Perspectives on the Use of Small Noncoding RNAs as a Therapy for Severe Virus-Induced Disease Manifestations and Late Complications
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35529531
PubMed Central
PMC9066397
DOI
10.1007/s12668-022-00977-z
PII: 977
Knihovny.cz E-zdroje
- Klíčová slova
- ARDS, COVID-19, Cancer, SARS-CoV-2, Small noncoding RNAs,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Many viruses appear each year. Some of these viruses result in severe disease and even death. The frequency of epidemics and pandemics is growing at an alarming rate. The lack of virus-specific etiopathogenic drugs necessitates the search for new tools for the complex treatment of severe viral diseases and their late complications. Small noncoding RNAs and their antagonists may be effective therapeutic tools for preventing virus-induced damage to targeted epithelial cells and surrounding tissues in the manifestation stage. Moreover, sncRNAs could interfere with the virus-interacting host genes that trigger the malignant transformation of target cells as a late complication of severe viral diseases.
Zobrazit více v PubMed
Bonagura VR, Rosenthal DW. Stiehm’s immune deficiencies. Elsevier; 2020. Infections that cause secondary immune deficiency; pp. 1035–1051.
Z, Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, S. Liu, P. Zhao, H. Liu, L. Zhu, Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet Respiratory Medicine 8(4) (2020) 420-422; PubMed PMC
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, Pan P, Wang W, Hu D, Liu X, Zhang Q, Wu J. Coronavirus infections and immune responses. Journal of Medical Virology. 2020;92:424–432. doi: 10.1002/jmv.25685. PubMed DOI PMC
Immunity to microbes . Injurious effects of immune responses. In: Abbas AK, Lichtman AH, Pillai S, editors. Cellular and molecular immunology. Elsevier; 2007. pp. 354–355.
Tisoncik JR, Korth MJ, Simmons CP, Farrar J, Martin TR, Katze MG. Into the eye of the cytokine storm. Microbiology and Molecular Biology Reviews. 2012;76(1):16–32. doi: 10.1128/MMBR.05015-11. PubMed DOI PMC
Verbist KC, Nichols KE. Cytokine storm syndromes associated with Epstein–Barr virus. In: Cron R, Behrens E, editors. Cytokine storm syndrome. Springer; 2019. PubMed
Sutkowski N, Palkama T, Ciurli C, Sekaly RP, Thorley-Lawson DA, Huber BT. An Epstein-Barr virus-associated antigen. The Journal of Experimental Medicine. 1996;184(3):971–980. doi: 10.1084/jem.184.3.971. PubMed DOI PMC
Simon FF, McCorrister S, Hu P, Chong P, Silaghi A, Westmaccot G, Coombs KM, Kobasa D. Highly pathogenic H5N1 and novel H7N9 influenza A viruses induce more profound proteomic host responses than seasonal and pandemic H1N1 strains. Journal of Proteome Research. 2015;14(11):4511–4523. doi: 10.1021/acs.jproteome.5b00196. PubMed DOI
Griffin DE. The immune response in measles: Virus control, clearance and protective immunity. Viruses. 2016;8(10):282. doi: 10.3390/v8100282. PubMed DOI PMC
Leroy, E. M., Becquart, P., Wauquier, N., & Baize, S. (2011). Evidence for Ebola virus superantigen activity. J.Virol., 4041–4042. PubMed PMC
Gagnon SJ, Leporati A, Green S, Kalayanarooj S, Vaughn DW, Stephens HA, Suntayakorn S, Kurane I, Ennis FA, Rothman AL. T cell receptor Vbeta gene usage in Thai children with Dengue virus infection. Am.J.Trop.Med.Hyg. 2001;64(1-2):41–48. doi: 10.4269/ajtmh.2001.64.41. PubMed DOI
Baillet N, Reynard S, Perthame E, Hortion J, Journeaux A, Mateo M, Carnec X, Schaeffer J, Picard C, Barrot L, Barron S, Vallve A, Duthey A, Jacquot F, Boehringer C, Jouvion G, Pietrosemoli N, Legendre R, Dillies MA, Allan R, Legras-Lachuer C, Carbonnelle C, Raoul H, Baize S. Systemic viral spreading and defective host responses are associated with fatal Lassa fever in macaques. Communications Biology. 2021;4:27. doi: 10.1038/s42003-020-01543-7. PubMed DOI PMC
Prescott J, Marzi A, Safronetz D, Robertson SJ, Feldmann H, Best SM. Immunobiology of Ebola and Lassa virus infections. Nature Reviews. Immunology. 2017;17:195–207. doi: 10.1038/nri.2016.138. PubMed DOI
Willard KA, Alston JT, Acciani M, Brindley MA. Identification of residues in lassa virus glycoprotein subunit 2 that are critical for protein function. Pathogens. 2019;8(1):1. doi: 10.3390/pathogens8010001. PubMed DOI PMC
Bixler SL, Goff AJ. The role of cytokines and chemokines in filovirus infection. Viruses. 2015;7(10):5489–5507. doi: 10.3390/v7102892. PubMed DOI PMC
Leroy EM, Gonzalez J-P, Baize S. Ebola and Marburg haemorrhagic fever viruses: Major scientific advances, but a relatively minor public health threat for Africa. Clinical Microbiology and Infection. 2011;17(7):964–976. doi: 10.1111/j.1469-0691.2011.03535.x. PubMed DOI
Cong Y, McArthur MA, Cohen M, Jahrling PB, Janosko KB, Josleyn N, Kang K, Zhang T, Holbrook M. Characterisation of yellow fever virus infection of human and non-human primate antigen presenting cells and their interaction with CD4+ T cells. PLoS Neglected Tropical Diseases. 2016;10(5):e0004709. doi: 10.1371/journal.pntd.0004709. PubMed DOI PMC
Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, Frias-Staheli N, Garcia-Sastre A, Schmaljohn CS, Doms RW. Cellular localization and antigenic characterization of Crimean-congo hemorrhagic fever virus glycoproteins. Journal of Virology. 2005;79(10):6152–6161. doi: 10.1128/JVI.79.10.6152-6161.2005. PubMed DOI PMC
Muema DM, Akilimali NA, Ndumnego OC, Rasehlo SS, Durgiah R, Ojwach DBA, Ismail N, Dong M, Moodley A, Dong KL, Ndhlovu ZM, Mabuka JM, Walker BD, Mann JK, Ndung'u T. Association between the cytokine storm, immune cell dynamics, and viral replicative capacity in hyperacute HIV infection. BMC Medicine. 2020;18:81. doi: 10.1186/s12916-020-01529-6. PubMed DOI PMC
Kim ES, Choe PG, Park WB, Oh HS, Kim EJ, Nam EY, Na SH, Kim M, Song K-H, Bang JH, Park SW, Kim HB, Kim NJ, Oh M-D. Clinical progression and cytokine profiles of Middle East respiratory syndrome coronavirus infection. Journal of Korean Medical Science. 2016;31:1717–1725. doi: 10.3346/jkms.2016.31.11.1717. PubMed DOI PMC
Brown M, Bhardwaj N. Super(antigen) target for SARS-CoV-2. Nature Reviews. Immunology. 2021;21:72. doi: 10.1038/s41577-021-00502-5. PubMed DOI PMC
Maggi E, Canonica GW, Moretta L. COVID-19: Unanswered questions on immune response and pathogenesis. The Journal of Allergy and Clinical Immunology. 2020;146(1):18–22. doi: 10.1016/j.jaci.2020.05.001. PubMed DOI PMC
Zhong J, Tang J, Ye C, Dong L. The immunology of COVID-19: Is immune modulation an option for treatment? The Lancet Rheumatolology. 2020;2:e428–e436. doi: 10.1016/S2665-9913(20)30120-X. PubMed DOI PMC
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). [Updated 2021 Sep 2]. in: StatPearls [Internet] StatPearls Publishing; 2021. PubMed
Vitali F, Cohen LD, Demartini A, Amato A, Eterno V, Zambelli A, Bellazzi R. A network-based data integration approach to support drug repurposing and multi-target therapies in triple negative breast cancer. PLoS ONE. 2016;11:e0162407. doi: 10.1371/journal.pone.0162407. PubMed DOI PMC
Pfefferle S, Schöpf J, Kögl M, Friedel CC, Müller MA, Carbajo-Lozoya J, Stellberger T, von Dall'Armi E, Herzog P, Kallies S, Niemeyer D, Ditt V, Kuri T, Züst R, Pumpor K, Hilgenfeld R, Schwarz F, Zimmer R, Steffen I, Weber F, Thiel V, Herrler G, Thiel HJ, Schwegmann-Wessels C, Pöhlmann S, Haas J, Drosten C, von Brunn A. The SARS-coronavirus-host interactome: Identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathogens. 2011;7:e1002331. doi: 10.1371/journal.ppat.1002331. PubMed DOI PMC
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Kain AM, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang X-P, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang H-Y, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, Zastrow MV, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DJ, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2-human protein-protein interaction map reveals drug targets and potential drug-repurposing. Nature. 2020;583:459–468. doi: 10.1038/s41586-020-2286-9. PubMed DOI PMC
Kumar N, Mishra B, Mehmood A, Athar M, Mukhtar MS. Integrative network biology framework elucidates molecular mechanisms of SARS-CoV-2 pathogenesis. iScience. 2020;23(9):101526. doi: 10.1016/j.isci.2020.101526. PubMed DOI PMC
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0. PubMed DOI PMC
Ritchie AI, Singayagam A. Immunosuppression for hyperinflammation in COVID-19: A double-edged sword? Lancet. 2020;395(10230):1111. doi: 10.1016/S0140-6736(20)30691-7. PubMed DOI PMC
Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. Journal of Cardiovascular Electrophysiology. 2020;31(5):1003–1008. doi: 10.1111/jce.14479. PubMed DOI PMC
Heneka MT, Golenbock D, Latz E, Morgan D, Brown R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimer's Research & Therapy. 2020;12:69. doi: 10.1186/s13195-020-00640-3. PubMed DOI PMC
Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thrombosis Research. 2020;191:145–147. doi: 10.1016/j.thromres.2020.04.013. PubMed DOI PMC
Alpalhao M, Ferreira JA, Filipe P. Persistent SARS-CoV-2 infection and the risk for cancer. Medical Hypotheses. 2020;143:109882. doi: 10.1016/j.mehy.2020.109882. PubMed DOI PMC
Khan I, Hatiboglu MA. Can COVID-19 induce glioma tumorogenesis through binding cell receptors? Medical Hypotheses. 2020;144:110009. doi: 10.1016/j.mehy.2020.110009. PubMed DOI PMC
Rhea EM, Logsdon AF, Hansen KM, Williams LM, Reed MJ, Baumann KK, Holden SJ, Raber J, Banks WA, Erickson MA. The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nature Neuroscience. 2021;24:368–378. doi: 10.1038/s41593-020-00771-8. PubMed DOI PMC
Purcaru O-S, Artene S-A, Barcan E, Silosi CA, Stanciu I, Danoiu S, Tudorache S, Tataranu LG, Dricu A. The interference between SARS-CoV-2 and tyrosine kinase receptor signaling in cancer. International Journal of Molecular Sciences. 2021;22:4830. doi: 10.3390/ijms22094830. PubMed DOI PMC
Pottier C, Fresnais M, Gilon M, Jerusalem G, Longuespee R, Sounni NE. Tyrosine kinase inhibitors in cancer: Breakthrough and challenges of targeted therapy. Cancers. 2020;12:731–748. doi: 10.3390/cancers12030731. PubMed DOI PMC
Passamonti F, Cattaneo C, Accani L, Bruna R, Cavo M, Merli F, Angelucci E, Krampera M, Cairoli R, Porta MGD, et al. Clinical characteristics and risk factors associated with COVID-19 severity in patients with haematologial malignancies in Italy: A retrospective, multicenter, cohort study. The Lancet Haematology. 2020;7(10):E737–E745. doi: 10.1016/S2352-3026(20)30251-9. PubMed DOI PMC
Morales-Ortega A, de Tena JG, Frutos-Perez B, Jaenes-Barrios B, Farfan-Sedano AI, Canales-Albendea MA, Bernal-Bello D. COVID-19 in patients with hematological malignancies: Considering the role of tyrosine kinase inhibitors. Cancer. 2021;127(11):1937–1938. doi: 10.1002/cncr.33432. PubMed DOI PMC
Semih B, Nur YT, Sinuan DM, Serdal K, Burhan T, Fevzi A. Tyrosine kinase inhibitors and COVID-19. Journal of Oncology Pharmacy Practice. 2020;26(8):2072–2073. doi: 10.1177/1078155220967081. PubMed DOI
Dyall J, Coleman CM, Hart BJ, Venkataraman T, Holbrook MR, Kindrachuk J, Johnson RF, Olinger GG, Jahrling PB, Laidlaw M, Johansen LM, Lear-Rooney CM, Glass PJ, Hensley LE, Frieman MB. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrobial Agents and Chemotherapy. 2014;58(8):4885–4893. doi: 10.1128/AAC.03036-14. PubMed DOI PMC
Coleman CM, Sisk JM, Mingo RM, Nelson EA, White JM, Frieman MB. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus fusion. J.Virol. 2016;90(19):8924–8933. doi: 10.1128/JVI.01429-16. PubMed DOI PMC
Jeon, S., Ko, M., Lee, J., Choi, I., Byun, S.Y., Park, S., Shum, D., Kim, S. (n.d) Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs, bioRxiv: 10.1101/2020.03.20.999730 PubMed PMC
Weston, S., Coleman, C.M., Haupt, R., Logue, J., Matthews, K., M.B.Frieman, Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vivo, bioRxiv: 10.1101/2020.03.25.008482 PubMed PMC
Weisberg E, Parent A, Yang PL, Sattler M, Liu Q, Wang J, Meng J, Buhrlage SJ, Gray N, Griffin JD. Repurposing of kinase inhibitors for treatment of COVID-19. Pharmaceutical Research. 2020;37(9):167. doi: 10.1007/s11095-020-02851-7. PubMed DOI PMC
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. StatPearls [Internet] StatPearls Publishing; 2021. Features, evaluation and treatment coronavirus (COVID-19), 2021 Sep 2. PubMed
Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, Hu Y, Tao Z-W, Tian J-H, Pei Y-Y, Yuan M-L, Zhang Y-L, Dai F-H, Liu Y, Wang Q-M, Zheng J-J, Xu L, Holmes EC, Zhang Y-Z. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579:265–269. doi: 10.1038/s41586-020-2008-3. PubMed DOI PMC
Treon SP, Castillo JJ, Skarbnik AP, et al. The BTK inhibitor ibrutinib may protect against pulmonary injury in COVID-19–infected patients. Blood. 2020;135(21):1912–1915. doi: 10.1182/blood.2020006288. PubMed DOI PMC
Nabavi SF, Habtemariam S, Clementi E, Berindan-Neagoe I, Cismaru CA, Rasekhian M, Banach M, Izadi M, Bagheri M, Bagheri MS, Nabavi SM. Lessons learned from SARS-CoV and MERS-CoV: FDA-approved Abelson tyrosine-protein kinase 2 inhibitors may help us combat SARS-CoV-2. Archives of Medical Science. 2020;16(3):519–521. doi: 10.5114/aoms.2020.94504. PubMed DOI PMC
Rivera-Torres J, San Jose E. Src tyrosine kinase inhibitors: New perspectives on their immune, antiviral, and senotherapeutic potential. Frontiers in Pharmacology. 2019;10:1011. doi: 10.3389/fphar.2019.01011. PubMed DOI PMC
Shin JS, Jung E, Kim M, Baric RS, Go YY. Saracatinib inhibits Middle East respiratory syndrome-coronavirus replication in vitro. Viruses. 2018;10(6):283. doi: 10.3390/v10060283. PubMed DOI PMC
Abu-Izneid T, AlHajri N, Ibrahim AM, Javed MN, Salem KM, Pottoo FH, Kamal MA. Micro-RNAs in the regulation of immune response against SARS-CoV-2 and other viral infections. Journal of Advanced Research. 2021;30:133–145. doi: 10.1016/j.jare.2020.11.013. PubMed DOI PMC
Sardar R, Satish D, Gupta D. Identification of novel SARS-CoV-2 drug targets by host micro-RNAs and transcription factors co-regulatory interaction network analysis Front. Genet. 2020;11(571274):1–9. PubMed PMC
Khan MAAK, Sany MRU, Islam MS, Islam ABMMK. Epigenetic regulator miRNA pattern differences among SARS-CoV, SARS-CoV-2, and SARS-CoV-2 world-wide isolates delineated the mystery behind the epic pathogenicity and distinct clinical characteristics of pandemic COVID-19. Frontiers in Genetics. 2020;11(765):1–17. PubMed PMC
Haasnoot, J., Berkhout B. (2006). RNA interference: Its use as antiviral therapy, Handbook Exp.Pharmacol. 173 117–50 Springer-Verlag, Berlin, Heidelberg PubMed PMC
He ML, Zheng B, Peng Y, Peiris JS, Poon LL, Yuen KY, Lin MC, Kung HF, Guan Y. Inhibition of SARS-associated coronavirus infection and replication by RNA interference. JAMA. 2003;290:2665–2666. doi: 10.1001/jama.290.20.2665. PubMed DOI
Lu A, Zhang H, Zhang X, Wang H, Hu Q, Shen L, Schaffhausen BS, Hou W, Li L. Attenuation of SARS coronavirus by a short hairpin RNA expression plasmid targeting RNA-dependent RNA polymerase. Virol. 2004;324:84–89. doi: 10.1016/j.virol.2004.03.031. PubMed DOI PMC
Wang Z, Ren L, Zhao X, Hung T, Meng A, Wang J, Chen YG. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. Journal of Virology. 2004;78:7523–7527. doi: 10.1128/JVI.78.14.7523-7527.2004. PubMed DOI PMC
Zhang Y, Li T, Fu L, Yu C, Li Y, Xu X, Wang Y, Ning H, Zhang S, Chen W, Babiuk LA, Chang Z. Silencing SARS-CoV Spike protein expression in cultured cells by RNA interference. FEBS Letters. 2004;560:141–146. doi: 10.1016/S0014-5793(04)00087-0. PubMed DOI PMC
Badry A, Jaspers VL, Waugh CA. Environmental pollutants modulate RNA and DNA virus-activated miRNA-155 expression and innate immune system responses: Insights into new immune-modulative mechanisms. Journal of Immunotoxicology. 2020;17(1):86–93. doi: 10.1080/1547691X.2020.1740838. PubMed DOI
Dickey LL, Hanley TM, Huffaker TB, Ramstead AG, O'Connell RM, Lane TE. MicroRNA 155 and viral-induced neuro-inflammation. Journal of Neuroimmunology. 2017;308:17–24. doi: 10.1016/j.jneuroim.2017.01.016. PubMed DOI PMC
Pashangzadeh S, Motallebnezhad M, Vafashoar F, Khalvandi A, Mojtabavi N. Implications the role of miR-155 in the pathogenesis of autoimmune diseases. Frontiers in Immunology. 2021;12(669382):1–14. PubMed PMC
Kemp V, Laconi A, Cocciolo G, Berends AJ, Breit TM, Verheije A. miRNA repertoire and host immune factor regulation upon avian coronavirus infection in eggs. Archives of Virology. 2020;165:835–843. doi: 10.1007/s00705-020-04527-4. PubMed DOI PMC
Tsai C-Y, Allie SR, Zhang W, Usherwood EJ. MicroRNA miR-155 affects antiviral effector and effector memory CD8 T cell differentiation. Journal of Virology. 2013;87(4):2348–2351. doi: 10.1128/JVI.01742-12. PubMed DOI PMC
Trotta R, Chen L, Ciarlariello D, Josyula S, Mao C, Costinean S, Yu L, Butchar JP, Tridandapani S, Croce CM, Caligiuri MA. miR-155 regulates IFN-γ production in natural killer cells. Blood. 2012;119(15):3478–3485. doi: 10.1182/blood-2011-12-398099. PubMed DOI PMC
Leon-Icaza SA, Zheng M, Rosas-Taraco AG. MicroRNAs in viral acute respiratory infections: Immune regulation, biomarkers, therapy, and vaccines. ExRNA. 2019;1(1):1. doi: 10.1186/s41544-018-0004-7. PubMed DOI PMC
Wang Z, Filgueiras LR, Wang S, Serezani APM, Peters-Golden M, Jancar S, Serezani CH. Leukotriene B4 enhances the generation of pro-inflammatory microRNAs to promote MyD88-dependent macrophage activation. Journal of Immunology. 2014;192(5):2349–2356. doi: 10.4049/jimmunol.1302982. PubMed DOI PMC
Lind EF, Elford AR, Ohashi PS. MicroRNA 155 is required for optimal CD8+ T cell response to acute viral and intracellular bacterial challenges. Journal of Immunology. 2013;190(3):1210–1216. doi: 10.4049/jimmunol.1202700. PubMed DOI
Linnstaedt SD, Gottwein E, Skalsky RL, Luftig MA, Cullen BR. Virally induced cellular microRNA miR-155 plays a key role in B-cell immortalization by Epstein-Barr virus. Journal of Virology. 2010;84(22):11670–11678. doi: 10.1128/JVI.01248-10. PubMed DOI PMC
Megremis S, Taka S, Oulas A, Kotoulas G, Iliopoulos I, Papadopoulos NG. O20-human rhinovirus replication-dependent induction of micro-RNAs in human bronchial epithelial cells. Clinical and Translational Allergy. 2014;4(1):O20.
Bondanese VP, Francisco-Garsia A, Bedke N, Davies DE, Sanchez-Elsner T. Identification of host miRNAs that may limit human rhinovirus replication. World Journal of Biological Chemistry. 2014;5(4):437. doi: 10.4331/wjbc.v5.i4.437. PubMed DOI PMC
Mirzaei R, Mahdavi F, Badrzadeh F, Hosseini-Fard SR, Heidary M, Jeda AS, Mohammadi T, Roshani M, Yousefimashouf R, Keyvani H, Darvishmotevalli M, Sani MZ, Karampoor S. The emerging role of microRNAs in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. International Immunopharmacology. 2021;90(107204):1. PubMed PMC
Soni, D. K., Cabrera-Luque, J., Kar, S., Sen, C., Devaney, J., Biswas, R. (n.d). Suppression of miR-155 attenuates lung cytokine storm induced by SARS-CoV-2 infection in human ACE2-transgenic mice, bioRxiv 2020 10.1101/2020.12.17.423130
Gangemi S, Tonacci A. AntagomiRs: A novel therapeutic strategy for challenging COVID-19 cytokine storm. Cytokine & Growth Factor Reviews. 2021;58:111–113. doi: 10.1016/j.cytogfr.2020.09.001. PubMed DOI PMC
Woods PS, Doolittle LM, Rosas LE, Nana-Sinkam SP, Tili E, Davis IC. Increased expression of microRNA-155-5p by alveolar type II cells contributes to development of lethal ARDS in H1N1 influenza A virus-infected mice. Virol. 2020;545:40–52. doi: 10.1016/j.virol.2020.03.005. PubMed DOI PMC
Pociask DA, Robinson KM, Chen K, McHugh KJ, Clay ME, Huang GT, Benos PV, Janssen-Heininger YMW, Kolls JK, Anathy V, Alcorn JF. Epigenetic and transcriptomic regulation of lung repair during recovery from influenza infection. The American Journal of Pathology. 2017;187:851–863. doi: 10.1016/j.ajpath.2016.12.012. PubMed DOI PMC
Klimenko OV, Sidorov A. The full recovery of mice (Mus Musculus C57/BL/6 strain) from virus-induced sarcoma after treatment with a complex of DDMC delivery system and SncRNAs. Non-coding RNA Research. 2019;4(2):69–78. doi: 10.1016/j.ncrna.2019.03.001. PubMed DOI PMC
Klimenko OV, Shtilman MI. Transfection of Kasumi-1 cells with a new type of polymer carriers loaded with miR-155 and antago-miR-155. Cancer Gene Therapy. 2013;20:237–241. doi: 10.1038/cgt.2013.11. PubMed DOI