Antibacterial activity of AgNPs-TiO2 nanotubes: influence of different nanoparticle stabilizers
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection
Document type Journal Article
PubMed
35517148
PubMed Central
PMC9058477
DOI
10.1039/d0ra07305a
PII: d0ra07305a
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Enhanced antibacterial properties of nanomaterials such as TiO2 nanotubes (TNTs) and silver nanoparticles (AgNPs) have attracted much attention in biomedicine and industry. The antibacterial properties of nanoparticles depend, among others, on the functionalization layer of the nanoparticles. However, the more complex information about the influence of different functionalization layers on antibacterial properties of nanoparticle decorated surfaces is still missing. Here we show the array of ∼50 nm diameter TNTs decorated with ∼50 nm AgNPs having different functionalization layers such as polyvinylpyrrolidone, branched polyethyleneimine, citrate, lipoic acid, and polyethylene glycol. To assess the antibacterial properties, the viability of Gram-positive (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) has been assessed. Our results showed that the functional layer of nanoparticles plays an important role in antibacterial properties and the synergistic effect such nanoparticles and TiO2 nanotubes have had different effects on adhesion and viability of G- and G+ bacteria. These findings could help researchers to optimally design any surfaces to be used as an antibacterial including the implantable titanium biomaterials.
Department of Chemistry and Biochemistry Mendel University in Brno Zemedelska 1 Brno Czech Republic
Department of Microelectronics Brno University of Technology Technicka 10 Brno Czech Republic
See more in PubMed
Turner R. J. Metal-based antimicrobial strategies. J. Microb. Biotechnol. 2017;(10):1062–1065. PubMed PMC
Azam A. et al., Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomed. 2012;(7):6003. PubMed PMC
Różańska A. et al., Antimicrobial properties of selected copper alloys on Staphylococcus Aureus and Escherichia Coli in different simulations of environmental conditions: with vs. without organic contamination. Int. J. Environ. Res. Publ. Health. 2017;(14):813. PubMed PMC
Hasan J. et al., Antibacterial surfaces: the quest for a new generation of biomaterials. Trends Biotechnol. 2013;(31):295–304. PubMed
Lemire J. A. et al., Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013;(11):371–384. PubMed
Mahlapuu M. et al., Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016;(6) PubMed PMC
Gkana E. N. et al., Anti-adhesion and Anti-biofilm Potential of Organosilane Nanoparticles against Foodborne Pathogens. Front. Microbiol. 2017;(8) PubMed PMC
Kamaruzzaman N. F. et al., Antimicrobial polymers: The potential replacement of existing antibiotics? Int. J. Mol. Sci. 2019;(20):2747. PubMed PMC
Likodimos V. Advanced Photocatalytic Materials. Materials. 2020;(13):821. PubMed PMC
Khezerlou A. et al., Nanoparticles and their antimicrobial properties against pathogens including bacteria, fungi, parasites and viruses. Microb. Pathog. 2018;(123):505526. PubMed
Buzea C. et al., Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;(2):MR17–MR71. PubMed
Wu S. et al., Antibacterial Au nanostructured surfaces. Nanoscale. 2016;(8):26202625. PubMed
Seil J. T. Webster T. J. Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed. 2012;(7):2767. PubMed PMC
Mohammadi G. et al., Development of azithromycin–PLGA nanoparticles: Physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf. B Biointerfaces. 2010;(80):34–39. PubMed
Fohlerova Z. Mozalev A. Anodic formation and biomedical properties of hafnium-oxide nanofilms. J. Mater. Chem. B. 2019;(7):2300–2310. PubMed
Tian A. et al., Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells. Int. J. Nanomed. 2015;(10):2423. PubMed PMC
Kummer K. M. et al., Biological applications of anodized TiO2 nanostructures: a review from orthopedic to stent applications. Nanosci. Nanotechnol. Lett. 2012;(4):483–493.
Zhang X. et al., A functionalized Sm/Sr doped TiO2 nanotube array on titanium implant enables exceptional bone-implant integration and also self-antibacterial activity. Ceram. Int. 2020;(46):14796–14807.
Cheng Y. et al., Progress in TiO 2 nanotube coatings for biomedical applications: a review. J. Mater. Chem. B. 2018;(6):1862–1886. PubMed
Mohan C. et al., In vitro hemocompatibility and vascular endothelial cell functionality on titania nanostructures under static and dynamic conditions for improved coronary stenting applications. Acta Biomater. 2013;(9):9568–9577. PubMed
Fohlerova Z. Mozalev A. Tuning the response of osteoblast-like cells to the porousalumina-assisted mixed-oxide nano-mound arrays. J. Biomed. Mater. Res. B Appl. Biomater. 2018;(106):1645–1654. PubMed
Wang Q. et al., TiO2 nanotube platforms for smart drug delivery: a review. Int. J. Nanomed. 2016;(11):4819. PubMed PMC
Zhang H. et al., Improved antibacterial activity and biocompatibility on vancomycin-loaded TiO2 nanotubes: in vivo and in vitro studies. Int. J. Nanomed. 2013;(8):4379. PubMed PMC
Popat K. C. et al., Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;(28):4880–4888. PubMed
Zhang X. et al., Synergistic effects of lanthanum and strontium to enhance the osteogenic activity of TiO2 nanotube biological interface. Ceram. Int. 2020;(46):13969–13979.
Li J. et al., Plasmonic gold nanoparticles modified titania nanotubes for antibacterial application. Appl. Phys. Lett. 2014;(104):261110.
Yang T. et al., Cytocompatibility and antibacterial activity of titania nanotubes incorporated with gold nanoparticles. Colloids Surf. B Biointerfaces. 2016;(145):597–606. PubMed
Liu W. et al., Synthesis of TiO 2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale. 2014;(6):9050–9062. PubMed
Bilek O. et al., Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS One. 2019;(14):e0214066. PubMed PMC
Liu W. et al., Selenium nanoparticles incorporated into titania nanotubes inhibit bacterial growth and macrophage proliferation. Nanoscale. 2016;(8):15783–15794. PubMed
Lan M.-Y. et al., Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS One. 2013;(8):e75364. PubMed PMC
Mei S. et al., Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes. Biomaterials. 2014;(35):4255–4265. PubMed
Guo Z. et al., Fabrication of silver-incorporated TiO2 nanotubes and evaluation on its antibacterial activity. Mater. Lett. 2014;(137):464–467.
Li H. et al., Antibacterial activity of TiO2 nanotubes: influence of crystal phase, morphology and Ag deposition. Appl. Surf. Sci. 2013;(284):179–183.
Gunputh U. F. et al., Anodised TiO2 nanotubes as a scaffold for antibacterial silver nanoparticles on titanium implants. Mater. Sci. Eng. C. 2018;(91):638644. PubMed
Roguska A. et al., Evaluation of the Antibacterial Activity of Ag-Loaded TiO2 Nanotubes. Eur. J. Inorg. Chem. 2012:5199–5206.
Yeniyol S. et al., Antibacterial activity of As-annealed TiO2 nanotubes doped with Ag nanoparticles against periodontal pathogens. Bioinorgan. Chem. Appl. 2014;(2014):829496. PubMed PMC
Esfandiari N. et al., Size tuning of Ag-decorated TiO2 nanotube arrays for improved bactericidal capacity of orthopedic implants. J. Biomed. Mater. Res. 2014;(102):2625–2635. PubMed
Burkowska-but A. et al., Influence of stabilizers on the antimicrobial properties of silver nanoparticles introduced into natural water. J. Environ. Sci. 2014;(26):542–549. PubMed
van Phu D. et al., Study on antibacterial activity of silver nanoparticles synthesized by gamma irradiation method using different stabilizers. Nanoscale Res. Lett. 2014;(9):162. PubMed PMC
Cinteza L. O. et al., Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials. 2018;(8):826. PubMed PMC
Bilek O. et al., Enhanced antibacterial and anticancer properties of Se-NPs decorated TiO2 nanotube film. PLoS One. 2019;(14):e0214066. PubMed PMC
Vazquez-muñoz R. et al., Enhancement of antibiotics antimicrobial activity due to the silver nanoparticles impact on the cell membrane. PLoS One. 2019;(14):e0224904. PubMed PMC
Yin I. X. et al., The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020;(15):2555–2562. PubMed PMC
Prabhu S. Poulose E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2012;(2):32.
Borowik A. et al., The Impact of Surface Functionalization on the Biophysical Properties of Silver Nanoparticles. Nanomaterials. 2019;(9):973. PubMed PMC
Juhna T. et al., Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. Appl. Environ. Microbiol. 2007;(73):7456–7464. PubMed PMC
Khatoon Z. et al., Bacterial biofilm formation on implantable devices and approaches to its treatment and prevention. Heliyon. 2018;(4):e01067. PubMed PMC
Stocks S. M. Mechanism and use of the commercially available viability stain. BacLight. 2004;(61A):189–195. PubMed
Rosenberg M. et al., Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 2019;(9):6483. PubMed PMC
Ercan B. et al., Diameter of titanium nanotubes influences anti-bacterial efficacy. Nanotechnology. 2011;(22):295102. PubMed
Mazare A. et al., Corrosion, antibacterial activity and haemocompatibility of TiO2 nanotubes as a function of their annealing temperature. Corros. Sci. 2016;(103):215–222.
Huynh K. A. Chen K. L. Aggregation kinetics of citrate and polyvinylpyrrolidone coated silver nanoparticles in monovalent and divalent electrolyte solutions. Environ. Sci. Technol. 2011;(45):5564–5571. PubMed PMC
Qiao Z. et al., Silver nanoparticles with pH induced surface charge switchable properties for antibacterial and antibiofilm applications. J. Mater. Chem. B. 2019;(7):830–840. PubMed
Niska K. et al., Capping Agent-Dependent Toxicity and Antimicrobial Activity of Silver Nanoparticles: An In Vitro Study. Concerns about Potential Application in Dental Practice. Int. J. Med. Sci. 2016;(13):772–782. PubMed PMC
van Doorslaer X. et al., UV-A and UV-C induced photolytic and photocatalytic degradation of aqueous ciprofloxacin and moxifloxacin: Reaction kinetics and role of adsorption. Appl. Catal. B Environ. 2011;(101):540–547.
Crémet L. et al., Orthopaedic-implant infections by Escherichia coli: Molecular and phenotypic analysis of the causative strains. J. Infect. 2012;(64):169–175. PubMed
Maurice N. M. et al., Pseudomonas aeruginosa Biofilms: Host Response and Clinical Implications in Lung Infections. Am. J. Respir. Cell Mol. Biol. 2018;(58):428–439. PubMed PMC
Hunt P. R. et al., Bioactivity of nanosilver in Caenorhabditis elegans: Effects of size, coat, and shape. Toxicol. Rep. 2014;(1):923–944. PubMed PMC
Vasilev K. Nanoengineered antibacterial coatings and materials: A perspective. Coatings. 2019;9:654.
Lister J. L. Horswill A. R. Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014;(4):178. PubMed PMC