative: A resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions. Gigascience, 6(2), 1-14. https://doi.org/10.1093/gigascience/giw011

Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., Prabhakaran, V., & Birn, R. M. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: A comparison between resting with eyes open, closed, and fixated. NeuroImage, 78, 463-473. https://doi.org/10.1016/j.neuroimage.2013.04.013

Schaefer, A., Nils, F., Sanchez, X., & Philippot, P. (2010). Assessing the effectiveness of a large database of emotion-eliciting films: A new tool for emotion researchers. Cognition & Emotion, 24(7), 1153-1172. https://doi.org/10.1080/02699930903274322

Shehzad, Z., Kelly, A. C., Reiss, P. T., Gee, D. G., Gotimer, K., Uddin, L. Q., Lee, S. H., Margulies, D. S., Roy, A. K., Biswal, B. B., & Petkova, E. (2009). The resting brain: Unconstrained yet reliable. Cerebral Cortex, 19(10), 2209-2229. https://doi.org/10.1093/cercor/bhn256

Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158-165. https://doi.org/10.1093/cercor/bhr099

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273-289. https://doi.org/10.1006/nimg.2001.0978

van Dijk, K. R. A., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297-321. https://doi.org/10.1152/jn.00783.2009

Vanderwal, T., Eilbott, J., & Castellanos, F. X. (2019). Movies in the magnet: Naturalistic paradigms in developmental functional neuroimaging. Developmental Cognitive Neuroscience, 36, 100600. https://doi.org/10.1016/j.dcn.2018.10.004

Vanderwal, T., Eilbott, J., Finn, E. S., Craddock, R. C., Turnbull, A., & Castellanos, F. X. (2017). Individual differences in functional connectivity during naturalistic viewing conditions. NeuroImage, 157, 521-530. https://doi.org/10.1016/j.neuroimage.2017.06.027

Vanderwal, T., Kelly, C., Eilbott, J., Mayes, L. C., & Castellanos, F. X. (2015). Inscapes: A movie paradigm to improve compliance in functional magnetic resonance imaging. NeuroImage, 122, 222-232. https://doi.org/10.1016/j.neuroimage.2015.07.069

Wang, J., Ren, Y., Hu, X., Nguyen, V. T., Guo, L., Han, J., & Guo, C. C. (2017). Test-retest reliability of functional connectivity networks during naturalistic fMRI paradigms. Human Brain Mapping, 38(4), 2226-2241. https://doi.org/10.1002/hbm.23517

Zuo, X.-N., Kelly, C., Adelstein, J. S., Klein, D. F., Castellanos, F. X., & Milham, M. P. (2010). Reliable intrinsic connectivity networks: Test-retest evaluation using ICA and dual regression approach. NeuroImage, 49(3), 2163-2177. https://doi.org/10.1016/j.neuroimage.2009.10.080

Zuo, X.-N., & Xing, X.-X. (2014). Test-retest reliabilities of resting-state fMRI measurements in human brain functional connectomics: A systems neuroscience perspective. Neuroscience & Biobehavioral Reviews, 45, 100-118. https://doi.org/10.1016/j.neubiorev.2014.05.009

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...