Psychosocial Stress, Epileptic-Like Symptoms and Psychotic Experiences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35496146
PubMed Central
PMC9048482
DOI
10.3389/fpsyg.2022.804628
Knihovny.cz E-zdroje
- Klíčová slova
- cortisol, epileptic like symptoms, psychosis, stress, stress senzitization,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Current research suggests that stressful life experiences and situations create a substantive effect in the development of the initial manifestations of psychotic disorders and may influence temporo-limbic epileptic-like activity manifesting as cognitive and affective seizure-like symptoms in non-epileptic conditions. METHODS: The current study assessed trauma history, hair cortisol levels, epileptic-like manifestations and other psychopathological symptoms in 56 drug naive adult young women experiencing their initial occurrence of psychosis. RESULTS: Hair cortisol levels among patients experiencing their initial episode of psychosis, were significantly correlated with stress symptoms measured by Trauma Symptom Checklist-40 (r = - 0.48, p < 0.01), and complex partial seizure-like symptoms measured by the Complex Partial Seizure-Like Symptoms Inventory (r = - 0.33, p < 0.05) and LSCL-33 (r = - 0.33, p < 0.05). Hair cortisol levels were not found to be significantly correlated with symptoms of anxiety and depression measured by Beck depression Inventory and Zung Anxiety Scale. CONCLUSION: These findings suggest a significant relationship between epileptic-like symptoms and stress responses demonstrated by patients in their first psychotic episode. These findings may suggest the potential for research to explore usefulness of anticonvulsant treatment in patients who do not respond to usual psychotropic medication.
Zobrazit více v PubMed
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). American Psychiatric Publishing, Inc.
Beck A. T., Steer R., Brown G. (1987). Beck Depression Inventory Manual. San Antonio, TX: The Psychological Corporation.
Beck A. T., Ward C. H., Mendelson M., Mock J., Erbaugh J. (1961). An inventory for measuring depression. Arch. Gener. Psychiatry 4 561–571. 10.1001/archpsyc.1961.01710120031004 PubMed DOI
Benes F. M., Berretta S. (2001). GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25 1–27. 10.1016/S0893-133X(01)00225-1 PubMed DOI
Bertram E. (2007). The relevance of kindling for human epilepsy. Epilepsia 48 65–74. 10.1111/j.1528-1167.2007.01068.x PubMed DOI
Bob P. (2013). Stress Sensitization and Anticonvulsant Medication in Psychiatric Patients in Polypharmacy in Psychiatry Practice. Berlin: Springer, 233–242.
Bob P., Jasova D., Raboch J. (2011). Subclinical epileptiform process in patients with unipolar depression and its indirect psychophysiological manifestations. PLoS One 6:e28041. 10.1371/journal.pone.0028041 PubMed DOI PMC
Bob P., Palus M., Susta M., Glaslova K. (2010). Sensitization, epileptic-like symptoms and local synchronization in patients with paranoid schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 34 143–146. 10.1016/j.pnpbp.2009.10.015 PubMed DOI
Bob P., Pec O., Mishara A. L., Touskova T., Lysaker P. H. (2016). Conscious brain, metacognition and schizophrenia. Int. J. Psychophysiol. 105 1–8. 10.1016/j.ijpsycho.2016.05.003 PubMed DOI
Boutros N. N., Ghosh S., Khan A., Bowyer S. M., Galloway M. P. (2014). Anticonvulsant medications for panic disorder: a review and synthesis of the evidence. Int. J. Psychiatry Clin. Pract. 18 2–10. 10.3109/13651501.2013.873053 PubMed DOI
Castner S. A., Williams G. V. (2007). From vice to virtue: insights from sensitization in the nonhuman primate. Prog. Neuropsychopharmacol. Biol. Psychiatry 31 1572–1592. 10.1016/j.pnpbp.2007.08.026 PubMed DOI
Chaumette B., Kebir O., Mam-Lam-Fook C., Morvan Y., Bourgin J., Godsil B. P., et al. (2016). Salivary cortisol in early psychosis: new findings and meta-analysis. Psychoneuroendocrinology 63 262–270. 10.1016/j.psyneuen.2015.10.007 PubMed DOI
Collip D., Myin-Germeys I., Van Os J. (2008). Does the concept of “sensitization” provide a plausible mechanism for the putative link between the environment and schizophrenia? Schizophr. Bull. 34 220–225. 10.1093/schbul/sbm163 PubMed DOI PMC
Costa E., Davis J. M., Dong E., Grayson D. R., Guidotti A., Tremolizzo L., et al. (2004). A GABAergic cortical deficit dominates schizophrenia pathophysiology. Crit. Rev. Neurobiol. 16 1–23. 10.1615/critrevneurobiol.v16.i12.10 PubMed DOI
Eack S. M., Prasad K. M., Montrose D. M., Goradia D. D., Dworakowski D., Miewald J., et al. (2008). An integrated psychobiological predictive model of emergent psychopathology among young relatives at risk for schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 32 1873–1878. 10.1016/j.pnpbp.2008.08.024 PubMed DOI PMC
Elliott D. M., Briere J. (1992). Sexual abuse trauma among professional women: validating the Trauma Symptom Checklist-40 (TSC-40). Child Abuse Negl. 16 391–398. 10.1016/0145-2134(92)90048-v PubMed DOI
Faravelli C., Mansueto G., Palmieri S., Sauro C. L., Rotella F., Pietrini F., et al. (2017). Childhood adversity, cortisol levels, and psychosis: a retrospective investigation. J. Nervous Ment. Dis. 205 574–579. 10.1097/NMD.0000000000000699 PubMed DOI
Girshkin L., Matheson S. L., Shepherd A. M., Green M. J. (2014). Morning cortisol levels in schizophrenia and bipolar disorder: a meta-analysis. Psychoneuroendocrinology 49 187–206. 10.1016/j.psyneuen.2014.07.013 PubMed DOI
Glenthoj B. Y., Hemmingsen R. (1997). Dopaminergic sensitization: implications for the pathogenesis of schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry 21 23–46. 10.1016/s0278-5846(96)00158-3 PubMed DOI
Goddard G. V., Mcintyre D. C., Leech C. K. (1969). A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol. 25 295–330. 10.1016/0014-4886(69)90128-9 PubMed DOI
Gomes R. R., Vicente V. A., Azevedo C. M., Salgado C. G., Da Silva M. B., Queiroz-Telles F., et al. (2016). Molecular epidemiology of agents of human chromoblastomycosis in brazil with the description of two novel species. PLoS Negl. Trop. Dis. 10:5102. PubMed PMC
Gonzalez-Burgos G., Lewis D. A. (2008). GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr. Bull. 34 944–961. 10.1093/schbul/sbn070 PubMed DOI PMC
Gow R., Thomson S., Rieder M., Van Uum S., Koren G. (2010). An assessment of cortisol analysis in hair and its clinical applications. Forensic. Sci. Int. 196 32–37. 10.1016/j.forsciint.2009.12.040 PubMed DOI
Heckers S., Konradi C. (2002). Hippocampal neurons in schizophrenia. J. Neural. Transm. 109 891–905. 10.1007/s007020200073 PubMed DOI PMC
Howes O. D., Mccutcheon R., Owen M. J., Murray R. M. (2017). The role of genes, stress, and dopamine in the development of schizophrenia. Biol. Psychiatry 81 9–20. 10.1016/j.biopsych.2016.07.014 PubMed DOI PMC
Jacob T. C., Moss S. J., Jurd R. (2008). GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci. 9 331–343. 10.1038/nrn2370 PubMed DOI PMC
Johannessen Landmark C. (2008). Antiepileptic drugs in non-epilepsy disorders: relations between mechanisms of action and clinical efficacy. CNS Drugs 22 27–47. 10.2165/00023210-200822010-00003 PubMed DOI
Kaufman K. R. (2011). Antiepileptic drugs in the treatment of psychiatric disorders. Epilep. Behav. 21 1–11. 10.1016/j.yebeh.2011.03.011 PubMed DOI
Kay S. R., Fiszbein A., Opler L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 13 261–276. 10.1093/schbul/13.2.261 PubMed DOI
Kraus J. E. (2000). Sensitization phenomena in psychiatric illness: lessons from the kindling model. J. Neuropsych. Clin. Neurosci. 12 328–343. 10.1176/jnp.12.3.328 PubMed DOI
Mayo D., Corey S., Kelly L. H., Yohannes S., Youngquist A. L., Stuart B. K., et al. (2017). The role of trauma and stressful life events among individuals at clinical high risk for psychosis: a review. Front. Psychiatry 8:55. 10.3389/fpsyt.2017.00055 PubMed DOI PMC
Meyer J. S., Novak M. A. (2012). Minireview: Hair cortisol: a novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153 4120–4127. 10.1210/en.2012-1226 PubMed DOI PMC
Mohler H. (2006). GABA(A) receptor diversity and pharmacology. Cell Tissue Res. 326 505–516. 10.1007/s00441-006-0284-3 PubMed DOI
Phillips T. J., Roberts A. J., Lessov C. N. (1997). Behavioral sensitization to ethanol: genetics and the effects of stress. Pharmacol. Biochem. Behav. 57 487–493. 10.1016/s0091-3057(96)00448-0 PubMed DOI
Post R. M., Weiss S. R. (1996). A speculative model of affective illness cyclicity based on patterns of drug tolerance observed in amygdala-kindled seizures. Mol. Neurobiol. 13 33–60. 10.1007/BF02740751 PubMed DOI
Post R. M., Weiss S. R., Smith M., Li H., Mccann U. (1997). Kindling versus quenching. Implications for the evolution and treatment of posttraumatic stress disorder. Ann. NY Acad. Sci. 821 285–295. 10.1111/j.1749-6632.1997.tb48287.x PubMed DOI
Pruessner M., Cullen A. E., Aas M., Walker E. F. (2017). The neural diathesis-stress model of schizophrenia revisited: an update on recent findings considering illness stage and neurobiological and methodological complexities. Neurosci. Biobehav. Rev. 73 191–218. 10.1016/j.neubiorev.2016.12.013 PubMed DOI
Reininghaus U., Kempton M. J., Valmaggia L., Craig T. K., Garety P., Onyejiaka A., et al. (2016). Stress sensitivity, aberrant salience, and threat anticipation in early psychosis: an experience sampling study. Schizophr. Bull. 42 712–722. 10.1093/schbul/sbv190 PubMed DOI PMC
Roberts R. J., Gorman L. L., Lee G. P., Hines M. E., Richardson E. D., Riggle T. A., et al. (1992). The phenomenology of multiple partial seizure-like symptoms without stereotyped spells: an epilepsy spectrum disorder? Epilep. Res. 13 167–177. 10.1016/0920-1211(92)90073-3 PubMed DOI
Russell E., Koren G., Rieder M., Van Uum S. (2012). Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology 37 589–601. 10.1016/j.psyneuen.2011.09.009 PubMed DOI
Ryan M. C., Sharifi N., Condren R., Thakore J. H. (2004). Evidence of basal pituitary-adrenal overactivity in first episode, drug naive patients with schizophrenia. Psychoneuroendocrinology 29 1065–1070. 10.1016/j.psyneuen.2003.08.011 PubMed DOI
Sauvé B., Koren G., Walsh G., Tokmakejian S., Van Uum S. H. (2007). Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin. Invest. Med. 2007 E183–E191. 10.25011/cim.v30i5.2894 PubMed DOI
Sheehan D. V., Lecrubier Y., Sheehan K. H., Amorim P., Janavs J., Weiller E., et al. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59 22–33. PubMed
Silberman E. K., Post R. M., Nurnberger J., Theodore W., Boulenger J. P. (1985). Transient sensory, cognitive and affective phenomena in affective illness. A comparison with complex partial epilepsy. Br. J. Psychiatry 146 81–89. 10.1192/bjp.146.1.81 PubMed DOI
Stalder T., Steudte-Schmiedgen S., Alexander N., Klucken T., Vater A., Wichmann S., et al. (2017). Stress-related and basic determinants of hair cortisol in humans: a meta-analysis. Psychoneuroendocrinology 77 261–274. 10.1016/j.psyneuen.2016.12.017 PubMed DOI
Stephens D. W., Mclinn C. M., Stevens J. R. (2002). Discounting and reciprocity in an Iterated Prisoner’s Dilemma. Science 298 2216–2218. 10.1126/science.1078498 PubMed DOI
Stephens D. W., Mclinn C. M., Stevens J. R. (2006). Effects of temporal clumping and payoff accumulation on impulsiveness and cooperation. Behav. Proc. 71 29–40. 10.1016/j.beproc.2005.09.003 PubMed DOI
Steudte-Schmiedgen S., Wichmann S., Stalder T., Hilbert K., Muehlhan M., Lueken U., et al. (2017). Hair cortisol concentrations and cortisol stress reactivity in generalized anxiety disorder, major depression and their comorbidity. J. Psychiatric Res. 84 184–190. 10.1016/j.jpsychires.2016.09.024 PubMed DOI
Streit F., Memic A., Hasandedic L., Rietschel L., Frank J., Lang M., et al. (2016). Perceived stress and hair cortisol: differences in bipolar disorder and schizophrenia. Psychoneuroendocrinology 69 26–34. 10.1016/j.psyneuen.2016.03.010 PubMed DOI
Teicher M. H., Andersen S. L., Polcari A., Anderson C. M., Navalta C. P., Kim D. M. (2003). The neurobiological consequences of early stress and childhood maltreatment. Neurosci. Biobehav. Rev. 27 33–44. 10.1016/s0149-7634(03)00007-1 PubMed DOI
Teicher M. H., Glod C. A., Surrey J., Swett C., Jr. (1993). Early childhood abuse and limbic system ratings in adult psychiatric outpatients. J. Neuropsych. Clin. Neurosci. 5 301–306. 10.1176/jnp.5.3.301 PubMed DOI
Teicher M. H., Tomoda A., Andersen S. L. (2006). Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann. NY Acad. Sci. 1071 313–323. 10.1196/annals.1364.024 PubMed DOI
Tiihonen J., Wahlbeck K., Kiviniemi V. (2009). The efficacy of lamotrigine in clozapine-resistant schizophrenia: a systematic review and meta-analysis. Schizophr. Res. 109 10–14. 10.1016/j.schres.2009.01.002 PubMed DOI
van Os J., Rutten B. P., Poulton R. (2008). Gene-environment interactions in schizophrenia: review of epidemiological findings and future directions. Schizophr. Bull. 34 1066–1082. 10.1093/schbul/sbn117 PubMed DOI PMC
van Winkel R., Stefanis N. C., Myin-Germeys I. (2008). Psychosocial stress and psychosis. A review of the neurobiological mechanisms and the evidence for gene-stress interaction. Schizophr. Bull. 34 1095–1105. 10.1093/schbul/sbn101 PubMed DOI PMC
Varese F., Smeets F., Drukker M., Lieverse R., Lataster T., Viechtbauer W., et al. (2012). Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr. Bull. 38 661–671. 10.1093/schbul/sbs050 PubMed DOI PMC
Walker E. F., Diforio D. (1997). Schizophrenia: a neural diathesis-stress model. Psychol. Rev. 104 667–685. 10.1037/0033-295x.104.4.667 PubMed DOI
Weidenauer A., Bauer M., Sauerzopf U., Bartova L., Praschak-Rieder N., Sitte H. H., et al. (2017). Making sense of: sensitization in schizophrenia. Int. J. Neuropsychopharmacol. 20 1–10. 10.1093/ijnp/pyw081 PubMed DOI PMC
Yuii K., Suzuki M., Kurachi M. (2007). Stress sensitization in schizophrenia. Ann. NY Acad. Sci. 1113 276–290. 10.1196/annals.1391.013 PubMed DOI
Zung W. W. (1971). A rating instrument for anxiety disorders. Psychosomatics 12 371–379. 10.1016/S0033-3182(71)71479-0 PubMed DOI
Fear of Flying, Stress and Epileptic-Like Symptoms