Impact of a Digital Lifestyle Intervention on Diabetes Self-Management: A Pilot Study
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, multicentrická studie
PubMed
35565782
PubMed Central
PMC9100754
DOI
10.3390/nu14091810
PII: nu14091810
Knihovny.cz E-zdroje
- Klíčová slova
- HbA1c, diabetes mellitus type 2, digital health, digital intervention, lifestyle intervention, mHealth, self-management,
- MeSH
- diabetes mellitus 2. typu * terapie MeSH
- glukosa MeSH
- glykovaný hemoglobin metabolismus MeSH
- kvalita života MeSH
- lidé středního věku MeSH
- lidé MeSH
- pilotní projekty MeSH
- prospektivní studie MeSH
- retrospektivní studie MeSH
- tělesná hmotnost MeSH
- zdravý životní styl MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- Názvy látek
- glukosa MeSH
- glykovaný hemoglobin MeSH
The aim of this study was to provide preliminary evidence on the impact of the digital health application Vitadio on improving glycemic control in patients with type 2 diabetes mellitus. This was a 3-month, prospective, multicenter, open-label trial with an intraindividual control group. Participants received a digital lifestyle intervention. HbA1c levels were observed at 3 time points: retrospectively, at 3 months before app use; at baseline, at the start of usage; and 3 months after the start of use. In addition, changes in other metabolic parameters (fasting glucose, body weight, and waist circumference), patient reported outcomes (quality of life, self-efficacy, and depression), and data generated within the app (frequency of use, steps, and photos of meals) were evaluated. Repeated measures analysis of variance with the Bonferroni correction was used to assess the overall difference in HbA1c values between the intervention and the intraindividual control group, with p < 0.05 considered significant. Participants (n = 42) were 57 ± 7.4 years old, 55% male, and with a mean baseline HbA1c of 7.9 ± 1.0%. An average HbA1c reduction of −0.9 ± 1.1% (p < 0.001) was achieved. The digital health application was effective in significantly reducing body weight (−4.3 ± 4.5 kg), body mass index (−1.4 ± 1.5 kg/m2), waist circumference (−5.7 ± 15 cm), and fasting glucose (−0.6 ± 1.3 mmol/L). The digital therapy achieved a clinically meaningful and significant HbA1c reduction as well as a positive effect on metabolic parameters. These results provide preliminary evidence that Vitadio may be effective in supporting patient diabetes management by motivating patients to adopt healthier lifestyles and improving their self-management.
1st Faculty of Medicine Charles University Prague Kateřinská 32 121 08 Prague Czech Republic
Department of Health Faculty of Medicine Masaryk University Kamenice 5 625 00 Brno Czech Republic
German Center for Diabetes Research Ingolstädter Landstraße 1 85764 Neuherberg Germany
Zobrazit více v PubMed
Robert Koch-Institut Übergewicht und Adipositas in Deutschland: Werden wir immer dicker? Bundesgesundheitsblatt–Gesundh. –Gesundh. 2012;55:3–4.
Tönnies T., Röckl S., Hoyer A., Heidemann C., Baumert J., Du Y., Scheidt-Nave C., Brinks R. Projected Number of People with Diagnosed Type 2 Diabetes in Germany in 2040. Diabet. Med. J. Br. Diabet. Assoc. 2019;36:1217–1225. doi: 10.1111/dme.13902. PubMed DOI
Schmidt C., Reitzle L., Paprott R., Bätzing J., Holstiege J. Diabetes mellitus und Komorbiditäten—Querschnittsstudie mit Kontrollgruppe anhand vertragsärztlicher Abrechnungsdaten. Robert Koch Inst. 2021;6:20–37. doi: 10.25646/8326. DOI
Haftenberger M., Mensink G.B.M., Herzog B., Kluttig A., Greiser K.H., Merz B., Nöthlings U., Schlesinger S., Vogt S., Thorand B., et al. Changes in Body Weight and Obesity Status in German Adults: Results of Seven Population-Based Prospective Studies. Eur. J. Clin. Nutr. 2016;70:300–305. doi: 10.1038/ejcn.2015.179. PubMed DOI
American Diabetes Association 3 Prevention or Delay of Type 2 Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care. 2020;44:S34–S39. doi: 10.2337/dc21-S003. PubMed DOI
Kerrison G., Gillis R.B., Jiwani S.I., Alzahrani Q., Kok S., Harding S.E., Shaw I., Adams G.G. The Effectiveness of Lifestyle Adaptation for the Prevention of Prediabetes in Adults: A Systematic Review. J. Diabetes Res. 2017;2017:1–20. doi: 10.1155/2017/8493145. PubMed DOI PMC
Sun Y., You W., Almeida F., Estabrooks P., Davy B. The Effectiveness and Cost of Lifestyle Interventions Including Nutrition Education for Diabetes Prevention: A Systematic Review and Meta-Analysis. J. Acad. Nutr. Diet. 2017;117:404–421.e36. doi: 10.1016/j.jand.2016.11.016. PubMed DOI PMC
Bonoto B.C., de Araújo V.E., Godói I.P., de Lemos L.L.P., Godman B., Bennie M., Diniz L.M., Junior A.A.G. Efficacy of Mobile Apps to Support the Care of Patients With Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. JMIR MHealth UHealth. 2017;5:e6309. doi: 10.2196/mhealth.6309. PubMed DOI PMC
Martos-Cabrera M.B., Velando-Soriano A., Pradas-Hernández L., Suleiman-Martos N., Cañadas-De la Fuente G.A., Albendín-García L., Gómez-Urquiza J.L. Smartphones and Apps to Control Glycosylated Hemoglobin (HbA1c) Level in Diabetes: A Systematic Review and Meta-Analysis. J. Clin. Med. 2020;9:693. doi: 10.3390/jcm9030693. PubMed DOI PMC
American Diabetes Association 2 Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2019;43:S14–S31. doi: 10.2337/dc20-S002. PubMed DOI
Cosentino F., Grant P.J., Aboyans V., Bailey C.J., Ceriello A., Delgado V., Federici M., Filippatos G., Grobbee D.E., Hansen T.B., et al. 2019 ESC Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD: The Task Force for Diabetes, Pre-Diabetes, and Cardiovascular Diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD) Eur. Heart J. 2020;41:255–323. doi: 10.1093/eurheartj/ehz486. PubMed DOI
American Diabetes Association 4 Foundations of Care: Education, Nutrition, Physical Activity, Smoking Cessation, Psychosocial Care, and Immunization. Diabetes Care. 2015;38:S20–S30. doi: 10.2337/dc15-S007. PubMed DOI
Landgraf R., Aberle J., Birkenfeld A.L., Gallwitz B., Kellerer M., Klein H., Müller-Wieland D., Nauck M.A., Reuter H.-M., Siegel E. Therapy of Type 2 Diabetes. Exp. Clin. Endocrinol. Diabetes. 2019;127:S73–S92. doi: 10.1055/a-1018-9106. PubMed DOI
Schwarz P.E.H., Timpel P., Harst L., Greaves C.J., Ali M.K., Lambert J., Weber M.B., Almedawar M.M., Morawietz H. Blood Sugar Regulation as a Key Focus for Cardiovascular Health Promotion and Prevention: An Umbrella Review. J. Am. Coll. Cardiol. 2018;72:1829–1844. doi: 10.1016/j.jacc.2018.07.081. PubMed DOI PMC
Grock S., Ku J., Kim J., Moin T. A Review of Technology-Assisted Interventions for Diabetes Prevention. Curr. Diab. Rep. 2017;17:107. doi: 10.1007/s11892-017-0948-2. PubMed DOI
Årsand E., Frøisland D.H., Skrøvseth S.O., Chomutare T., Tatara N., Hartvigsen G., Tufano J.T. Mobile Health Applications to Assist Patients with Diabetes: Lessons Learned and Design Implications. J. Diabetes Sci. Technol. 2012;6:1197–1206. doi: 10.1177/193229681200600525. PubMed DOI PMC
Kaufman N., Khurana I. Using Digital Health Technology to Prevent and Treat Diabetes. Diabetes Technol. Ther. 2016;18:S-56–S-68. doi: 10.1089/dia.2016.2506. PubMed DOI PMC
Byambasuren O., Sanders S., Beller E., Glasziou P. Prescribable MHealth Apps Identified from an Overview of Systematic Reviews. Npj Digit. Med. 2018;1:1–12. doi: 10.1038/s41746-018-0021-9. PubMed DOI PMC
Timpel P., Oswald S., Schwarz P.E.H., Harst L. Mapping the Evidence on the Effectiveness of Telemedicine Interventions in Diabetes, Dyslipidemia, and Hypertension: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Med. Internet Res. 2020;22:e16791. doi: 10.2196/16791. PubMed DOI PMC
Kumar S., Moseson H., Uppal J., Juusola J.L. A Diabetes Mobile App with In-App Coaching From a Certified Diabetes Educator Reduces A1C for Individuals with Type 2 Diabetes. Diabetes Educ. 2018;44:226–236. doi: 10.1177/0145721718765650. PubMed DOI
Cafazzo J.A., Casselman M., Hamming N., Katzman D.K., Palmert M.R. Design of an MHealth App for the Self-Management of Adolescent Type 1 Diabetes: A Pilot Study. J. Med. Internet Res. 2012;14:e70. doi: 10.2196/jmir.2058. PubMed DOI PMC
Pagoto S., Tulu B., Waring M.E., Goetz J., Bibeau J., Divito J., Groshon L., Schroeder M. Slip Buddy App for Weight Management: Randomized Feasibility Trial of a Dietary Lapse Tracking App. JMIR MHealth UHealth. 2021;9:e24249. doi: 10.2196/24249. PubMed DOI PMC
Riangkam C., Sriyuktasuth A., Pongthavornkamol K., Kusakunniran W., Sriwijitkamol A. Effects of a Mobile Health Diabetes Self-Management Program on HbA1C, Self-Management and Patient Satisfaction in Adults with Uncontrolled Type 2 Diabetes: A Randomized Controlled Trial. J. Health Res. 2021;2 doi: 10.1108/JHR-02-2021-0126. DOI
Turner R.M., Ma Q., Lorig K., Greenberg J., DeVries A.R. Evaluation of a Diabetes Self-Management Program: Claims Analysis on Comorbid Illnesses, Health Care Utilization, and Cost. J. Med. Internet Res. 2018;20:e207. doi: 10.2196/jmir.9225. PubMed DOI PMC
Ware J., Kosinski M., Keller S.D. A 12-Item Short-Form Health Survey: Construction of Scales and Preliminary Tests of Reliability and Validity. Med. Care. 1996;34:220–233. doi: 10.1097/00005650-199603000-00003. PubMed DOI
Ware J., Kosinski M., Turner-Bowker D., Gandek B. SF-12: How to Score SF-12 Physical and Mental Health Summary Scales. 2nd ed. The Health Institute, New England Medical Center; Boston, MA, USA: 2002.
Toobert D.J., Hampson S.E., Glasgow R.E. The Summary of Diabetes Self-Care Activities Measure: Results from 7 Studies and a Revised Scale. Diabetes Care. 2000;23:943–950. doi: 10.2337/diacare.23.7.943. PubMed DOI
Kroenke K., Spitzer R.L., Williams J.B. The PHQ-9: Validity of a Brief Depression Severity Measure. J. Gen. Intern. Med. 2001;16:606–613. doi: 10.1046/j.1525-1497.2001.016009606.x. PubMed DOI PMC
Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146. PubMed DOI
Faul F., Erdfelder E., Buchner A., Lang A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods. 2009;41:1149–1160. doi: 10.3758/BRM.41.4.1149. PubMed DOI
Meyerowitz-Katz G., Ravi S., Arnolda L., Feng X., Maberly G., Astell-Burt T. Rates of Attrition and Dropout in App-Based Interventions for Chronic Disease: Systematic Review and Meta-Analysis. J. Med. Internet Res. 2020;22:e20283. doi: 10.2196/20283. PubMed DOI PMC
Jersey D.M.L. PharmD, BCPS, BCPP, BCGP Medical Writer/Consultant Adjunct Faculty, Union County College Division of Allied Health Plainfield, New Applying Recent A1C Recommendations in Clinical Practice. [(accessed on 14 December 2021)]. Available online: https://www.uspharmacist.com/article/applying-recent-a1c-recommendations-in-clinical-practice.
Jamieson S. Likert Scales: How to (Ab)Use Them. Med. Educ. 2004;38:1217–1218. doi: 10.1111/j.1365-2929.2004.02012.x. PubMed DOI
Likert R. A Technique for the Measurement of Attitudes. Arch. Psychol. 1932;22:55.
Monteiro C.A., Cannon G., Levy R.B., Moubarac J.-C., Louzada M.L., Rauber F., Khandpur N., Cediel G., Neri D., Martinez-Steele E., et al. Ultra-Processed Foods: What They Are and How to Identify Them. Public Health Nutr. 2019;22:936–941. doi: 10.1017/S1368980018003762. PubMed DOI PMC
Althoff T., Sosič R., Hicks J.L., King A.C., Delp S.L., Leskovec J. Large-Scale Physical Activity Data Reveal Worldwide Activity Inequality. Nature. 2017;547:336–339. doi: 10.1038/nature23018. PubMed DOI PMC
Glycemic Targets: Standards of Medical Care in Diabetes—2021|Diabetes Care. [(accessed on 9 December 2021)]. Available online: https://care.diabetesjournals.org/content/44/Supplement_1/S73.
Stühmann L.M., Paprott R., Heidemann C., Baumert J., Hansen S., Zahn D., Scheidt-Nave C., Gellert P. Health App Use and Its Correlates Among Individuals with and Without Type 2 Diabetes: Nationwide Population-Based Survey. JMIR Diabetes. 2020;5:e14396. doi: 10.2196/14396. PubMed DOI PMC
Stratton I.M., Adler A.I., Neil H.A.W., Matthews D.R., Manley S.E., Cull C.A., Hadden D., Turner R.C., Holman R.R. Association of Glycaemia with Macrovascular and Microvascular Complications of Type 2 Diabetes (UKPDS 35): Prospective Observational Study. BMJ. 2000;321:405–412. doi: 10.1136/bmj.321.7258.405. PubMed DOI PMC
Selvin E., Marinopoulos S., Berkenblit G., Rami T., Brancati F.L., Powe N.R., Golden S.H. Meta-Analysis: Glycosylated Hemoglobin and Cardiovascular Disease in Diabetes Mellitus. Ann. Intern. Med. 2004;141:421–431. doi: 10.7326/0003-4819-141-6-200409210-00007. PubMed DOI
Wang P., Huang R., Lu S., Xia W., Sun H., Sun J., Cai R., Wang S. HbA1c below 7% as the Goal of Glucose Control Fails to Maximize the Cardiovascular Benefits: A Meta-Analysis. Cardiovasc. Diabetol. 2015;14:124. doi: 10.1186/s12933-015-0285-1. PubMed DOI PMC
Balkau B., Picard P., Vol S., Fezeu L., Eschwège E. Consequences of Change in Waist Circumference on Cardiometabolic Risk Factors Over 9 Years: Data from an Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Diabetes Care. 2007;30:1901–1903. doi: 10.2337/dc06-2542. PubMed DOI
Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M., Gillespie C., et al. Heart Disease and Stroke Statistics—2017 Update: A Report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485. PubMed DOI PMC
Yu E., Malik V.S., Hu F.B. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018;72:914–926. doi: 10.1016/j.jacc.2018.02.085. PubMed DOI PMC
Shan Z., Li Y., Baden M.Y., Bhupathiraju S.N., Wang D.D., Sun Q., Rexrode K.M., Rimm E.B., Qi L., Willett W.C., et al. Association Between Healthy Eating Patterns and Risk of Cardiovascular Disease. JAMA Intern. Med. 2020;180:1–11. doi: 10.1001/jamainternmed.2020.2176. PubMed DOI PMC
Blonde L., Brunton S.A., Chava P., Zhou R., Meyers J., Davis K.L., Dalal M.R., DiGenio A. Achievement of Target A1C <7.0% (<53 Mmol/Mol) by U.S. Type 2 Diabetes Patients Treated With Basal Insulin in Both Randomized Controlled Trials and Clinical Practice. Diabetes Spectr. 2019;32:93–103. doi: 10.2337/ds17-0082. PubMed DOI PMC
Mack C., Su Z., Westreich D. Managing Missing Data in Patient Registries: Addendum to Registries for Evaluating Patient Outcomes: A User’s Guide. 3rd ed. Agency for Healthcare Research and Quality (US); Rockville, MD, USA: 2018. AHRQ Methods for Effective Health Care. PubMed
Jakobsen J.C., Gluud C., Wetterslev J., Winkel P. When and How Should Multiple Imputation Be Used for Handling Missing Data in Randomised Clinical Trials—A Practical Guide with Flowcharts. BMC Med. Res. Methodol. 2017;17:162. doi: 10.1186/s12874-017-0442-1. PubMed DOI PMC
Winkel P. International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. In: Tietje C., Brouder A., editors. Handbook of Transnational Economic Governance Regimes. Brill | Nijhoff; Leiden, The Netherlands: 2010. pp. 1041–1053.
Shan R., Sarkar S., Martin S.S. Digital Health Technology and Mobile Devices for the Management of Diabetes Mellitus: State of the Art. Diabetologia. 2019;62:877–887. doi: 10.1007/s00125-019-4864-7. PubMed DOI
Neugebauer E.A.M., Rath A., Antoine S.-L., Eikermann M., Seidel D., Koenen C., Jacobs E., Pieper D., Laville M., Pitel S., et al. Specific Barriers to the Conduct of Randomised Clinical Trials on Medical Devices. Trials. 2017;18:427. doi: 10.1186/s13063-017-2168-0. PubMed DOI PMC
Timpel P., Cesena F.H.Y., da Silva Costa C., Soldatelli M.D., Gois E., Castrillon E., Díaz L.J.J., Repetto G.M., Hagos F., Castillo Yermenos R.E., et al. Efficacy of Gamification-Based Smartphone Application for Weight Loss in Overweight and Obese Adolescents: Study Protocol for a Phase II Randomized Controlled Trial. Ther. Adv. Endocrinol. Metab. 2018;9:167–176. doi: 10.1177/2042018818770938. PubMed DOI PMC
Smith B., Magnani J.W. New Technologies, New Disparities: The Intersection of Electronic Health and Digital Health Literacy. Int. J. Cardiol. 2019;292:280–282. doi: 10.1016/j.ijcard.2019.05.066. PubMed DOI PMC